
Factorization of Polynomials and GCD

Computations for Finding Universal
Denominators�

S.A. Abramov1, A. Gheffar2, and D.E. Khmelnov1

1 Computing Centre of the Russian Academy of Sciences, Vavilova,
40, Moscow 119991, GSP-1 Russia

sergeyabramov@mail.ru, dennis khmelnov@mail.ru
2 Institute XLIM, Université de Limoges, CNRS, 123, Av. A. Thomas,

87060 Limoges cedex, France
f gheffar@yahoo.fr

Abstract. We discuss the algorithms which, given a linear difference
equation with rational function coefficients over a field k of characteristic
0, compute a polynomial U(x) ∈ k[x] (a universal denominator) such
that the denominator of each of rational solutions (if exist) of the given
equation divides U(x). We consider two types of such algorithms. One
of them is based on constructing a set of irreducible polynomials that
are candidates for divisors of denominators of rational solutions, and on
finding a bound for the exponent of each of these candidates (the full
factorization of polynomials is used). The second one is related to earlier
algorithms for finding universal denominators, where the computation
of gcd was used instead of the full factorization. The algorithms are
applicable to scalar equations of arbitrary orders as well as to systems
of first-order equations.

A complexity analysis and a time comparison of the algorithms
implemented in Maple are presented.

1 Introduction

In the early 1990s, computer algebra researchers and programmers tried not to
use the complete (full) factorization of polynomials unless it was inevitable since
this operation was very costly. Designing an algorithm everybody tried to find a
suitable type of incomplete factorization based on computation of the greatest
common divisors (gcd’s) following classical samples of M.V.Ostrogradsky’s and
Ch.Hermite’s algorithms for extracting the rational part of an indefinite integral
of rational function. But later the situation with full factorization algorithms
changed. Currently very fast and practical algorithms have become known, —
see, e.g., [16]. Of course the complexity of the algorithms for the full factoriza-
tion grows faster than the complexity of the algorithms for computing gcd when
polynomial degrees tend to infinity. But when the degrees are of moderate size
� Supported by ECONET grant 21315ZF.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 4–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Factorization of Polynomials and GCD Computations 5

the full factorization is not costlier than the computation of gcd, e.g., in Maple
system [22]. Thus, an interesting general problem arises, namely the problem of
designing new alternative computer algebra algorithms based on the full factor-
ization instead of numerous calls for the gcd subroutine. The appropriateness of
such alternative algorithms has to be carefully investigated for any particular
relevant computer algebra problem. Such investigation must be supported by
suitable correct experiments.

In this paper, we revisit a problem related to the search for rational solutions
of a linear difference equation with polynomial coefficients. Rational solutions
may be a building block for other types of solutions, and more general, such
algorithms may be a part of various computer algebra algorithms (see [21], [8],
[9], [17], etc.). As a consequence, investigations of new ways to construct such
solutions are quite valuable for computer algebra.

Let k be a field of characteristic 0. We consider systems of the form

Y (x + 1) = A(x)Y (x), (1)

Y (x) = (Y1(x), Y2(x), . . . , Yn(x))T , A(x) = (aij(x)) ∈ Matn(k(x)). It is assumed
that there exists the inverse matrix A−1(x) = (ãij(x)) ∈ Matn(k(x)). If an
inhomogeneous system Y (x + 1) = A(x)Y (x) + G(x) is given and A(x) is as
in (1), G(x) ∈ k(x)n, then by adding to Y (x) an (n + 1)-st component with
value 1, one can transform the given system into a homogeneous system with an
invertible matrix B(x) ∈ Matn+1(k(x)) (see, e.g., [15, Sect. 2.2]). For this reason
we restrict our consideration to (1). At the same time we will consider scalar
equations of the form

y(x+ n) + an−1(x)y(x+ n− 1) + . . .+ a1(x)y(x + 1) + a0(x)y(x) = ϕ(x), (2)

ϕ(x), a1(x), . . . , an−1(x) ∈ k(x), a0(x) ∈ k(x) \ {0}, and such an equation is
inhomogeneous if ϕ(x) is a non-zero rational function. By clearing denominators
we can rewrite (2) as

bn(x)y(x + n) + . . .+ b1(x)y(x + 1) + b0(x)y(x) = ψ(x), (3)

