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ABSTRACT
We consider linear q-difference equations with polynomial
coefficients depending on parameters. For the case when the
ground field is Q(q) we propose an algorithm recognizing
whether or not there exist numerical values of parameters for
which a given equation has a non-zero polynomial solution
(alternatively, a rational-function solution). We prove that
there exists no such algorithm if the parameter values are
polynomials or rational functions of q.

Categories and Subject Descriptors
I.1.2 [Symbolic And Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
q-difference equations with parameters, polynomial solu-
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1. INTRODUCTION
Suppose that in an equation L(y) = 0 the operator L is of

the form

rρ(x, t1, . . . , tm)Dρ + rρ−1(x, t1, . . . , tm)Dρ−1 + . . . (1)

· · ·+ r0(x, t1, . . . , tm),

where D = d
dx

, and r0, r1, . . . , rρ are polynomials over Q in
the specified variables, and t1, t2, . . . , tm are parameters. In
the paper [13] of D. Boucher the following result of J.-A. Weil
is mentioned: there is no algorithm that, for an arbitrary op-
erator L of form (1) answers whether or not numerical values
of parameters t1, t2, . . . , tm exist for which equation L(y) = 0
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has a solution in the form of a non-zero rational function of
x. The proof is based on the David-Matiyasevich-Putnam-
Robinson theorem which says that there exists no algorithm
which, for an arbitrary polynomial P (t1, t2, . . . , tm) with in-
tegral coefficients, determines whether or not the equation
P (t1, t2, . . . , tm) = 0 has an integral solution [19]. The result
by Weil can be easily extended to the problem of existence
of polynomial solutions of equation L(y) = 0.

Similar results have been obtained for the difference case
([2, 3]). The operator L is of the form

rρ(x, t1, . . . , tm)Eρ + rρ−1(x, t1, . . . , tm)Eρ−1 + . . . (2)

· · ·+ r0(x, t1, . . . , tm),

where E is the shift operator: E(y(x)) = y(x + 1), and
again r0, r1, . . . , rρ are polynomials over Q in the specified
variables, t1, t2, . . . , tm are parameters.

In this paper we consider q-difference equations. Differen-
tial equations are based on the differentiation operator D,
while difference equations are based on the shift operator E.
In turn, the q-difference equations are based on the q-shift
operator Q:

Q(y(x)) = y(qx),

where q is a fixed value or an additional variable (q-calculus
and the theory and algorithms for q-difference equations are
of interest in combinatorics, especially in the theory of par-
titions [10, Sect. 8.4], [11]). The q-difference analogue of
operators (1), (2) is

rρ(x, t1, . . . , tm)Qρ + rρ−1(x, t1, . . . , tm)Qρ−1 + . . . (3)

· · ·+ r0(x, t1, . . . , tm),

where r0, r1, . . . , rρ are polynomials in specified variables
over a field k of characteristic 0. We assume that k = k0(q),
where k0 is a subfield of k, and q, x are algebraically inde-
pendent over k0.

We show that the situation with the parametric case for
q-difference equations in some sense is more interesting than
for differential and difference equations. Let, e.g., the ground
field k be Q(q). Then there is an algorithm that recognizes
the existence of numerical (real, complex) values of the pa-
rameters for which a given linear q-difference equation has
a solution in the form of a non-zero polynomial or, alterna-
tively, rational function; it is possible that the right-hand
side is a non-zero polynomial in x that contains parameters.
(Recall that a rational solution of a linear q-difference equa-
tion with polynomial coefficients and polynomial right-hand
side without parameters is a rational function of x over k
such that substituting it into the equation gives an equality
in k(x).)
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At the same time, if the values of parameters are allowed
to be arbitrary polynomials or rational functions of q then
such algorithm does not exist.

Acknowledgments. I am grateful to M. Petkovšek and
J.-A. Weil for interesting discussions, and to T. Pheidas and
A. Shen for valuable consultations. I also express my thanks
to D. Khmelnov, A. Ryabenko, and anonymous referees for
their helpful remarks.

2. PRELIMINARIES: Q-DIFFERENCE
EQUATIONS WITHOUT PARAMETERS
AND SYSTEMS OF ALGEBRAIC EQUA-
TIONS

In this section we consider linear q-difference equations
with polynomial coefficients and polynomial right-hand sides
which do not contain any parameters, i.e., equations of the
form

L(y) = f(x), (4)

where

L = rρ(x)Qρ + · · ·+ r1(x)Q+ r0(x), (5)

r0(x), r1(x), . . . , rρ(x), f(x) ∈ k[x]. Here k is a field of char-
acteristic 0, k = k0(q), where k0 is a subfield of k, and q,
x are algebraically independent over k0. We will assume
that rρ(x), r0(x) ∈ k[x] \ {0}, and ρ will be called the or-
der of L (we write ordL = ρ). Below we describe briefly
some known algorithms for computing all polynomial and
rational-function solutions of equations of this form (see [1],
[4]; an implementation of some versions of these algorithms
is available in the standard package QDifferenceEquations of
Maple computer algebra system [23]). We will need these al-
gorithms later when we consider equations with parameters.
An observation given in [12] will be also valuable for us.

