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Summary

We characterize generalized hypergeometric series that solve a linear differen-
tial equation with polynomial coefficients at an ordinary point of the equation,
and show that these solutions remain hypergeometric at any other ordinary
point. Therefore to find all generalized hypergeometric series solutions, it suf-
fices to look at a finite number of points: all the singular points, and a single,
arbitrarily chosen ordinary point.

We also show that at a point x = a we can have power series solutions with:

• polynomial coefficient sequence – only if the equation is singular at a+ 1,

• non-polynomial rational coefficient sequence – only if the equation is sin-
gular at a.
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1 Introduction

We consider ordinary linear differential equations Ly = 0 where

L = pr(x)
dr

dxr
+ · · ·+ p1(x)

d

dx
+ p0(x) (1)

is a linear differential operator with polynomial coefficients
p0(x), p1(x), . . . , pr(x) ∈ |Q[x], with pr(x) 6≡ 0. Our goal is to find all a ∈ |C
and all formal power series

ya(x) =
∞∑
n=0

an(x− a)n (2)

which satisfy Lya = 0, and whose coefficients an have a “nice” explicit repre-
sentation in terms of n.

Technically, we cannot apply L to ya because ya is a power series in x − a,
while the coefficients of L are power series in x. Therefore we define that Lya = 0
iff Lay = 0 where

y(x) =
∞∑
n=0

anx
n, (3)

La = pr(x+ a)
dr

dxr
+ · · ·+ p1(x+ a)

d

dx
+ p0(x+ a). (4)

It is well known that the power series coefficients of a solution of a linear
differential equation with polynomial coefficients satisfy a linear recurrence with
polynomial coefficients. We will need this recurrence, so we reproduce it here.
Following [5], we denote the falling and rising factorial powers by

xk =
{

1, k = 0,
x(x− 1) · · · (x− k + 1), k > 0, xk =

{
1, k = 0,
x(x+ 1) · · · (x+ k − 1), k > 0,

respectively. Write

pj(x+ a) =
d∑
i=0

cij(a)xi, (0 ≤ j ≤ r), (5)

where not all cdj(a) are zero, not all cir(a) are zero, and cij(a) = 0 unless
0 ≤ i ≤ d and 0 ≤ j ≤ r. Let

b = max
0≤j≤r

(deg pj(x)− j) .

If (3) satisfies (5), then the coefficients an satisfy

r+b∑
k=0

an+k

∑
j

(n+ k)j cj−k+b,j(a) = 0, for all integer n, (6)
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where by convention, an = 0 for n < 0 (cf. [7, Eqn. 9]). This is a linear
recurrence with polynomial coefficients in n.

So the problem of finding “nice” power series solutions (2) of Lya = 0 splits
into two subproblems:

P1 Find all candidate values of a for which Lay = 0 may have solutions of
the form (3) with “nice” an.

P2 Find “nice” solutions an of the corresponding recurrence (6).

Once P1 has been solved and the candidate expansion points a have been
found, the algorithms of [2], [1], and [6], resp., can be used at each a (assuming
there are finitely many of them) to find all polynomial, rational, resp. hyperge-
ometric solutions of the corresponding recurrence (6). In particular, a detailed
description of an algorithm to find all hypergeometric series solutions of (1)
given the expansion point a is presented in [7]. This solves P2.

A short discussion of P1 in the case of hypergeometric coefficients is given
in [7, Sec. 3.2], but a completely satisfactory solution has not been provided yet.
In this paper, we show how to find all a ∈ |C and all solutions (2) of Ly = 0 for
which there exists:

1. a polynomial p(x) such that an = p(n) for all large enough n (Section 3),

2. a rational function r(x) such that an = r(n) for all n ≥ 0 (Section 4),

3. a rational function R(x) such that an+1 = R(n)an for all large enough n
(Section 5).

Of course, the first two problems are special cases of the last one, but they
are sufficiently interesting to warrant individual treatment. We also show that
existence of a power series solution with rational coefficients implies existence
of a solution with rational logarithmic derivative.

2 Preliminaries

Let L be as in (1), and a ∈ |C. If pr(a) = 0 then L is singular at x = a, and a
is a singular point of L. Otherwise a is an ordinary point of L.

Let ϑ = x d
dx . The following well-known result will be useful:

Lemma 1. Let y(x) =
∑∞
n=0 anx

n be a formal power series, and p(x) a poly-
nomial. Then

p(ϑ)y(x) = p(ϑ)
∞∑
n=0

anx
n =

∞∑
n=0

p(n)anxn.

