Hypergeometric summation revisited
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Abstract

We consider hypergeometric sequences, i.e., the sequences which
satisfy linear first-order homogeneous recurrence equations with rela-
tively prime polynomial coefficients. Some results related to necessary
and sufficient conditions are discussed for validity of discrete Newton-
Leibniz formula Y, _, t(k) = u(w + 1) — u(v) when u(k) = R(k)t(k)

and R(k) is a rational solution of Gosper’s equation.

1 Introduction

Let K be a field of characteristic zero (K = C in all examples). If ¢(k) €
K (k) then the telescoping equation

w(k+1) - u(k) = 1(k) (1)

may or may not have a rational solution u(k), depending on the type of t(k).
Here the telescoping equation is considered as an equality in the rational-
function field, regardless of the possible integer poles that u(k) and/or t(k)
might have.
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An algorithm for finding rational u(k) was proposed in 1971 (see [1]). It
follows from that algorithm that if (k) has no integer poles, then a rational
u(k) satisfying (1), if it exists, has no integer poles either, and the discrete
Newton-Leibniz formula

> t(k) = u(w+1) - u(v) (2)
k=v
is valid for any integer bounds v < w. Working with polynomial and
rational functions we will write f(k)Lg(k) for f(k),g(k) € K[k] to in-
dicate that f(k) and g(k) are coprime; if R(k) € K(k), then den(R(k))
is the monic polynomial from K[k]| such that R(k) = ﬁg@ for some
7(k) € KTH], £(k) Lden(R(k)).
The problem of solving equation (1) can be considered for sequences.
If t(k) is a sequence, we use the symbol E for the shift operator w.r. to
k, so that Et(k) = t(k + 1). In the rest of the paper we assume that the
sequences under consideration are defined on an infinite interval I of integers
and either I = Z, or

I=Zyy={keZ|k>1} le

If a sequence t(k) defined on I is given, and a sequence u(k), which is also
defined on I and satisfies (1) for all k € I, is found (any such sequence is a
primitive of t(k)), then we can use formula (2) for any v < w with v,w € I.

Gosper’s algorithm [6], which we denote hereafter by GA, discovered
in 1978, focuses on the case where a given £(k) and an unknown u(k) are
hypergeometric sequences.

Definition 1 A sequence y(k) defined on an infinite interval I is hyperge-
ometric if it satisfies the equation Ly(k) =0 for all k € I, with

L=a,(k)E + ao(k) € K[k, E), ay(k)Lao(k). (3)

GA starts by constructing the operator L for a given concrete hypergeo-
metric sequence t(k), and this step is not formalized. On the next steps GA
works with L only, while the sequence ¢(k) itself is ignored (more precisely,

in the case of L = a;(k)E + ag(k), GA works with the certificate of t(k), i.e.,
o(k)
1(k)?

tries to construct a rational function R(k), which is a solution in K (k) of
Gosper’s equation

with the rational function —2 but this is not essential). The algorithm

ao(k)R(k + 1) + ay (k) R(k) = —as (k) (4)



(such R(k), when it exists, can also be found by general algorithms from

(2, 3]). If such R(k) exists then
R(k+ 1)t(k+ 1) — R(k)t(k) = t(k)

is valid for almost all integers k. The fact is that even when ¢(k) is defined
everywhere on I, it can happen that R(k) has some poles belonging to I,
and u(k) = R(k)t(k) cannot be defined in such a way as to make (1) valid
for all integers from I. One can encounter the situation where formula (2)
is not valid even when all of

t(v),t(v+1),...,tHw), u(v),u(w+1)

are well-defined. The reason is that (1) may fail to hold at certain points
k of the summation interval. However, sometimes it is possible to define
the values of u(k) = R(k)t(k) appropriately for all integers k, even though
R(k) has some integer poles. In such well-behaved cases (2) can be used to
compute > j_, t(k) for any v < w, v,w € I.

Example 1 Gosper’s equation, corresponding to L = kE — (k + 1)2, has a
solution R = % The sequences

_} 0, if £ <0,
tl(k)_{ kRl if k>0

and "
£_1) .
ta(k) = 4 R=DI if k<0,
0, ifk>0

both satisfy Ly =0 on I = Z.