In addition we discuss some facts related to systems of
algebraic equations.

2.1 An algorithm for finding polynomial solu-
tions

We connect with operator (5) the non-negative integer
number ω and the polynomial I(λ) ∈ k[λ]:

ω = max
06j6ρ

deg rj(x), I(λ) =
∑

06j6ρ
deg rj(x)=ω

lc(rj(x))λj (6)

(lc(. . . ) is the leading coefficient of a polynomial belonging
to k[x] \ {0}). The algebraic equation I(λ) = 0 is called the
indicial equation, and the integer ω is called the increment
connected with operator L. Set the degree of zero polyno-
mial to be −∞. The following statement demonstrates the
role of the indicial equation in the search for polynomial so-
lutions.

Let ϕ(x) be a polynomial solution of the equation L(y) =
f(x), f(x) ∈ k[x]. Then degϕ(x) does not exceed

l = max{deg f − ω, λ̃}, (7)

where λ̃ = max({h ∈ N : I(qh) = 0} ∪ {−∞}).

The statement is justified by the fact that if ϕ(x) ∈ k[x],
degϕ(x) = d, I(qd) 6= 0 then degL(ϕ(x)) = d+ ω.

There is an algorithm which allows for any algebraic equa-
tion with one unknown λ over the field k = k0(q) to find all
roots of the form qh, h ∈ Z: since qh 6= 0 for any h ∈ Z, we
can assume that the algebraic equation has the form

as(q)λ
s + · · ·+ a1(q)λ+ a0(q) = 0 (8)

a1(q), a2(q), . . . , as−1(q) ∈ k0[q], a0(q), as(q) ∈ k0[q] \ {0}. If
qh is a root, then qh|a0(q) when h > 0, and q−h|as(q) when
h < 0.

The simplest version of the algorithm for finding the gen-
eral polynomial solution is to find an upper bound for degrees
of all possible polynomial solutions and to use the undeter-
minate coefficients method. A faster algorithm is described
in [6].

2.2 An algorithm for finding rational-function
solutions

The general principle of the search for rational solutions
that we use is as follows: first of all to find a universal fac-
tor which is a rational function V (x) over k such that if the
original equation has a rational solution, then this solution
can be written in the form z(x)V (x), where z(x) is a polyno-
mial. Of course, it is possible that z(x)⊥/ denV (x) (we write
a(x)⊥/ b(x), if polynomials a(x), b(x) ∈ k[x] have a common
factor of positive degree). The substitution

y(x) = z(x)V (x) (9)

into the original equation reduces the problem of finding
rational-function solutions to the problem of finding polyno-
mial solutions.

We describe an algorithm for finding a universal factor.
Any polynomial ϕ(x) ∈ k[x] \ {0} can be represented in

the form ϕ(x) = xvb(x), where v ∈ N and the polynomial
b(x) is not divisible by x. If ϕ(x) is the zero polynomial,
then set v = ∞. We denote v by ν(ϕ(x)) and (as usual)
call it the valuation of ϕ(x). If ν(ϕ(x)) = ν(ψ(x)) = 0 for
ϕ(x), ψ(x) ∈ k[x], then we can consider the q-dispersion set
(finite) of polynomials ϕ(x) and ψ(x):

qds (ϕ(x), ψ(x)) = {h ∈ N : ϕ(x)⊥/ψ(qhx)} (10)

and their q-dispersion:

qdis (ϕ(x), ψ(x)) = max(qds (ϕ(x), ψ(x)) ∪ {−∞}). (11)

The set qds (ϕ(x), ψ(x)) can be found, e.g., by computing
all the roots having the form λ = qh, h ∈ N, of the equation
R(λ) = 0, where R(λ) = Resx(ϕ(x), ψ(λx)). (In [5] an algo-
rithm is proposed which works also in the case when q is an
algebraic number which is not a root of unity.)

A universal factor can be found in the form

V (x) = xl0 · 1

U(x)
, (12)

where l0 ∈ Z, U(x) ∈ k[x], ν(U(x)) = 0. The polynomial
U(x) can be constructed by the following algorithm ([1], [4]):

Set A(x) = r̃ρ(q
−ρx), B(x) = r̃0(x), where r̃ρ(x) =

rρ(x)

xν(rρ(x))
, r̃0(x) = r0(x)

xν(r0(x)) . Compute H = qds (A(x), B(x)).

