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Abstract. Previously, the authors proposed algorithms for finding ex-
ponential-logarithmic solutions of linear ordinary differential equations
with coefficients in the form of series, for which only a finite number
of initial terms is known. Each solution involves a finite set of power
series, for which the maximum possible number of terms is calculated.
Below, these algorithms are supplemented with the option to confirm
the impossibility of obtaining a larger number of terms in the series
without using additional information about the given equation. Such a
confirmation has the form of a counterexample to the assumption that it
is possible to obtain additional terms of the series involved in the solution
that are invariant under all prolongations of the given equation.
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1 Introduction

The representation of solutions of linear ordinary differential equations requires
the use of power and Laurent series. This is the subject of many theoretical
studies (see, e.g., [19–23, 26, 27]) and found numerous application in computer
algebra (see, e.g., [1–5, 8, 11, 17, 28]).

The proposed paper is a continuation of the series of works by the authors
on LODE with coefficients, having the form of such power series, with respect to
which only their first terms are known. Thus, about the considered equations,
there is only some incomplete information. In our previous papers, we proposed
algorithms for finding solutions of such equations in the form of Laurent series,
as well as the search for regular and exponential-logarithmic solutions. It has
been proven that these algorithms allow one to find the maximum possible num-
ber of terms of those series that are included in the solutions. The algorithms
are implemented by the authors as a package of procedures. The user of these
procedures may find it is desirable to obtain some visual arguments in favor of



2 S.A. Abramov et al.

the maximum number of found terms of the series. Below, the authors proposed
such visual arguments: for an arbitrary equation with truncated coefficients, a
new algorithm presents two prolonged versions of the original equation whose
solutions differ from each other in subsequent (not included in the number of
previously found) terms of the series included in the solutions.

2 Truncated Equations

Suppose that K is an algebraically closed field of characteristics 0. The standard
notation K[x] is used below for a ring of polynomials in x over K. A ring of
formal power series in x over K is denoted by K[[x]], a field of formal Laurent
series is denoted by K((x)). It is clear that K[x] ⊂ K[[x]] ⊂ K((x)). For any
nonzero element a(x) =

∑
aix

i in K((x)), its valuation val a(x) is defined by
the equality val a(x) = min {i | ai 6= 0}, while val 0 =∞.

The differential equations in the paper are represented with θ = x d
dx instead

of d
dx . It is convenient for the algorithms to solve linear ordinary differential

equations with coefficients in the form of truncated series (see [6, 7, 13, 14, 16]).
We consider such equations in the form

ar(x)θry(x) + ar−1(x)θr−1y(x) + · · ·+ a0(x)y(x) = 0, (1)

where y(x) is an unknown function of x. The equation coefficients a0(x), a1(x),. . .,
ar(x) are truncated series, i.e., for each i = 0, 1, . . . , r we have

ai(x) =

ti∑
j=0

aijx
j +O(xti+1) (2)

where aij ∈ K; ti is an integer such that ti > −1 (if ti = −1 then the sum in (2)
is 0). Hereinafter, the symbol O(xt) involved in the formal expressions denotes
some series, whose valuation is not less than t. For a series

t∑
k=l

akx
k +O(xt+1),

ak ∈ K, l, t are integer, t > l, we call t the truncation degree. Note that a
coefficient in (1) can be in the form O(xm), m > 0.

We refer as a prolongation of equation (1) to any equation

ãr(x)θry(x) + ãr−1(x)θr−1y(x) + · · ·+ ã0(x)y(x) = 0,

such that ãi(x) − ai(x) = O(xti+1), i.e. val (ãi(x) − ai(x)) > ti, i = 0, 1, . . . , r.
We consider as prolongations both equations with truncated coefficients, and
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equations with completely specified series coefficients, i.e., equations ∞∑
j=0

ãrjx
j

 θry(x) +

 ∞∑
j=0

ãr−1,jx
j

 θr−1y(x) + · · ·

· · ·+

 ∞∑
j=0

ã0jx
j

 y(x) = 0. (3)