ψ(x), b1(x), . . . , bn−1(x) ∈ k[x], b0(x), bn(x) ∈ k[x] \ {0}.
Currently, a few algorithms for finding rational (i.e., rational function) solutions

of equations (2), (3) and systems (1) are known. The algorithms from [5,6,11,14]
first construct a universal denominator, i.e., a polynomial U(x) such that in the
scalar case an arbitrary rational solution y(x) of (2) or (3) can be represented as

y(x) =
z(x)
U(x)

, (4)

where z(x) ∈ k[x] (in other words, if (2) has a rational solution f(x)
g(x) which is in

the lowest terms then g(x)|U(x)). In the case of a system an arbitrary rational
solution of (1) can be represented as

Yi(x) =
Zi(x)
U(x)

, i = 1, 2, . . . , n, (5)

where Z1(x), Z2(x), . . . , Zn(x) ∈ k[x].

6 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

The algorithm from [14] is based on constructing a set of irreducible polyno-
mials that are candidates for divisors of denominators of rational solutions, and
on finding in a quite simple way a bound for the exponent of each of these can-
didates. Such algorithms use the full factorization of polynomials. Experiments
with the Maple system show that the full factorization makes some of computer
algebra algorithms significantly faster in comparison with algorithms based on
computations of gcd’s and resultants ([20], [10] etc.).

When a universal denominator is constructed, one can substitute (4), (5) with
undetermined z(x) resp. Zi(x) into the initial equation resp. system to reduce
the problem of searching for rational solutions to the problem of searching for
polynomial solutions. After this, e.g., the algorithms from [2,7] (the scalar case;
see also [13, Sect. 9]) and the corresponding algorithm from [6,11,18] (the case
of a system) can be used.

The algorithm from [15] is applicable to the system (1) when k = C. It finds
n rational functions R1(x), R2(x), . . . , Rn(x) ∈ C(x) which are called bounds for
denominators such that for any rational solution of (1) we have

Yi(x) = Zi(x)Ri(x), i = 1, 2, . . . , n, (6)

where Z1(x), Z2(x), . . . , Zn(x) ∈ C[x] (the numerator of Ri(x) is a factor of the
numerator of the ith entry Yi(x) of any rational solution Y (x)). The substitution
(6) is used instead of (4), (5). The algorithm from [15] can lead to a more “pro-
ductive” substitution. But the general situation is not so simple. This algorithm
is based on matrix operations (matrix entries are in C(x)) which are costly. It
is shown in [14, Th. 2] that there exist such examples when substitutions (5),
(6) are identical, but the algorithm from [15], spends much more time than the
algorithms from [5,6,11,14].

In this paper we concentrate on the approach discussed in [14].
The paper is organized as follows. Section 2 is devoted to a theoretical basis

for algorithms for constructing universal denominators (a short review). Section
3 contains descriptions of the algorithm from [5,6,11,14]. In addition, we pro-
pose an improved version of the algorithm from [14]. In Section 4 we give some
analysis of these algorithms and prove that all of them give the same universal
denominator. A complexity analysis is given as well. In Section 5, we discuss our
implementation of the proposed improved version of the algorithm from [14].
Section 6 contains a time comparison of this algorithm with the algorithms from
[5,6] which are exploited in current versions of Maple. Finally in Section 7 we
make some conclusion remarks.

2 The Dispersion Set

Working with polynomial and rational functions over k we will write f(x)⊥g(x)
for f(x), g(x) ∈ k[x] to indicate that f(x) and g(x) are coprime; if F (x) ∈ k(x),
then denF (x) is the monic polynomial from k[x] such that F (x) = f(x)

denF (x)

for some f(x) ∈ k[x], f(x)⊥ denF (x). In this case we write numF (x) for f(x).

Factorization of Polynomials and GCD Computations 7

The set of monic irreducible polynomials of k[x] will be denoted by Irr(k[x]).
If p(x) ∈ Irr(k[x]), f(x) ∈ k[x], then we define the valuation valp(x)f(x) as
the maximal m ∈ N such that pm(x)|f(x) (valp(x)0 = ∞), and valp(x)F (x) =
valp(x)(numF (x)) − valp(x)(denF (x)) for F (x) ∈ k(x).