Call a sequence (an)∞n=0 hypergeometric if there is a rational function R(x)
such that an+1 = R(n)an for all large enough n. If an is hypergeometric then
R(x) is uniquely determined and we call it the consecutive-term ratio of an.
Obviously, a rational sequence is hypergeometric, and the product of hyperge-
ometric sequences is hypergeometric.
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Two hypergeometric sequences an and bn are similar if there is a rational
function r(x) such that an = r(n)bn for all large enough n. A linear combination
of pairwise similar hypergeometric terms is obviously hypergeometric. Also, if
an is hypergeometric and k a fixed integer, then an+k is similar to an.

A formal power series y(x) =
∑∞
n=0 anx

n is called a (generalized) hypergeo-
metric series if the sequence of coefficients (an)∞n=0 is hypergeometric.

Lemma 2. Let y(x) =
∑∞
n=0 anx

n be a hypergeometric series, and p(x) a
polynomial. Then p(x)y(x) is a hypergeometric series.

Proof: Let p(x) =
∑d
k=0 ckx

k and p(x)y(x) =
∑∞
n=0 bnx

n. Then

p(x)y(x) =
d∑
k=0

∞∑
n=0

anckx
n+k =

∞∑
n=0

xn
min{n,d}∑
k=0

ckan−k,

so bn =
∑d
k=0 ckan−k for n ≥ d. This is a linear combination of pairwise similar

hypergeometric terms, hence it is hypergeometric.
If f(x) and g(x) are two formal power series such that f(x)− g(x) is a poly-

nomial, we write f(x) ∼ g(x). In particular, f(x) ∼ 0 iff f(x) is a polynomial.

3 Polynomial coefficients

Let an = p(n) for some polynomial p(x) and for all large enough n. Then, as it
is well known, an satisfies a linear recurrence with constant coefficients, and its
generating function (3) is a rational function of x, of the form

y(x) ∼
∞∑
n=0

p(n)xn = p(ϑ)
∞∑
n=0

xn = p(ϑ)
1

1− x
=

P (x)
(1− x)s+1

(7)

where P is a polynomial, P (1) 6= 0, and degP = s = deg p. Since y(x) is
singular at x = 1, so is La, hence L is singular at x = a+ 1. – Thus we have

Theorem 1. Let L be a linear differential operator with polynomial coefficients,
and an a polynomial function of n. If a series ya(x) ∼

∑∞
n=0 an(x−a)n satisfies

Lya = 0, then L is singular at x = a+ 1.

Therefore to find solutions (2) of (1) with polynomial coefficients an, it
suffices to consider all the roots of pr(x+ 1) = 0 as candidate expansion points
a, and to use the algorithm of [2] at each of them to find polynomial solutions
of the corresponding recurrence (6).

4 Rational coefficients

Next we look for rational solutions an of (6). More precisely, now we require
that there is a rational function r(x) such that an = r(n) for all n ≥ 0. In
particular, this means that r(x) can have no nonnegative integer poles.
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For a nonconstant irreducible polynomial f(n) and a nonzero polynomial
g(n), denote

deg(f(n); g(n)) = max{k ≥ 0; f(n)k | g(n)}.
Proposition 1. Let an = p(n)/q(n) be a rational function of n with p and q
relatively prime, and f(n) any nonconstant, irreducible polynomial. If there are
polynomials p0(n), p1(n), . . . , ps(n) such that

s∑
j=0

pj(n)an+j = 0, p0, ps 6= 0, (8)

then

deg(f(n); q(n)) ≤
∞∑
i=0

deg(f(n+ i); ps(n− s)).

For a proof, cf. [1].

Assume that L is not singular at x = a, hence that pr(a) = c0,r(a) 6= 0. Then
the leading term of (6) is the one with k = r + b, and its leading coefficient is

pr+b(n) =
∑
j

(n+ r + b)j cj−r,j(a) = c0,r(a)(n+ r + b)r.

The order of (6) in this case is s = r+b, so ps(n−s) = c0,r(a)nr. By Proposition
1, the denominator of an can only have irreducible factors of the form n − k
where k is a nonnegative integer. But for the series (3) to make sense, an can
have no nonnegative integer poles. Hence an is a polynomial in n. We conclude
that (4) can have non-polynomial rational solutions only when pr(a) = 0.