3 Truncated Solutions

Formal exponential-logarithmic solutions of equation (3) are solutions in the form

eQ(x−1/q) xλw(x1/q), (4)

where Q is a polynomial with coefficients in K, q ∈ Z>0, λ ∈ K,

w(x) =

m∑
s=0

ws(x) lns x,

m ∈ Z≥0, ws(x) ∈ K((x)), s = 0, . . . ,m, and wm(x) 6= 0. In (4), the factor
xλw(x1/q) is the regular part, Q(x−1/q) is the exponent of irregular part, and q is
the ramification index.

When q = 1 and Q ∈ K, solution (4) is called formal regular solution,
otherwise it is called irregular. When q = 1, Q ∈ K, λ ∈ Z and w(x) ∈ K((x)),
formal regular solution (4) is called Laurent one. In the further references of
solutions in the paper we skip the word “formal”, but it is assumed.

Suppose that the leading coefficient ãr(x) is nonzero in equation (3) with
completely specified coefficients. It is known (see e.g. [20, Ch. V], [26, 29, 17])
that for equation (3), there exist r solutions in form (4), which are linearly
independent over K. Algorithms are proposed in [26, 29, 17, 18] for finding the
ramification index q and the exponent of irregular part Q(x−1/q) for r linearly
independent solutions of the form (4). Suppose that the valuation of at least one
of the coefficients in (3) is equal to 0. Then, to construct the ramification index
q and the exponent of irregular part Q(x−1/q) for all solutions, it is sufficient
to know r val ãr(x) initial coefficients of all ãi(x), i = 0, 1, . . . , r (see e.g. [25]).
To construct the regular part of the solution with any given truncation degree
of the series in w(x), the algorithms proposed in [20, ch. IV], [21], [22, ch. II,
VIII] may be used. For this construction, it is also sufficient to know some finite
number of initial coefficients of all ãi(x) ([3, Prop. 1]).

Let Q(x−1/q) ∈ K[x−1/q], q ∈ Z>0, λ ∈ K and

w〈ks〉s (x) =

ks∑
j=js

ws,jx
j +O(xks+1),



4 S.A. Abramov et al.

js, ks ∈ Z, ks ≥ js, s = 0, . . . ,m, and wm,jm 6= 0. For equation (1) with truncated
coefficients, the expression

eQ(x−1/q)xλ
m∑
s=0

w〈ks〉s (x1/q) lns x, (5)

is referred to as a solution with a truncated regular part if any equation that is
a prolongation of (1) has the solution eQ(x−1/q)xλw̃(x1/q) that is a prolongation
of solution (5), i.e., w̃(x) has a form

w̃(x) =

m∑
s=0

w̃s(x) lns x

and it is satisfied that w̃s(x)− w〈ks〉s (x) = O(xks+1), i.e., val (w̃s(x)−w〈ks〉s (x)) >
ks, s = 0, 1, . . . ,m. Such truncated solution is described as invariant to the pro-
longations of equation (1).

In [6, 7, 13, 14, 16] it is shown that for an equation of the form (1), it is pos-
sible to construct all truncated solutions with the maximum possible truncation
degree of the series involved in the solution. The maximum possible truncation
degree in the invariant solution smax means that there is no invariant solution
s that is a prolongation of smax such that the truncation degree of at least one
series in s is greater than the truncation degree of the corresponding series in
smax. We describe this case as the exhaustive use of information on a given equa-
tion in constructing truncated solutions. The above articles present algorithms
for solving this problem and their implementation in Maple.

In [24, 12], we have considered the question of automatic confirmation of such
an exhaustive use of information about a given equation for the construction of
Laurent and regular truncated solutions. Confirmation is presented as a coun-
terexample with two different prolongations of the given equation, which lead to
the appearance of different additional terms in the solutions.