Let A(x) be as in (1), then we define

denA(x) =
n

lcm
i=1

n

lcm
j=1

den(aij(x)), denA−1(x) =
n

lcm
i=1

n

lcm
j=1

den(ãij(x)).

If
F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n

then denF (x) = lcmn
i=1 denFi(x), and valp(x)F (x) = minn

i=1 valp(x)Fi(x). A
solution F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n of (1) as well as a solution
F (x) ∈ k(x) of (2), (3) is a rational solution. If denF (x) �= 1 then this solution
is non-polynomial, and polynomial otherwise.

If p(x) ∈ Irr(k[x]), f(x) ∈ k[x] \ {0} then we define the finite set

Np(x)(f(x)) = {m ∈ Z : p(x+m)|f(x)}. (7)

If Np(x)(f(x)) = ∅ then define maxNp(x)(f(x)) = −∞, minNp(x)(f(x)) = +∞.
¿From now on we use the notation

V (x) = bn(x− n), W (x) = b0(x)

for equation (3), and

V (x) = u1(x− 1), W (x) = u0(x),

where u1(x) = denA(x), u0(x) = denA−1(x), for system (1).
The first computer algebra algorithm for finding solutions of (3) which belong

to k(x) was proposed in [3]. One of the statements proven in [3] (and later in [6]
for the case of a system) can be formulated using notation (7) as follows:

Proposition 1. ([3,6]) Let p(x) divide the denominator of a rational solution of
(3) or (1), p(x) ∈ Irr(k[x]). Then maxNp(x)(V (x)) ≥ 0, and minNp(x)(W (x)) ≤
0.

For f(x), g(x) ∈ k[x] \ {0} we define their dispersion set:

ds(f(x), g(x)) = {h ∈ N : deg gcd(f(x), g(x + h)) > 0} (8)

and their dispersion:

dis(f(x), g(x)) = max(ds(f(x), g(x)) ∪ {−∞}). (9)

The dispersion is equal to −∞ iff deg gcd(f(x), g(x+ h)) = 0 for all h ∈ N, and
belongs to N otherwise. The set ds(f(x), g(x)) can be computed as the set of all
integer non-negative roots of the polynomial Resx(f(x), g(x+h)) ∈ k[h]. This set
can be also obtained from the full factorization of f(x) and g(x). Indeed, for given

8 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

w(x), v(x) ∈ Irr(k[x]), degw(x) = deg v(x) = s, one can easily recognize whether
or not exists h ∈ Z such that w(x + h) = v(x): if w(x) = xs + ws−1x

s−1 + . . .,
v(x) = xs+vs−1x

s−1+. . ., then w(x+h) = xs+(wm−1+sh)xs−1+. . . and the only
candidate for h is vs−1−ws−1

s , if this value belongs to Z ([20]). The computation
is faster if one resorts to the approach from [20] based on the full factorization
instead of computing integer roots of a resultant. This is successfully used, e.g.,
in Maple: LREtools[dispersion].

By Proposition 1, if a non-polynomial rational solution exists then the set
ds(V (x),W (x)) is not empty.

3 Algorithms for Constructing Universal Denominators

3.1 The Algorithm AD from [5,6]

The algorithm is as follows:
Find H = ds(V (x),W (x)). If H = ∅ then terminate the algorithm with the

result U(x) = 1 (we suppose below that H = {h1, h2, . . . , hs} and h1 > h2 >
. . . > hs, s ≥ 1). Set U(x) = 1 and successively for m = 1, 2, . . . , s execute the
following group of assignments:
P (x) = gcd(V (x),W (x + hm))
V (x) = V (x)/P (x)
W (x) = W (x)/P (x − hm)
U(x) = U(x)

∏hm

i=0 P (x− i).
The final value of U(x) is a universal denominator for equations (2), (3) or, resp.,
system (1).

We will refer to this algorithm as AD. This algorithm is exploited in current
versions of Maple:

LREtools[ratpolysols], LinearFunctionSystems[UniversalDenominator].