Therefore to find solutions (2) of (1) with non-polynomial rational coeffi-
cients an, it suffices to consider the singular points of (1) as candidate expan-
sion points a, and to use the algorithm of [1] at each of them to find rational
solutions of the corresponding recurrence (6).

In [7], a function is called d’Alembertian if it can be written as
f1(x)

∫
f2(x)

∫
· · ·
∫
fk(x)dx . . . dx dx where the fi have rational logarithmic

derivatives. We want to show now that a power series with rational coeffi-
cients is a d’Alembertian function. Let f(x) =

∑∞
n=0 x

n/(n − α)k where α is
not a nonnegative integer. Then

ϑkx−αf(x) = ϑk
∞∑
n=0

xn−α

(n− α)k
=
∞∑
n=0

xn−α =
x−α

1− x
, (9)

so

f(x) = xαϑ−k
x−α

1− x
= xα

∫
1
x
· · ·
∫

1
x

∫
x−α−1

1− x
dx dx . . . dx (10)

(with k integral signs). This is clearly d’Alembertian. Now, if an is a rational
function of n, its partial fraction decomposition

an = p(n) +
s∑
i=0

tj∑
j=0

βij
(n− αi)j
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together with (7), (10) and the fact that D’Alembertian functions form a ring,
shows that (3) is d’Alembertian as well. But if Lay = 0 has a d’Alembertian
solution then it also has a solution with rational logarithmic derivative [3, The-
orem 4], and so does Ly = 0. Thus we have

Theorem 2. Let L be a linear differential operator with polynomial coeffi-
cients, and an a non-polynomial rational function of n. If the series ya(x) =∑∞
n=0 an(x−a)n satisfies Lya = 0, then L is singular at x = a, and the equation

Ly = 0 has a solution with rational logarithmic derivative.

Example 1. The equation

2x(x− 1)y′′(x) + (7x− 3)y′(x) + 2y(x) = 0 (11)

is singular at x = 0 and x = 1. Let’s find power series solutions at x = 0.
Recurrence (6) in this case is

(n+ 1)(2n+ 3)an+1 − (n+ 2)(2n+ 1)an = 0 (12)

and is satisfied by the rational sequence an = 2(n + 1)/(2n + 1) (and by any
constant multiple of it). Thus (11) has a power series solution with rational
coefficients

f(x) =
∞∑
n=0

2(n+ 1)
2n+ 1

xn =
1

1− x
+

1
2

∞∑
n=0

xn

n+ 1/2

=
1

1− x
+

1
2
√
x

∫
dx√

x(1− x)
=

1
1− x

+
1

2
√
x

log
1 +
√
x

1−
√
x
,

using (10) and a suitable constant of integration. This is a d’Alembertian func-
tion. But (11) is also satisfied by g(x) = 1/

√
x, which has rational logarithmic

derivative.

We want to point out that using Theorem 2, we may not be able to find
solutions where an does not equal r(n) for some values of n. For instance,
equation (1 − x)y′′ − y′ = 0 has solution y(x) = − log(1 − x) =

∑∞
n=1 x

n/n
with non-polynomial rational coefficients, although the equation is not singular
at x = 0. This is because a0 = 0 while r(n) has a pole at n = 0. Such solutions
are covered in the next section.

5 Hypergeometric coefficients

It turns out that to find power series solutions with hypergeometric coefficients,
instead of (2) and (3) it is more convenient to write

ya(x) =
∞∑
n=0

bn
(x− a)n

n!
(13)
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and

y(x) =
∞∑
n=0

bn
xn

n!
, (14)

respectively, where
bn = ann!

is hypergeometric iff an is. Then instead of (6) we have

r+b∑
k=0

bn+kqk(n) = 0, for all large enough n, (15)

where qk(n) =
∑
j(n + b)j cj,j+k−b(a). Since j + k − b ≤ r, it follows that

deg qk(n) ≤ r + b− k. In particular, qr+b(n) is constant.

Theorem 3. Let x = a be an ordinary point of L, and (13) a hypergeometric
series solution of Ly = 0. Then for all large enough n,

bn+1 = ζA(n)
C(n+ 1)
C(n)

bn,

where ζ ∈ |C\{0} is a nonzero constant, A and C are polynomials, and degA ≤ 1.

Proof: If bn is eventually zero, this is trivially true. Otherwise bn is eventually
nonzero (because it satisfies a homogeneous first-order recurrence with rational
coefficients). Let R(n) be the rational function equal to bn+1/bn for all large
enough n. We look for R(n) in the form

R(n) = ζ
A(n)
B(n)

C(n+ 1)
C(n)

(16)

where ζ is a nonzero constant, A,B,C are monic polynomials, gcd(A(n), B(n+
k)) = 1 for all nonnegative integers k, and gcd(A(n), C(n)) = gcd(B(n), C(n+
1)) = 1 as well.