Generally speaking, (2) is not applicable to ¢;(k), but is applicable to
ta2(k). We can illustrate this as follows. Applying (2) to t;(k) with v =
—1,w =1, we have

1

t1(=1) + £1(0) + 1 (1) = %tl(k) o=z = 701 (k) s = % 4-0=2

which is wrong, because ¢t;(—1) +¢,(0) +¢;(1) =0+ 0+ 1 = 1. Applying
(2) to to with the same v, w, we have

1 1
t2(=1) +£2(0) +2(1) = 2t2(k) b=z — t2(k) =1 =0 - (-1) =1
which is correct, because t5(—1) 4 t2(0) +¢2(1) =1+0+0=1. n



In this paper we discuss some results related to necessary and sufficient
conditions for validity of formula (2) when u(k) = R(k)t(k), and R(k) is a
rational solution of corresponding Gosper’s equation. If such R(k) exists,
then we describe the linear space of all hypergeometric sequences ¢(k) that
are defined on I and such that formula (2) is valid for v = Rt and any
integer bounds v < w such that v,w € I. The dimension of this space is
always positive (it can be even bigger than 1). We will denote

e by Hy the set of all hypergeometric sequences defined on I;
e by L the set of all operators of type (3);

e by Vi(L), where L € L, the K-linear space of all sequences ¢(k) defined
on I for which Lt(k) =0 for all k € I;

o by Wi(R(k), L), where L € £ and R(k) € K (k) is a solution of the cor-
responding Gosper’s equation, the K-linear space of all ¢(k) € Vi(L)
such that (2) with u(k) = R(k)t(k) is valid for all v < w with v, w € I.

The paper is a summary of the results that have been published in [4, 5].
In addition we consider the case where Gosper’s equation has non-unique
rational solution (Section 3.2). In Section 2 we consider individual hyperge-
ometric sequences while in Section 3 we concentrate on spaces of the type

Wi(R(k),L).

2 Validity conditions of the discrete Newton-
Leibniz formula

2.1 A criterion

Theorem 1 (/4, 5]) Let L € L, t(k) € Vi(L), and let Gosper’s equation
corresponding to L have a solution R(k) € K(k), with den(R) = g(k). Then
t(k) € Wi(R(k), L) iff there exists a t(k) € H such that t(k) = g(k)t(k) for
allk eI

Example 2 Consider again the sequences t;(k),t2(k) on I = Z from Ex-
ample 1. We have t5(k) = ki (k), where

A i k<0
By(k)y={ F—pp HH<D
0, itk >0



is a hypergeometric sequence defined everywhere:
Ety(k) — (k4 1)t2(k) = 0.

On the other hand, if t;(k) = k¢; (k) for some sequence ¢;(k), then

0, if k<0,
ti(k)=< ¢, ifk=0,
kl, if k>0

where ( € C. Notice that the sequence #; (k) is not hypergeometric on Z, for
any ¢ € C. |
2.2 Summation of proper hypergeometric sequences

Definition 2 Following conventional notation, the rising factorial power
(a)r and its reciprocal 1/(f8);, are defined for a, 8 € K and k € Z by

k—1
Il (@+m), k>0
m=0
H ? k<0’a#1’2""’|k|;
o =M
undefined, otherwise;
k—1 1
, k>0, 0,-1,...,1—Fk;
1_—105+m >0, B #
1 m=
- = ||
(B)x [1B-m), k<o
m=1
undefined, otherwise.

Note that if (o) resp. 1/(8)r is defined for some k € 7Z, then (a)r41 resp.
1/(8)k—1 is defined for that k as well. Thus (a)s and 1/(83) are hypergeo-

metric sequences which satisfy

(@1 = (@ k) (g, (B+E)/(B)rr = 1/(B)x (5)

whenever (a); and 1/(8)r+1 are defined.