3.2 The Algorithm from [11]

In [11] a more general problem than the search for rational solutions of system (1)
was solved. However, the algorithm from [11, Prop. 3] can be used to compute a
universal denominator u(x) related to (1). Using our notation (setting in addition
h = dis(V (x),W (x))) this algorithm may be represented as follows.

Consider the sequence of polynomials {(Vj(x),Wj(x), Pj(x))} defined induc-
tively as:

V0(x) = V (x), W0(x) = W (x), P0(x) = gcd(V (x),W (x + h)),

and for j = 1, 2, . . . , h,
Vj(x) = Vj−1(x)/Pj−1(x),
Wj(x) = Wj−1(x)/Pj−1(x− h+ j − 1),
Pj(x) = gcd(Vj(x),Wj(x+ h− j)).

Then

u(x) =
h∏

j=0

h−j∏

i=0

Pj(x− i).

Factorization of Polynomials and GCD Computations 9

3.3 The Algorithm AU from [14]

An explicit formula for a lower bound of valp(x)F (x) can be found in [14]: if F (x)
is a rational solution of equation (3) or system (1) then

valp(x)F (x) ≥ −min

⎧
⎨

⎩

∑

l∈N

valp(x+l)V (x),
∑

l∈N

valp(x−l)W (x)

⎫
⎬

⎭
(10)

for any p(x) ∈ Irr(k[x]).
This formula was used in [14] as a base for the new algorithm AU for com-

puting a universal denominator. This algorithm can be divided into two steps.
In the first step, AU constructs a finite set M of irreducible polynomials that
are candidates for divisors of denominators of rational solutions. At the second
step, for each p(x) ∈M this algorithm computes the value

γp(x) = min

⎧
⎨

⎩

∑

l∈N

valp(x+l)V (x),
∑

l∈N

valp(x−l)W (x)

⎫
⎬

⎭
. (11)

The product
∏

p(x)∈M pγp(x)(x) gives a universal denominator related to a given
equation or system.

By Proposition 1 we can define

M =
{
p(x) ∈ Irr(k[x]) : minNp(x)(W (x)) ≤ 0, maxNp(x)(V (x)) ≥ 0

}
.

For constructing this set the full factorization of polynomials V (x),W (x) has to
be found. Then we find the finite set Q ⊂ Irr(k[x]) such that q(x) ∈ Q iff

minNq(x)(W (x)) = 0, maxNq(x)(V (x)) ≥ 0.

Let Q �= ∅ and Q = {q1(x), q2(x), . . . , qs(x)}, s ≥ 1. For each 1 ≤ i ≤ s consider

Mqi(x) = {qi(x), qi(x+ 1), . . . , qi(x+ hi)}, (12)

where
hi = maxNqi(x)(V (x)). (13)

We have M =
⋃s

i=1Mqi(x).

3.4 An Improved Version of the Algorithm AU (the Algorithm A′
U)

As it is described above the algorithm AU contains two steps: the construction of
the set M and the computation of γp(x) using (11) for all p(x) ∈M , which results
in the universal denominator. Formula (11) contains the sums by l ∈ N. In spite
of the fact that N is infinite, the sums have only finite number of summands
corresponding to the irreducible factors of V (x) and W (x), which are equal
to non-negative and non-positive shifts of p(x), respectfully (the corresponding
valuations are equal to the exponents of such factors in the factorization of V (x)

10 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

and W (x)). No special way for time saving computing of the exponents γp(x)

was described in [14]. We propose below a possible way of this kind.
It is clear that when we compute (11) for p(x) = qi(x + j) ∈ Mqi(x) (where

Mqi(x) is as in (12)), the corresponding γqi(x+j) might be equal for many succes-
sive j. Indeed if we have computed γqi(x), and after that we compute γqi(x+j) for
j from 1 to hi, then the value can be changed only for those j for which there is
an irreducible factor of V (x) and/or W (x) equal to qi(x+j) (such critical points
can be computed in advance while constructing the set M). The consideration
is a basis for the improved version of the algorithm AU ; the new algorithm is
presented below in details.

The first step is adjusted to compute the following:
– {qi(x)}s

i=1 and {hi}s
i=1 which correspond (12) and (13).