If H = ∅, then stop the algorithm with the result U(x) = 1
(we assume in the rest of this description of the algorithm
that H = {h1, h2, . . . , hs}, h1 > h2 > · · · > hs, s > 1). Set
U(x) = 1 and for all hi, starting from h1 in the decreasing
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order, execute the following assignments:

N(x) = gcd(A(x), B(qhix))
A(x) = A(x)/N(x)
B(x) = B(x)/N(q−hix)

U(x) = U(x)
∏hi
j=0 N(q−jx).

The final value of U(x) is a polynomial which can be used to
construct a universal factor (12).

For finding l0 we assign to L of the form (5) and to the
equation L(y) = f(x), f(x) ∈ k[x], the increment

ω0 = min
06j6ρ

ν(rj(x)) (13)

and the indicial equation I0(λ) = 0, where

I0(λ) =
∑

06j6ρ
ν(rj(x))=ω0

tc(rj(x))λj (14)

(tc(. . . ) is the trailing coefficient of a polynomial belonging
to k[x] \ {0}). We can set

l0 = min{ν(f(x))− ω0, λ̃0}, (15)

where

λ̃0 = min({h ∈ Z : I0(qh) = 0} ∪ {∞}). (16)

This can be justified by the fact that if F (x) ∈ k(x), and

F̂ (x) is a formal Laurent series in x for F (x), n = ν(F̂ (x))
is the valuation of this series (i.e., the minimal exponent of
x in non-zero terms; for zero series the valuation is ∞) and

I0(hn) 6= 0, then ν(L(F̂ (x))) = n + ω0. Notice that in the
algorithm from [1], [4] the value l0 is computed in a different
way.

Remark 1. Let A(x), B(x) be as in the algorithm de-
scription given above, and U(x) be the result of applying this
algorithm. Let d > qdis (A(x), B(x)). Using the same rea-
sonings as in [12] for the difference case, one can show that

U(x) divides the polynomial
∏d
i=0 rρ(q

−ρ−ix). This implies
that the latter polynomial can be used in (12) instead of U(x).

Remark 2. The existence of the roots having the form
qh, h ∈ Z, of the equation I0(λ) = 0 is a necessary condition
for the existence of non-zero rational-function (in particular,
polynomial) solutions of L(y) = 0.

Another algorithm for finding a universal factor was de-
scribed in [18] where difference equations were discussed, but
it was noted that the proposed approach can be used in the
q-difference case as well. However for the purposes of this
paper the algorithm described above (especially in the form
mentioned in Remark 1) is more suitable.

2.3 Pairs of systems of algebraic equations
Working with parameters we will face systems of algebraic

equations (nonlinear in general). A well-known problem is
recognizing whether or not a given system with coefficients
in a field k0 has a solution whose components belong to an
extension Λ of k0. We will consider also a more general prob-
lem: given a pair (S1, S2) of systems of algebraic equations
(possibly empty), decide whether there are values of the un-
knowns belonging to Λ which satisfy all equations in S1, but
– provided that S2 6= ∅ – not all equations in S2. (If S1 = ∅,
then by definition any set of values of the unknowns satisfies

S1.) We will refer to this more general problem as problem
Sk0,Λ.

If the problem Sk0,Λ is decidable for given k0,Λ then we
will denote by Ak0,Λ an algorithm which solves this problem.
The result of applying Ak0,Λ to a pair of systems is one of
the words “yes”, “no”.

If k0 = Q, then Sk0,Λ is decidable for all Λ from the list

C, R, Q, R ∩Q . (17)

Using the Groebner bases technique an algorithm for C and
Q as Λ can be obtained ([14, Sect. 6], [17, Sect. 21.6], [20,
Ch. 4], etc.), and using Tarski’s theorem one can obtain
an algorithm for R and R ∩ Q as Λ ([16], [20, Sect. 8.6.3]).
It is also known for the case k0 = Q that a solution with
components in Λ = C exists iff there exists a solution with
components in Λ = Q, while a solution with components in
Λ = R exists iff there exists a solution with components in
Λ = R ∩Q.

If for an arbitrary equation in one variable with coefficients
in k0 we can recognize the existence of a root in Λ, then in
the case of one variable an algorithm Ak0,Λ can be based on
the Euclidean algorithm (see Section 4.2.4).