By [6, Theorem 5.1], B(n) divides the leading coefficient of recurrence (15)
which is

qr+b(n) =
∑
j

(n+ b)j cj,j+r = c0,r = pr(a) 6= 0,

a nonzero constant. So B(n) = 1. By that same theorem, ζ is a nonzero root
of the algebraic equation

r+b∑
k=0

αkζ
k = 0, (17)

where αk is the coefficient of nM in Pk(n) = qk(n)
∏k−1
j=0 A(n + j), and M =

max0≤k≤r+b degPk. Write δ = degA. Since deg qr+b = 0 and deg qk ≤ r+ b−k
for k < r + b, it follows that degPr+b = (r + b)δ and degPk ≤ r + b− k(1− δ)
for k < r + b. If δ > 1 then

degPr+b − degPk ≥ (r + b)δ − (r + b− k(1− δ)) = (δ − 1)(r + b− k) > 0,
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so degPk < degPr+b for k < r+ b. Therefore M = r+ b and all the α’s are zero
except αr+b. Hence (17) has no nonzero roots, and (15) has no hypergeometric
solution with δ > 1. It follows that degA = δ ≤ 1.

Theorem 4. Let x = 0 be an ordinary point of L, and y(x) =
∑∞
n=0 bnx

n

a hypergeometric series solution of Ly = 0. Then y(x) has positive radius of
convergence, and is of the form

a) y(x) ∼ p(x)eζx, or

b) y(x) ∼ p(x)(1− ζx)α, or

c) y(x) ∼ p(x)/(1− ζx)s + q(x) log(1− ζx),

where p(x), q(x) are polynomials, q(x) 6≡ 0, ζ ∈ |C \ {0}, α ∈ |C, and s is a
positive integer.

Proof: If y(x) is a polynomial, this is trivially true. Otherwise, Theorem 3
implies that for all large enough n, bn+1/bn = ζA(n)C(n + 1)/C(n) where
either A(n) = 1, or A(n) = n − α for some constant α. We distinguish three
cases according to the form of A and the nature of α.

Case a) A(n) = 1
In this case, b(n + 1)/b(n) = ζC(n + 1)/C(n), so bn = λC(n)ζn where λ is a
constant. Hence by Lemma 1,

y(x) ∼ λ
∞∑
n=0

C(n)
(ζx)n

n!
= λC(ϑ)eζx = p(x)eζx (18)

where p(x) is some polynomial of degree s = degC(n).

Case b) A(n) = n− α, where α is not a nonnegative integer
In this case, b(n + 1)/b(n) = ζ(n − α)C(n + 1)/C(n), so bn = λC(n)(−α)nζn

where λ is a constant. Hence by Lemma 1,

y(x) ∼ λ
∞∑
n=0

C(n)
(−α)n

n!
(ζx)n = λC(ϑ)

∞∑
n=0

(
α

n

)
(−ζx)n = λC(ϑ)(1−ζx)α = p(x)(1−ζx)α−s

(19)
where p(x) is some polynomial and deg p = s = degC.

Case c) A(n) = n− α, with α a nonnegative integer
Here we still have the solution

y(x) ∼ λC(ϑ)(1− ζx)α

which in this case is simply a polynomial in x. However, now there is another
hypergeometric solution of (15), namely

bn = λC(n)(n− α− 1)!ζn−α−1, for n ≥ α+ 1,
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which gives, using Lemma 1,

y(x) ∼ λ

∞∑
n=α+1

C(n)
(n− α− 1)!

n!
ζn−α−1xn

= λC(ϑ)
∞∑
n=0

ζnxn+α+1

(n+ 1)α+1

= λC(ϑ)
∫ ∫

· · ·
∫

1
1− ζx

dx . . . dx dx

where there are α+ 1 integral signs. Since the nested integral of 1/(1− ζx) has
the form P (x) log(1−ζx)+Q(x) where P and Q are polynomials of degree ≤ α,
we have finally

y(x) ∼ p(x)
(1− ζx)s

+ q(x) log(1− ζx) (20)

where p, q are polynomials, deg p ≤ α + s, deg q ≤ α, and s = degC. In fact,
a more careful analysis shows that p(x) is divisible by (1 − ζx)α if s > α, and
that it can be taken to be zero if s ≤ α.