Example 3 Let t(k) = (k—2)(—1/2)r/(4k!). This hypergeometric sequence
is defined for all k € Z (note that t(k) = 0 for k < 0) and satisfies Lt(k) =0
for all n € Z where L = a;(k)E + ao(k) with ao(k) = —(k — 1)(2k — 1)
and a; (k) = 2(k — 2)(k + 1). Gosper’s equation, corresponding to L, has a
rational solution 2h(k 4 1)

Bk =—% =5 (©)
Equation (1) indeed fails at £ = 1 and k = 2 because u(k) = R(k)t(k) is
undefined at £ = 2. But if we cancel the factor k — 2 and replace u(k) by
the sequence

2k!
then equation
ak + 1) — a(k) = (k) (")
holds for all & € Z, and
Y t(k) = a(w+1) —u(v). (8)
k=v

The sequence ¢(k) from Example 3 is an instance of a proper hypergeo-
metric sequence which we are going to define now. As it turns out, there
are no restrictions on the validity of the discrete Newton-Leibniz formula
for proper sequences (Theorem 2).

Definition 3 A hypergeometric sequence t(k) defined on an infinite interval
I of integers is proper if there are

e a constant z € K,
e a polynomial p(k) € K|k],
e nonnegative integers q,r,
e constants ai,...,aq, B1,...,0, € K
such that
t(k) = p(k)z

forallk e 1.



Theorem 2 ([/]) Let t(k) be a proper hypergeometric sequence defined on
I and given by (9). Denote a(k) = z[[,(k+ o;) and b(k) = [I'—; (k + 5;)-
If a polynomial y(k) € K[k] satisfies

a(k)y(k +1) —b(k — 1)y(k) = p(k) (10)

and if
_ I ()k
a(k) = y(k)2F =0
() () [T5=1(8)k-1
for all k € I, then equation (7) holds for all k € I, and the discrete Newton-
Leibniz formula (8) is valid for all v < w, when v,w € I.

Notice that (10) has a solution in K [k] iff Gosper’s equation, correspond-
ing to the operator from £, annihilating ¢(k), has a solution in K (k).

Example 4 The hypergeometric sequence

2k—3
iy = S (1)

which is defined for all £ € Z can be written as

2s(k), k<2,
t(k):{ s(lg),) k>,

where

s(k) = (2 — k) (;21/)22’“

is the proper sequence from Example 3. For w > 1, one should first split
summation range in two

S H(k) =2+ D s(h)

then the discrete Newton-Leibniz formula can be safely used to evaluate the

sum on the right. However, applying directly (2) to (11) with (6) we obtain

1) ) a1 ut0) = DD

o~
~—~

oy
~—

Il

(12)

If we assume that the value of (2kk_3) is 1 when k =0 and —1 when k =1

(that is natural from combinatorial point of view) then the expression on
the right gives the true value of the sum only at w = 0. m



2.3 When the interval [ contains no leading integer singu-
larity of L

Definition 4 For a linear difference operator (3) we call M = max({k €
Z; a1(k —1) = 0} U {—o0}) the maximal leading integer singularity of L,

Proposition 1 (/{/) Let R(k) be a rational solution of ({). Then R(k) has
no poles larger than M — 1.

Theorem 3 ([{]) Let L € L, M be the mazimal integer singularity of L,
1> M, ]I=2Zs and t(k) € Vi(L). Let Gosper’s equation, corresponding to
L, have a solution R(k) in K (k). Then t(k) € Wi(R(k),L).

Example 5 For the sequence (11) we have ag(k) = —(2k—1)(k—1), a1 (k) =
2(k+1)(k—2), R(k) = 2k(k+1)/(k—2), and u(k) = 2k(k+1)(** %) /((k -
2)4%). Thus M = 3, and the only pole of R(k) is k = 2. As predicted by
Theorem 3, the discrete Newton-Leibniz formula is valid when, e.g., 3 < v <
w. n

3 The spaces Vi(L) and Wi (R(k), L)
3.1 The structure of W;(R(k), L)

Theorem 4 ([5]) Let L € L and Gosper’s equation, corresponding to L,
have a solution R(k) € K(k), den(R) = g(k). Then

Wi(R(k),L) = g(k) - Vi(pp(L o g(k))),

where the operator pp(L o g(k)) is computed by removing from L o g the
greatest common polynomial factor of its coefficients.
In addition, if R = %, f(k)Lg(k), then the space of the corresponding

primitives of the elements of Wi(R(k), L) can be described as f(k)-Vi(pp(Lo
9(k)))-

We will denote by L the operator pp(L o g(k)).