3. BOUNDING INTEGER EXPONENTS OF
ROOTS OF ALGEBRAIC EQUATIONS

Proposition 1. Let there exist at least one non-zero el-
ement among b0(q), b1(q), . . . , bu(q) ∈ k0[q]. Then the in-
equality

|h| 6 max
06j6u

degq bj(q) (18)

is valid for all h ∈ Z such that qh is a root of the equation

bu(q)λu + · · ·+ b1(q)λ+ b0(q) = 0. (19)

Proof. See the algorithm for finding the roots of the form
qh, h ∈ Z, in Section 2.1. 2

We will show that the computation of the roots qh, h ∈ Z,
in algorithms of Sections 2.1, 2.2 for finding polynomial and
rational-function solutions can be replaced by finding an
upper bound of |h|. In Section 4 this will be used for q-
difference equations with parameters, but in the current sec-
tion we still consider equation (4) that does not have any
parameters. We can clear denominators in coefficients and
f(x) (those denominators are polynomials in q), and assume
that r0(x), r1(x), . . . , rρ(x), f(x) ∈ k0[q][x] in (4), (5). It
will be convenient for us in some situations to consider co-
efficients and right-hand sides of q-difference equations as
polynomials in q and x over k0. However we will use as
a rule the notation r0(x), r1(x), . . . , rρ(x), f(x) etc, because
the variable x is the main one: we produce the q-shift w.r.t.
x. (In some cases we will write just r0, r1, . . . , rρ, f .) When
we write, e.g., lc(f), then we have in mind the leading coef-
ficient of f as a polynomial in x, and this leading coefficient
is a polynomial in q over k0; the same goes for the trailing
coefficient tc(f). However we will use degx resp. degq for
degrees of polynomials in x resp. q.

Notice that lc(rj) in I(λ) (see (6)) and tc(rj) in I0(λ) (see
(14)) are polynomials in q of degree 6 wq.

Proposition 2. Let the coefficients of operator (5) be-
long to k0[q, x], and wq resp. wx be maximal degrees in q
resp. x of all these coefficients. Let f ∈ k0[q, x]. Then
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(i) the degree of any polynomial solution of L(y) = f does
not exceed

max{degx f, wq}, (20)

(ii) any rational-function solution of L(y) = f can be rep-
resented as the product of a polynomial and the rational func-
tion

V (x) =
1

xw
∏d
i=0 rρ(q

−ρ−ix)
, (21)

where w = max{wx, wq}, d = ρw2
x + 2wxwq.

Proof. (i) The value (20) cannot be less than (7).
(ii) Going back to the algorithm for computing U(x)

given in Section 2.2, set A′(x) = qρwxA(x). We have
qdis (A(x), B(x)) = qdis (A′(x), B(x)), and A′(x), B(x) can
be considered as polynomials in q and x over k0. Then

degxA
′ 6 wx, degxB 6 wx,

degq A
′ 6 wq + ρwx, degq B 6 wq.

Taking into account the form of the Sylvester matrix of poly-
nomials A′(x), B(λx) and the algorithm for computing the
q-dispersion using a resultant, we get

degq Resx(A′(x), B(λx)) 6
6 degq A

′ degxB + degq B degxA
′

6 (wq + ρwx)wx + wqwx.

This and Proposition 1 imply qdis(A(x), B(x)) 6 ρw2
x +

2wxwq = d. So (ii) follows from Remark 1 and from in-

equalities −ω0 > −wx, λ̃0 > −wq (therefore w > −l0 for l0,
computed by formula (15)). 2

4. Q-DIFFERENCE EQUATIONS WITH PA-
RAMETERS, INDEPENDENT OF Q

We will show that the algorithmic problems mentioned
in the Introduction, undecidable in the differential and dif-
ference cases, are decidable in the q-difference case when
parameters are independent of q.

Computation of roots will be replaced by finding some
bounds for the exponents h (see Section 3). Of course, using
the bounds instead of exact values of the exponents increases
performance time of the algorithms. But, first, concerning q-
difference equations with parameters, the problem of finding
such exact values appears to be unsolvable. Second, we will
be interested only in establishing the existence of algorithms.
The effectiveness questions will not be considered (the only
exception is Section 4.2.4).

4.1 Basic assumptions
Here we formulate some assumptions which will remain

valid throughout Section 4.

1. Λ is an extension of the field k0 of characteristic 0, and
q, x are algebraically independent over Λ.

2. The algorithmic problem Sk0,Λ is decidable, i.e., there
exists an algorithm Ak0,Λ (see Section 2.3).

3. The operator L has the form

rρQ
ρ + rρ−1Q

ρ−1 + · · ·+ r0, (22)

where r0, r1, . . . , rρ ∈ k0[q, x, t1, t2, . . . , tm] and t1, t2, . . . , tm
are parameters. The right-hand side f of the equation
L(y) = f also belongs to k0[q, x, t1, t2, . . . , tm].