Corollary 1. Let x = a be an ordinary point of L, and ya(x) =
∑∞
n=0 an(x −

a)n/n! a hypergeometric series satisfying Lya = 0. Then ya(x) is analytic at
x = a, can be analytically continued to any ordinary point b of L, and its power
series expansion at x = b is hypergeometric.

Proof: By our definition, Lya = 0 means Lay = 0 where y(x) =
∑∞
n=0 anx

n/n!,
and La is as in (4). By Theorem 4, y(x) has positive radius of convergence
and can be analytically continued everywhere, except to x = 1/ζ in cases b)
and c). It follows that ya(x) is analytic at x = a, can be analytically continued
everywhere, except to x = a+1/ζ in cases b) and c), and that ya(x) = y(x−a).

Let b be any ordinary point of L. Following Theorem 4, we now distinguish
three cases.

Case a) y(x) ∼ p(x)eζx

Here ya(x+ b) = y(x− a+ b) ∼ p̄(x)eζx where p̄(x) = eζ(b−a)p(x− a+ b).

Case b) y(x) ∼ p(x)(1− ζx)α

Here ya(x+ b) = y(x−a+ b) ∼ p̄(x)(1− ζ̄x)α where p̄(x) = (1− ζ(b−a))αp(x−
a+ b) and ζ̄ = ζ/(1− ζ(b− a)).

Case c) y(x) ∼ p(x)/(1− ζx)s + q(x) log(1− ζx)
Here ya(x+ b) = y(x− a+ b) ∼ p̄(x)/(1− ζ̄x)s + q̄(x) log(1− ζ̄x) where p̄(x) =
p(x− a+ b)/(1− ζ(b− a))s, ζ̄ = ζ/(1− ζ(b− a)), and q̄(x) = q(x− a+ b).

In the latter two cases, y(x) and hence La is singular at x = 1/ζ, therefore
L is singular at x = a + 1/ζ, so a + 1/ζ 6= b as b is an ordinary point of L,
and ζ(b− a) 6= 1. In the first two cases, ya(x+ b) is a polynomial multiple of a
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hypergeometric series, which by Lemma 2 is again a hypergeometric series. In
the last case, ya(x+b) is the sum of two such series. But the coefficients of both
1/(1− ζ̄x)s with positive integer s, and of log(1− ζ̄x) are rational functions of
n, so the coefficients of ya(x+ b) are rational as well.

In all three cases, there exists a hypergeometric sequence (bn)∞n=0 such that
ya(x+b) =

∑∞
n=0 bnx

n/n! in a neighborhood of x = 0. So ya(x) =
∑∞
n=0 bn(x−

b)n/n! is hypergeometric.
By Corollary 1, the following algorithm will find all solutions (2) of Lya = 0

with hypergeometric an:

1. For each singular point a of L, find all solutions y(x) =
∑∞
n=0 anx

n of
Lay = 0 with hypergeometric an, using the algorithm of [7]. Then the
corresponding ya(x) = y(x−a) give all the hypergeometric series solutions
at x = a.

2. Pick any ordinary point a of L. Find all solutions y(x) =
∑∞
n=0 anx

n of
Lay = 0 with hypergeometric an, using either the algorithm of [7], or,
since these solutions are linear combinations of terms with rational log-
arithmic derivative, the algorithm of [4], or a custom-designed algorithm
for finding solutions of the three types described in Theorem 4. Then the
corresponding ya(x) = y(x−a) give all the hypergeometric series solutions
at x = a. For any other ordinary point b of L, yb(x) = y(x−a+b) has a hy-
pergeometric expansion at x = 0, and the corresponding ya(x) = yb(x− b)
give all the hypergeometric series solutions at x = b.

6 Concluding remarks

Although we worked with the field of complex numbers and with analytic func-
tions here, analogous results showing that there is a one-to-one correspondence
between formal hypergeometric series solutions at any two ordinary points of
the equation, can be established for any field of characteristic zero. Instead
of representing power series by analytic functions, the proof would use their
minimal annihilating differential operators.

Analogous techniques can also be used to find “nice” series solutions ya(x) of
linear difference and q-difference equations using polynomial series expansions
of [2], such as

ya(x) =
∞∑
n=0

an

(
x− a
n

)
(21)

for difference equations, and

ya(x) =
∞∑
n=0

an
(a/x; q)n

(nq)!
xn (22)

for q-difference equations.
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