Algorithms for constructing both the truncated solutions themselves and
counterexamples of the described type are based on finding solutions with liter-
als, i.e., symbols used to represent unspecified coefficients of a series involved in
the equation (see [7]). Literals denote the coefficients of the terms of the series,
the degrees of which are greater than the truncation degree of the series. Find-
ing solutions using literals means representing subsequent (non-invariant for all
possible prolongations of the equation) terms of the series by formulas contain-
ing literals, i.e., unspecified coefficients. This allows us to clarify the influence of
unspecified coefficients on the subsequent terms of the series in the solution.

Remark 1 Thus, literals are something close to undetermined coefficients. But for
literals, it is not supposed to find specific values that allow one to find out all the
solutions to the original differential equation. Here the goal is to find out whether the
unknown coefficients of the series included in the equation have an effect on the initial
terms of those series that are included in the solutions.
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In this article, we extend the results obtained in [24, 12] to the case of expo-
nential-logarithmic solutions with a truncated regular part. The problem of pre-
senting two different prolongations of the original equation, which form a coun-
terexample to the assumption about the possibility of adding invariant terms
to the series involved in the truncated exponential-logarithmic solutions of the
given truncated equation, is solved.

4 The Case of Exponential-logarithmic Solutions

Prolongations of equation (1) which contain literals U[i,j] look like the following:

 tr∑
j=0

arjx
j +

∞∑
j=tr+1

U[r,j]x
j

 θry(x) +

+

tr−1∑
j=0

ar−1,jx
j +

∞∑
j=tr−1+1

U[r−1,j]x
j

 θr−1y(x) + · · ·

· · ·+

 t0∑
j=0

a0jx
j +

∞∑
j=t0+1

U[0,j]x
j

 y(x) = 0 (6)

(we use the notation U[i,j] rather than, say Ui,j to emphasize the special status
of these unknowns).

The algorithms from [17, 18] allow computing exponential parts eQ(x−1/q) of
all solutions in form (4) for equation (6). We are only interested in the exponen-
tial parts that have ramification indices q and coefficients of polynomials Q that
do not depend on literals. For each of such pairs q,Q the substitution

x = tq, y(x) = eQ(1/t)z(t) (7)

is made in equation (6), where t is a new independent variable, and z(t) is a new
unknown function. As a result of the substitution with further multiplication
of the equation by e−Q(1/t), we obtain a new equation, whose coefficients are
Laurent series in t. The coefficients of the series are polynomials in literals over
K. The regular solutions tλw(t) of the new equation are then constructed using
the version of the algorithm ([14, Sect.4.2]). For each series involved in the regular
solutions, the version of the algorithm computes the maximum number of terms
which are invariant under the prolongations of the equation, and one more term
which depends on literals. Such a coefficient will be a polynomial over K in a
finite number of literals.

In such a way we get a finite set of polynomials in literals for the exponen-
tial-logarithmic solution with regular part (5). The set may be used to construct
a counterexample.

In [12], we proved the following theorem for the case of truncated Laurent
and regular solutions.
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Theorem 1. ([12], Theorem 1) Suppose that solutions of equation (6) involve
m truncated power series

ci0 + ci1x+ · · ·+ cikix
ki + pi(u1, . . . , ul)x

ki+1 +O(xki+2), (8)

where u1, . . . , ul are literals, the coefficients cij are independent from the literals,
while the coefficient pi(u1, . . . , ul) is a non-constant polynomial in the literals, i =
1, . . . ,m. Then, there are α1, . . . , αl, β1, . . . , βl ∈ K such that two prolongations
of the equation that correspond to uj = αj, uj = βj, j = 1, . . . , l, lead to the
occurrence of different very first additional terms in the truncated series involved
in the solutions.

Now we show that a similar statement is valid for exponential-logarithmic
solutions with a truncated regular part.

