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A doubly infinite complex number sequence
(ck), ke€Z, (1)
will be called a sequential solution of an equation of the form
au(2)y(z+ d) + -+ ar (2)y(z + 1) + ao(2)y(2) = 0, 2)
a1(z),a2(2),...,a4-1(2) € Clz], ao(2),adq(z) € C[z]\ {0}, if
ag(k)cryd + -+ a1 (k)cp1 + ao(k)er, =0

for all k € Z. A sequential solution (1) will be called subanalytic sequential
(or just subanalytic, for short), if the equation (2) has a solution in the form
of a single-valued analytic function f(z) such that ¢, = f(k) for all k € Z.

We discuss a way to compute the values of elements of a subanalytic
solution of equation (2) at arbitrary integer points, in particular at the
points where the polynomial a4(z — d)ag(z) vanishes.

We show that the dimension of the C-linear space of all sequential so-
lutions of (2) is > d, and for any integer m > d there exists an equation
of the form (2) such that this dimension is m. The dimension of the space
of all subanalytic solutions is positive, but, generally speaking, not all of
sequential solutions are subanalytic.

We also show that the application of the discrete Newton-Leibniz formula
combined with known computer algebra algorithms for indefinite summation
of elements of sequential solutions always gives the correct result in the case
when a solution under consideration is subanalytic. However the result can



be incorrect for a sequential solution that is not subanalytic. If a meromor-
phic solution f(z) of equation (2) has some integer poles, then nevertheless
it is possible to map f(z) into a sequential solution (the bottom of f(z))
of (2) such that the summation algorithms mentioned above work correctly
for it. The main idea of this mapping can be easily demonstrated for the
simplest particular case, when all integer poles are of first order. In this
case the bottom of f(z) is the sequence (cx) such that ¢ is equal to zero if
k is an ordinary point of f(z), and ci is equal to the residue of f(z) at k
otherwise. It can be proved that the bottom of a meromorphic solution of
(2) is a subanalytic sequential solution of (2).

We also consider multivariate hypergeometric sequences. Let
ni, Na2,...,Nq be variables ranging over the integers. d-dimensional H-
systems are systems of equations for a single unknown sequence

(Tn17n27~~~7nd)’ (nl’ na, .. "nd) € Zd’

which have the form
fi(nla na, ..., nd)Tnl,ng,...,n,’—l—l,...,nd = (3)

— gi(nla Nng, ..., nd)T’l’Ll,’l’LQ,...,’l’Li,...,’l’Ld)
where f;,g; are relatively prime non-zero polynomials over C for ¢ =
1,2,...,d. (The prefix “H” refers to Jakob Horn and to the adjective “hy-

pergeometric” as well.)
A d-dimensional hypergeometric sequence is a solution of some d-

dimensional H-system when this solution is defined for all (nq,ns,...,nq) €
Zd
Rational functions Fy, Fs, ..., Fy € C(nq,ns,...,ng) are compatible, if
Fi(n1,ng,...,n;+1,...,nq)Fj(n1,n9,...,nj,...,n4) =
= Fj(n1,n9,...,ni+1,...,ng)Fi(ny,ne, ..., 04, ..., ng)

forall 1 <z<j<d.
The H-system (3) is consistent, if the rational functions

gi(nla n2,..., nd)

F, =
’ fi(nlan2a .. 'and)’

are compatible.



The C-linear space of hypergeometric sequences that satisfy a given H-
system  we will denote as V().

We prove that

1) dim V(H) > 0 for any consistent H-system #;

2) if m, d are arbitrary natural numbers, then there exists a d-dimensional
H-system H such that dim V(#) = m;

3) if d = 1 for an H-system #, then dim V(S) < oo, but for an arbi-
trary integer d > 1 there exists a d-dimensional H-system # such that dim
V(H) = .

We also give an appropriate corollary of the well-known Ore-Sato the-
orem on possible forms of d-dimensional hypergeometric sequences. Notice
that, contrary to some interpretations found in the literature, the Ore-Sato
theorem does not imply that every solution of an H-system is of the form

I T(aiin + - - -+ ajang + o) u™M ™
o T(bjama + -+ bjang + 8;) 7

R(ny,mn2,...,n4) ceeuld,
where R € C(nq,ne,...,nq), @ik, bjx € Z, and oy, B;, ur, € C.

In addition we will discuss some problems connected with searching for
power series solutions of ordinary linear differential equations with polyno-
mial coefficients, having in mind the power series whose coefficients can be
expressed in closed form as functions of index. A key role in the process of
constructing such power series solutions plays an investigation of the family
of difference equations, which are satisfied by coeflicient sequences of power
series solutions and which depend significantly on the expansion point.

The presented results were obtained by the author jointly with M. Barka-
tou, M. van Hoeij, and M. Petkovsek.