4.2 Recognizing existence of polynomial and
rational-function solutions in the homoge-
neous case

Till Section 4.3 we assume that a given q-difference equa-
tion with parameters is homogeneous, i.e., of the form
L(y) = 0.

First we consider the question of existence
of τ1, τ2, . . . , τm ∈ Λ such that the equation L(y) = 0 af-
ter substituting τ1, τ2, . . . , τm for t1, t2, . . . , tm becomes an
equation with a non-zero solution in Λ[q, x] resp. in Λ(q, x)
(but notice that the unknown function is denoted by y(x),
not by y(q, x)). We will refer to the two algorithmic prob-
lems related to the existence of parameter values such that
the corresponding equation has non-zero polynomial resp.
rational-function solutions, as problem Pk0,Λ resp. problem
Rk0,Λ. We will show in particular that if k0 = Q, then both
problems are decidable when Λ is any field from the list (17).

Any parameter values belonging to Λ such that a given q-
difference equation has a non-zero polynomial resp. rational-
function solution will be called adequate.

Now we introduce a notion which will be useful in the se-
quel. Let ϕ ∈ k0[q, x, t1, t2, . . . , tm]. The system of algebraic
equations in t1, t2, . . . , tm, which is produced by representing
ϕ as a polynomial in q, x with coefficients in k0[t1, t2, . . . , tm]
and equating each of these coefficients to 0, will be called the
0-system corresponding to the polynomial ϕ.

4.2.1 Decidability of Pk0,Λ
We can check whether or not there exist in Λ values of

parameters that annihilate all the coefficients of the original
equation (with an operator L of the form (22)). To do this
we construct the system S′ of all equations of 0-systems cor-
responding to coefficients ri, i = 0, 1, . . . , ρ, of the operator
L, and apply Ak0,Λ to (S′,∅). If the result of this apply-
ing is “yes” then the original q-difference equation with such
values of parameters turns into 0 = 0. Any polynomial is a
solution of this equation.

If such values of parameters do not exist, then by Proposi-
tion 2(i) the value l = wq can be used as an upper bound on
the degree of any polynomial solution. Of course, for differ-
ent values of parameters we will get after their substitution
into (22) different operators with different values wq. But
none of these wq’s exceeds the value that is found for (22).

The method of undetermined coefficients can be used.
Let y0, y1, . . . , yl be the undetermined coefficients. We get
a system S of linear homogeneous algebraic equations for
y0, y1, . . . , yl with coefficients from k0[q, t1, t2, . . . , tm], and
it is sufficient to recognize whether or not exist in Λ such
values of t1, t2, . . . , tm that the system which is obtained as
a result of substituting these values into S, has a non-zero
solution with components in Λ(q).

We obtain the following algorithm.

Construct S′ of all equations of 0-systems corresponding
to the coefficients ri, i = 0, 1, . . . , ρ, of operator L, and apply
Ak0,Λ to (S′,∅); if the result is “yes”, then stop the algorithm
with the answer “yes” (we will assume in the rest of the de-
scription of this algorithm that such values do not exist). Set
l = wq. Construct the system of linear algebraic equations
for coefficients y0, y1, . . . , yl of an arbitrary polynomial solu-
tion of L(y) = 0. Let T be the matrix of this linear system
(the elements of T belong to k0[q, t1, t2, . . . , tm]). Construct
the system of algebraic equations, gathering together equa-
tions of the 0-systems of all the minors of order l + 1 of T ,
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and apply Ak0,Λ to

(S,∅), (23)

where S is the constructed system.

So the problem Pk0,Λ is decidable.

Remark 3. In contrast to the q-difference case, in the
differential and difference cases no independent of the values
of parameters upper bound for the degree of polynomial solu-
tions exists in general. For example the differential equation
xy′ − ty = 0 with one parameter t has the polynomial so-
lution xt of degree t when t ∈ N. Similarly the difference
equation xy(x + 1) − (x + t)y(x) = 0 has the polynomial
solution x(x+ 1) . . . (x+ t− 1) of degree t when t ∈ N.

4.2.2 Additional constraints
If originally an algebraic system S1 for t1, t2, . . . , tm is

given, then the existence of parameter values which satisfy
S1 and for which the equation L(y) = 0 has a non-zero poly-
nomial solution, can be recognized by the above algorithm,
provided that we use S1 ∪ S instead of S in (23).

If we investigate the existence of the values of parameters
which do not satisfy a non-empty system S2 and for which
the equation L(y) = 0 has a non-zero polynomial solution,
then we use S2 instead of ∅ in (23).