Theorem 2. Let E be an equation of the form (1) and s be its truncated solution
of the form (5), computed using the algorithm from [16]. Then there exist E1 and
E2, which are two different prolongations of the equation E such that E1 has a
truncated solution s1, E2 has a truncated solution s2, both solutions s1 and s2
are prolongations of s, and any truncated series involved in s has a prolongation
both in s1, and in s2, while the very first additional terms of those prolongations
are different.

Proof. The algorithm from [16] is based on the construction of the truncated so-
lutions in form (5), each series in the solutions being constructed up to the first
term that contains literals and that is not included in the resulting truncated
solutions. Before dropping the terms with literals each series in the truncated
solutions is in form (8). Theorem 1 can be applied to all these truncated series
together. Thus, there are two different sets of values α1, . . . , αl, β1, . . . , βl ∈ K
for the literals u1, . . . , ul, which are used to construct the prolongations E1
and E2 that have truncated solutions s1 and s2 with different additional terms
pi(α1, . . . , αl)x

ki+1 and pi(β1, . . . , βl)xki+1 not containing literals. ut

An algorithm to compute two different sets α1, . . . , αl, β1, . . . , βl ∈ K may
be based on the approach used in [12] to prove Theorem 1.

5 Automatic Confirmation of the Solutions Truncation
Degree Maximality

The counterexample computation is implemented by us as an extension of
FormalSolution procedure from TruncatedSeries package. The package contains
our implementation of the algorithms presented in [6, 7, 13, 14, 16, 24, 12] in Map-
le. The Maple library with the TruncatedSeries package and Maple worksheets
with examples of using its commands are available from [30].

The first argument of FormalSolution procedure is a differential equation in
the form (1). The application of θk to the unknown function y(x) is written as
θ(y(x), x, k). The truncated coefficients ai(x) of the equation, i.e., the coefficients
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in the form (2) are written as bi(x) + O(xti+1), where bi(x) is a polynomial of
the degree not higher than ti over the field of algebraic numbers.

An unknown function of the equation is specified as the second argument of
the procedure.

A row of optional arguments are also supported in the procedure (see [7, 9, 15]
for details). We introduce a new optional argument 'counterexample'= 'Eqs',
which allows obtaining the automatically constructed counterexample assigned
to the variable Eqs in addition to the computed solution itself. The use of some
optional parameters are demonstrated below.

In order to use the package download TruncatedSeries2021.zip from [30].
This archive includes two files: maple.ind and maple.lib. Put these files to some
directory, for example to ''/usr/userlib''. Assign

> libname := ''/usr/userlib'', libname :

in the Maple session. Make the short form name of FormalSolution procedure
available:

>with(TruncatedSeries) :

Consider the third-order equation with coefficients truncated to different de-
grees:

> eq := (x4 + O(x7))θ(y(x), x, 3) + (3x+ O(x5))θ(y(x), x, 2) +

(1 + 3x3 + 2x2 + x+ O(x4))θ(y(x), x, 1) + O(x5)y(x) = 0:

Using the FormalSolution command we obtain exponential-logarithmic so-
lutions whose regular parts are calculated to the maximum possible degrees:

>FormalSolution(eq , y(x))

[
_c1 + O

(
x5
)

+ e
1
3x x

2
3

(
_c2 +

35_c2x
27

+
8947_c2x

2

1458
+ O

(
x3
))

+

e
1
x3 − 1

3x yreg(x)

] (9)

The first two terms of the result, i.e., _c1+O
(
x5
)
, mean that all prolongations

of eq have Laurent solutions with valuation 0, and their initial segment till the
degree 4 is equal to _c1 where _c1 is an arbitrary constant _c1.

The third term means that all prolongations of the equation eq have irregular

solutions with the exponential part e
1
3x and the regular part, which is the same

up to an arbitrary constant _c2 for all prolongations of the original equation.
The fourth term means that all prolongations of the equation eq have ir-

regular solutions with the exponential part e
1
x3 − 1

3x . Moreover, there are such
prolongations that their regular parts differ by λ.
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If, when calling the FormalSolution command, the optional argument
'output'= 'literal' is used, then the regular parts of the solution are calculated
to the maximum degree and, furthermore, terms are added with coefficients de-
pending on literals. In some cases, it is possible to obtain the expression for λ
which also depends on literals.