Example 6 Consider again the operator L = kE — (k + 1)? from Example
1 with I/ = Z. We have R = %, and

Lok=kEok—(k+1)k=k(k+1)E—- (k+1)*k=k(k+1)(E—-k-1),



L=E—(k+1).
The space Wi(R(k),L) is generated by f,, and, resp., the space k -

Wi(R(k), L) is generated by kt». In accordance with Theorem 4 the space
Wi(R(k), L) coincides with & - V7(L). -

It is possible to give examples showing that in some cases

dim Wi (R(k), L) > 1.

Example 7 Let L = 2(k* — 4)(k— 9)E — (2k — 3)(k — 1)(k — 8), I = Z.

Then Gosper’s equation, corresponding to L, has the rational solution

20k — 3)(k +1)
k—9

Here g(k) = k — 9 and L = 2(k%* — 4)E — (2k — 3)(k — 1). Any sequence {
which satisfies the equation L = 0 has #(k) = 0 for k = 2 or k < —2. The
values of £(1) and #(3) can be chosen arbitrarily, and all the other values are
determined uniquely by the recurrence 2(k*—4)t(k+1) = (2k—3)(k—1)#(k).
Hence dim V(L) = 2.

At the same time, dim V(L) = 3. Indeed, if Lt = 0, then ¢(—-2) = ¢(2) =
t(9) = 0. The value t(k) = 0 from k = —2 propagates to all £ < —2, but on
each of the integer intervals [-1,0,1], [3,4,5,6,7,8] and [10,11,...) we can
choose one value arbitrarily, and the remaining values on that interval are
then determined uniquely. A sequence t(k) € Vi(L) belongs to W;(R(k), L)
iff 22¢(10) — 13¢(8) = 0. So dim W (R(k), L) = 2. -

R(k) = —

3.2 When a rational solution of Gosper’s equation is not
unique

We give an example showing that if L € £ and Gosper’s equation, cor-
responding to L, has different solutions R;(k), R2(k) € K(k), then it is
possible that Wi(Ry(k),L) # Wi(Ra(k),L). Moreover, these two spaces

can have different dimensions.

Example 8 If L = kE — (k+ 1), then Gosper’s equation, corresponding to
L, is
—(k+1)R(k+ 1)+ kR(k) = —k,

and its general rational solution is

k-1

c k2 —k+ 2¢
2 B 2%k '



Consider the solutions

k-1 B2 —k+2

Ri(k) ="~ (k) =1), and Ro(k) = "= (2(k) = B).

We have Lo g;(k) = L, and Wi(R(k), L) = Vi(L). This space has a

basis that consists of two linearly independent sequences:

k, if k<0,
tﬂ@_{o,ﬂk>o

and

0, if k<0,
t“@—{k,ﬁk>a

So this space contains, e.g., the sequence t(k) = |k|.
We have Logs(k) = k(k+1)(E —1), therefore Wi(R2(k), L) is generated
by the sequence t(k) = k. n

If Gosper’s equation, corresponding to L € £, has non-unique solution
in K (k), then the equation Ly = 0 has a non-zero solution in K (k).

3.3 If Gosper’s equation has a rational solution R(k) then
WI(R7 L) 7£ 0

Theorem 5 ([5]) Let L € L and let Gosper’s equation, corresponding
to L, have a solution R(k) € K(k). Then Wi(R(k),L) # 0 (ie,
dimWi(R(k),L) > 1).

Example 9 Let L = (k+2)E —k. The rational function m is a solution
in K (k) of the equation Ly = 0. Here R(k) = —k—1, and —1/k is a solution
of the corresponding telescoping equation:

1 1 1

TRl R k(k+1)

The rational functions
1 1
and

k(k+1) ok
have integer poles. Nevertheless, by Theorem b5 it has to be W;(R(k), L) # 0
even when I = Z. The space Wi(R(k), L) is generated by the sequence

1, ifk=-1,
t(k)y=¢ -1, if k=0,
0, otherwise,

10



while the primitive of t(k) is

1, if k=0,
0, otherwise.

(~k— 1)1(k) = {

If I = Z51, then Wi(R(k), L) is generated by the sequence t'(k) = m n

By Theorem 3, if M is the maximal integer singularity of L, I > M,
I = Z>;, and Gosper’s equation, corresponding to L, has a solution R(k)
in K(k), then V(L) = Wi(R(k),L). As a consequence, dimVi(L) =
dim Wi(R(k),L) = 1.
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