It is also possible to consider two additional systems, the
first of which has to be satisfied, while the second one must
not be satisfied (if it is not empty).

4.2.3 Decidability of Rk0,Λ
Now consider the problem Rk0,Λ. For a given equation

L(y) = 0 with parameters we can use formula (21) to find
V ∈ Λ(q, x, t1, t2, . . . , tm) (since our q-difference equation is
homogeneous, we can take w = wq). Then we substitute y =
zV into L(y) = 0, clear denominators and decide whether or
not a non-zero polynomial solution of the resulting equation
exists.

Note that the corresponding values of parameters should
not annihilate the polynomial rρ, which is included in the
denominator of (21) (but it is easy to show that there is no
trouble with the case when r0 is annihilated). We apply the
algorithm from Section 4.2.2, using the system S2, which is
the 0-system corresponding to rρ. If such values of parame-

ters do not exist then set L̃ = L−rρQρ, the adequate values
have to satisfy the 0-system corresponding to the polynomial
rρ, and so on.

Now we can give a description of the full algorithm. The
algorithm is applicable to an equation L(y) = 0 and a system
S1 of algebraic equations, which has to be satisfied by the
adequate values of parameters. Even if initially S1 contains
no equations (S1 = ∅), and is satisfied by any values of
parameters, then non-empty systems S1 may appear due to
recursive calls in this algorithm.

If L = 0 then apply Ak0,Λ to (S1,∅) and stop algorithm
with the obtained answer (in the rest of the description of
this algorithm we will assume that L 6= 0). Construct the
0-system S2 corresponding to the polynomial rρ. Find V by
formula (21), substitute y = zV into L(y) = 0, clearing
denominators; this gives an equation L′(z) = 0. By the al-
gorithm from Sections 4.2.1, 4.2.2 recognize the existence of
parameter values which satisfy S1 but not S2 (if the latter
system is not empty) and such that the equation L′(z) = 0

has a non-zero polynomial solution. Stop the algorithm with
the answer “yes” if such values exist, otherwise apply the al-

gorithm recursively to L̃(y) = 0, S̃1, where L̃ = L − rρQρ

and S̃1 = S1 ∪ S2.

So the problem Rk0,Λ is decidable.

4.2.4 The case of a single parameter
Let there be only one parameter, denoted by t. In this

case any non-empty algebraic system is equivalent to a sin-
gle equation s(t) = 0, which can be constructed by the Eu-
clidean algorithm. If s(t) is a non-zero polynomial, then we
can assume that it is square-free (otherwise we take the quo-
tient of s(t) and gcd(s(t), s′(t)), where s′(t) is the derivative
of the polynomial s(t)). If both systems in the original pair
are non-empty, then we obtain the pair

(s1(t) = 0, s2(t) = 0), (24)

where each of polynomials s1(t), s2(t) is either zero or
square-free. In this case

• if s2(t) is the zero polynomial, then (24) has no solution
in Λ,

• if s2(t) ∈ k0[x] \ {0}, but s1(t) is the zero polynomial,
then the set of all solutions of (24) belonging to Λ is
the set {λ ∈ Λ; s2(λ) 6= 0},

• if s1(t), s2(t) ∈ k0[x] \ {0}, then the set of all solutions
of (24) belonging to Λ is the set {λ ∈ Λ; s(λ) = 0}
where s(t) = s1(t)/ gcd(s1(t), s2(t)).

Therefore the set of adequate values of the parameter has
the form U or Λ \ U , where U is the set of those roots of
a concrete polynomial over k0 which belong to Λ. It easy
to see that if M1, M2 are sets of this form then the sets
M1 ∪M2, M1 ∩M2, and Λ \M1 are of the same form.

This implies that, e.g., in the case when m = 1 and k0 =
Λ = Q we are able to obtain all the desired solutions of the
original pair (notice that we did not include Q in the list
(17); we will discuss more about this in Section 4.2.6).

The algorithms in Sections 4.2.1, 4.2.2, 4.2.3 are designed
in such a way that if at some point it is detected that ade-
quate parameter values exist, then the algorithms stop. For
m = 1 these algorithms can be easily modified so that the set
of all the adequate values can be presented in simple form.

4.2.5 The main statement for the case of parameters,
independent of q

The reasoning given above proves the following theorem.