>FormalSolution(eq , y(x), 'output'= 'literal')

_c1 −
U[0,5]_c1x

5

5
+ O

(
x6
)

+ e
1
3x x

2
3

(
_c2 +

35_c2x
27

+
8947_c2x

2

1458

+

(
5832431

118098
_c2 −

1

9
_c2U[1,4] +

1

27
_c2U[2,5]

)
x3 + O

(
x4
))

+e
1
x3 − 1

3x x
19
3 + 3U[3,7]

(_c3 + O(x))

(10)

Here the literal U[i,k] denotes the coefficient of xkθi. There are two sets of
values from Q̄ for these literals such that the expressions

U[0,5]_c1
5

,

5832431

118098
_c2 −

1

9
_c2U[1,4] +

1

27
_c2U[2,5]

and
19

3
+ 3U[3,7]

take different values. These two sets correspond to two prolongations of the
equation eq . Their solutions are different prolongations of solution (9) and all
regular parts of the solution are prolonged. We call such prolongations a coun-
terexample. Obviously, there are an infinite number of counterexamples. As a
result of running the FormalSolution command with the new optional argument
'counterexample'= 'Eqs', the variable Eqs will be assigned a pair of the equa-
tions which forms one of the possible counterexamples:

>FormalSolution(eq , y(x), 'counterexample'= 'Eqs') :

For the first counterexample equation

>Eqs[1]

(
x5 + O

(
x6
))
y(x) +

(
3x3 + 2x2 + x+ 1 + 4x4 + O

(
x5
))
θ(y(x) , x, 1)

+
(
3x+ O

(
x6
))
θ(y(x) , x, 2) +

(
x4 − 4x7 + O

(
x8
))
θ(y(x) , x, 3) = 0

(11)

using FormalSolution we obtain a truncated solution
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> FormalSolution(Eqs[1], y(x))

_c1 − _c1x
5

5
+ O

(
x6
)

+ e
1
3x x

2
3

(
_c2 +

35_c2x
27

+
8947_c2x

2

1458
+

5779943_c2x
3

118098
+ O

(
x4
))

+
e

1
x3 − 1

3x (_c3 + O(x))

x
17
3



(12)

For the second counterexample equation

>Eqs[2]

(
5x5 + O

(
x6
))
y(x) +

(
3x3 + 2x2 + x+ 1− 2x4 + O

(
x5
))
θ(y(x) , x, 1)

+
(
3x+ O

(
x6
))
θ(y(x) , x, 2) +

(
x4 − x7 + O

(
x8
))
θ(y(x) , x, 3)

(13)

we obtain

>FormalSolution(Eqs[2], y(x))

[
−_c1x

5 + _c1 + O
(
x6
)

+ e
1
3x x

2
3

(
_c2 +

35_c2x
27

+
8947_c2x

2

1458
+

5858675_c2x
3

118098
+ O

(
x4
))

+ e
1
x3 − 1

3x x
10
3 (_c3 + O(x))

]
(14)

It can be seen that (12) and (14) are prolongations of (9), they differ in
all regular parts. The exponents λ of the third regular part are also different:
λ = − 17

3 for (12) and λ = 10
3 for (14).

6 Conclusion

In this paper, we have described an algorithm which confirms the exhaustive use
of the information contained in a truncated LODE in the process of finding trun-
cated exponential-logarithmic solutions by our algorithms which were published
earlier.
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The mathematical techniques we employ in this paper use the algebras of
differential operators and polynomials, and we give the explicit counterexample
for the supposition that additional terms of solutions of a given LODE can de
obtained.

From our work, new questions arise. For example, can our results be extended
to systems of LODEs? We will continue to investigate this line of enquiry.
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