Theorem 1. Let the assumptions 1 – 3, formulated in
Section 4.1, be valid. Then

(i) the question whether or not there exist adequate param-
eter values can be answered algorithmically, and therefore the
problems Pk0,Λ, Rk0,Λ are decidable;

(ii) in the case of a single parameter the set of adequate
parameter values has the form U or Λ \ U , where U is the
set of those roots of a polynomial h(t) ∈ k0[t] which belong
to Λ. The polynomial h(t) can be constructed algorithmically
(it can be the zero polynomial, in this case Λ \U = ∅). This
polynomial is independent of Λ.

Recall that algorithms solving the problem Sk0,Λ for the
fields Λ from the list (17) are known for k0 = Q.
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4.2.6 The case k0 = Λ = Q
Let k0 = Λ = Q. It is not clear whether the problem of ex-

istence of τ1, τ2, . . . , τm ∈ Λ such that after substituting the
values τ1, τ2, . . . , τm for t1, t2, . . . , tm in L(y) = 0 the result-
ing equation has a non-zero polynomial (rational-function)
solution, is decidable. Let us show that if it is decidable then
the problem of the existence of a solution with components
belonging to Q of a given algebraic equation with integer
coefficients is decidable too (the question of the decidability
of the later problem is still open, the common opinion of
experts is that this problem is undecidable, see, e.g., [22]).
Indeed, let P (t1, t2, . . . , tm) be an arbitrary polynomial with
integral coefficients. Then for any values τ1, τ2, . . . , τm ∈ Q,
the indicial equation I0(λ) = 0 (see Remark 2) of the q-
difference equation

y(qx)− (1 + P (τ1, τ2, . . . , τm))y(x) = 0 (25)

is λ − 1 − P (τ1, τ2, . . . , τm) = 0. This indicial equation has
a root of the form qh, h ∈ Z, only if P (τ1, τ2, . . . , τm) = 0.
Then h = 0, and the q-difference equation (25) is satisfied,
e.g., by the polynomial y(x) = 1.

4.2.7 On possible values of q
If q is an additional variable besides x, then q is tran-

scendental over any of the fields (17). When k0 = Q the
previous results are valid also if q is a transcendental num-
ber (i.e., q ∈ C \Q or, in the real case, q ∈ R \Q), and Λ is
one of Q, R ∩Q.

4.3 Inhomogeneous equations

4.3.1 Polynomial right-hand sides
In the Introduction we listed some concrete undecidable

problems, connected with differential and difference linear
homogeneous equations with numerical parameters. We de-
scribed above algorithms for solving those problems in the
case of q-difference equations. Similar algorithms can be ap-
plied in the case of linear inhomogeneous q-difference equa-
tions, when the right hand side f is a polynomial in x with
coefficients in k0[q, t1, t2, . . . , tm]. It follows from (7) that
we can use max{degx f, wq} as an upper bound for degrees
of polynomial solutions. For constructing rational-function
solutions we can use the algorithm from Section 4.2.3 using
the same bounding rule for polynomial solutions.

Checking the existence of polynomial solutions, we ob-
tain an inhomogeneous system of linear algebraic equations
whose matrix T and right-hand sides consist of elements
of k0[q, t1, t2, . . . , tm]. By means of algorithms considered
above we can recognize whether or not there exist param-
eter values annihilating the right-hand side of this system
such that the corresponding homogeneous system has a non-
zero solution. The condition (on parameters values) that the
right-hand side of the system is not annihilated we call the
inhomogeneity condition. Suppose that the inhomogeneity
condition is satisfied. Using, e.g., step-by-step consideration
of minors and Kronecker-Capelli’s theorem, we can recognize
whether there exist parameter values for which the system
is compatible (there exists a non-zero minor of some order n
of the matrix T while any minor of order n + 1 of the aug-
mented matrix T̄ are equal to zero). This analysis can be
done by the algorithm Ak0,Λ. In the case of a single param-
eter the set of adequate parameter values can be presented
as in Section 4.2.4.

4.3.2 Parametric summation
If k0,Λ are such that the problem Rk0,Λ is decidable in

the inhomogeneous case then, e.g., the parametric problem
of q-hypergeometric summation is decidable also, and in the
q-difference case it is possible to consider a parametric ver-
sion of Gosper’s algorithm, since in this algorithm one can
use the universal factors instead of the special Gosper form of
rational functions representation. (Parametric versions of al-
gorithms that are based on Gosper’s algorithm [21] probably
exist, too; see, e.g., [9, Sect. 3].) It is also possible to propose
q-difference version of the accurate integration (summation)
algorithm [7, 8]. In the one-parametric case we not only can
recognize the existence of adequate values of parameters, but
can also find them. However one should not forget that the
algorithms discussed above have high complexity. As men-
tioned, the aim of this paper is only to establish decidability
of some algorithmic problems “in principle”.

5. WHEN PARAMETERS DEPEND ON Q

Let the assumptions 1 and 3, formulated in Section 4.1,
be valid. We will consider algorithmic problems similar
to Pk0,Λ and Rk0,Λ (the homogeneous case) investigated
above, allowing parameter values belong to Λ[q] or Λ(q).
From this point on we will consider the problems

Pk0,Λ[q], Rk0,Λ[q] (26)

and

Pk0,Λ(q), Rk0,Λ(q). (27)

In (26) parameter values belong to the ring Λ[q], in (27) they
belong to the field Λ(q).

5.1 Two theorems of J. Denef
In our investigation of problems (26), (27) the key role will

be played by two theorems of Denef [15]. Before formulating
them we introduce two notions following [15]: Let R be a
commutative ring with unity and let R′ be a subring of R.
We say that the diophantine problem for R with coefficients
in R′ is undecidable (decidable) if there exists no (an) al-
gorithm to decide whether or not a polynomial equation (in
several variables) with coefficients in R′ has a solution in R.

The following results are proved in [15]:

Theorem A. Let R be an integral domain of characteristic
zero; then the diophantine problem for R[T ] with coefficients
in Z[T ] is undecidable. (R[T ] denotes the ring of polynomials
over R, in one variable T .)

Theorem B. Let K be a formally real field, i.e., −1 is not
the sum of squares in K. Then the diophantine problem for
K(T ) with coefficients in Z[T ] is undecidable. (K(T ) denotes
the field of rational functions over K, in one variable T .)

As a consequence of Theorems A, B we obtain the follow-
ing:

The diophantine problem for Λ[q] with coefficients in Z[q]
is undecidable. If the field Λ is formally real, then the dio-
phantine problem for Λ(q) with coefficients in Z[q] is also
undecidable.

5.2 Undecidability in the case of parameters
depending on q

Now we engage in problems (26), (27) in earnest.
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Lemma 1. Let P (t1, t2, . . . , tm) be an arbitrary polyno-
mial with coefficients in Λ[q] (in particular, in Z[q]). Then
the equation

y(qx)− (1 + P 2(t1, t2, . . . , tm))y(x) = 0 (28)

with some rational functions (in particular, polynomials)
t1 = τ1(q), t2 = τ2(q), . . . , tm = τm(q) over Λ has a non-
zero solution y in Λ(q)(x) iff P (τ1(q), τ2(q), . . . , τm(q)) = 0.

Proof. Since q is transcendental over Λ(x), q can be consid-
ered as a variable. If P (τ1(q), τ2(q), . . . , τm(q)) ∈ Λ(q) \ {0}
has the form of a fraction f(q)

g(q)
with relatively prime polyno-

mials f(q), g(q) over Λ, then

I0(λ) = λ− 1− f2(q)

g2(q)

in the corresponding indicial equation. But the equation
I0(λ) = 0 has no roots of the form qh, h ∈ Z (see Re-

mark 2). Indeed, h 6= 0, because otherwise f(q)
g(q)

is the zero

rational function. If h > 0, then we would have the equal-
ity
(
qh − 1

)
g2(q) = f2(q) in Λ[q]. However the irreducible

factor q − 1 appears in the left-hand side with an odd ex-
ponent, while in the right-hand side it appears with an even
exponent – a contradiction. If h < 0 then for h0 = −h we
have −

(
qh0 − 1

)
g2(q) = f2(q)qh0 . This is impossible for

the same reasons.
If P (τ1(q), τ2(q), . . . , τm(q)) = 0, then the equation (28)

has, e.g., the solution that is identically equal to 1. 2

Theorem 2. The problems (26) are undecidable. In ad-
dition, if Λ is a formally real field then the problems (27) are
undecidable as well.

Proof. By the consequence of Theorems A, B formulated
in Section 5.1, and by Lemma 1. 2

Let k0 = Q. If q is a variable, Λ ∈
{
C, R, Q, Q, R ∩Q

}
then the problems (26) are undecidable. The same is true
if q is a transcendental number and Λ ∈

{
Q, Q, R ∩Q

}
.

In turn, the problems (27) are undecidable if, e.g., q is a
variable and Λ ∈

{
R, Q, R ∩Q

}
, or if q is a transcendental

number and Λ ∈
{
Q, R ∩Q

}
.

5.3 The case Λ = C
It is not clear whether or not the problems (27) are decid-

able when, e.g., k0 = Q, Λ = C (q is a variable). However it
follows from Lemma 1 that if at least one of them is decid-
able then the diophantine problem for C(q) with coefficients
from Z[q] is decidable as well. Notice that the latter problem
is still open, but the common opinion of experts is such that
it is undecidable — we again refer to the survey [22].
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