– The sets
Ci,W =

{
c ∈ Z : valqi(x+c)(W (x)) > 0

}
,

Ci,V =
{
c ∈ Z : valqi(x+c−1)(V (x)) > 0

}

of the critical points.
– Di,W =

{
Di,W

c

}
and Di,V =

{
Di,V

c

}
which are the sets of the valuations

corresponding to the critical points: Di,W
c = valqi(x+c)(W (x)) for each c ∈

Ci,W and Di,V
c = valqi(x+c−1)(V (x)) for each c ∈ Ci,V .

Note that all the data are computed simultaneously using the factorizations of
W (x) and V (x).

The second step is performed as a loop by i from 1 to s. For each q(x) = qi(x)
and h = hi execute the following:
– Construct the joint and sorted set of critical points:{

cj : cj ≥ 0, cj ≤ h, cj ∈ Ci,W
⋃
Ci,V

}ni

j=1
, with c1 < c2 < . . . < cni .

– Compute the intervals {l0, . . . , l1 − 1}, {l1, . . . , l2 − 1}, . . . {lk−1, . . . , h} of
the same exponents γ1, γ2, . . ., γk and the exponents themselves:
We initialize the computation with k=0, γ0 =−1 and γw =

∑
0>c∈Ci,W Di,W

c ,
γv =

∑
0≥c∈Ci,V Di,V

c . Then for the critical points c = c1, c2, . . . cni we com-
pute the change of the values by γw = γw + Di,W

c (if c ∈ Ci,W) and/or
γv = γv − Di,V

c (if c ∈ Ci,V), which gives a new γk+1 = min(γv, γw). If
γk+1 �= γk then a new interval with the new exponent γk+1 is started from
lk = c (after that k is correspondingly increased by 1).

– Having added lk = h + 1, compute the factor of the universal denominator
that corresponds q(x):
Ui =

∏k
m=1

∏lm−1
j=lm−1

q(x+ j)γm

The final universal denominator is the product of all Ui for i = 1, 2, . . . s.
The algorithm is justified by considering the changes in (11) for computing

γq(x+j) with successive j. Note that γv (i.e.
∑

l∈N
valq(x+j+l)V (x)) and γw (i.e.

∑
l∈N

valq(x+j−l)W (x)) change a bit differently with the increase of j: the first
one may only decrease and the second one may only increase. It leads to the
corresponding differences in the algorithm in the definitions of Ci,W , Ci,V and
the formulas for the initial values of γw, γv and their changes.

We will refer to this detailed (improved) version of AU as A′
U .

Factorization of Polynomials and GCD Computations 11

4 Analysis of the Algorithms

4.1 Equivalence of Results

Proposition 2. The universal denominators computed by the algorithms de-
scribed in Section 3.2 coincide for any given V (x),W (x). Intermediate polyno-
mials computed by AD are also computed as intermediate polynomials by the
algorithm from [11].

Proof. First show that the algorithm from [11] gives the same result and com-
putes all the intermediate polynomials that AD computes. Indeed, replace H
by

H̄ = {h, h− 1, . . . , 0}
h = h1 = dis(V (x),W (x)). This extension of H does not change the result (the
additionally computed gcd’s will be equal to 1). We also enumerate the values
V (x),W (x), P (x), U(x) in AD:

Set U0(x) = 1, V0(x) = V (x),W0(x) = W (x) and successively for j = 0, 1, . . .,
h− 1 execute the following group of assignments:

Pj+1(x) = gcd(Vj(x),W (x + h− j))
Vj+1(x) = Vj(x)/Pj+1(x)
Wj+1(x) = Wj(x)/Pj+1(x− h+ j)
Uj+1(x) = Uj(x)

∏h−j
i=0 Pj+1(x− i).

Evidently triples (Vt(x),Wt(x), Pt(x)) coincide for t = 0, 1, . . . h in both algo-
rithms, and u(x) = Uh(x).

It was proven in [11] that if h = dis(V (x),W (x)) then

u(x) = gcd

(
h∏

i=0

V (x− i),
h∏

i=0

W (x+ i)

)

.

Therefore, the value valp(x)u(x) is equal to the right-hand side of (11) for any
p(x) ∈ Irr(k[x]). This implies that the outputs of the algorithm from 3.2 and
AU coincide. Thus, the outputs of AD and, resp. AU coincide as well. The
coincidence of the outputs of AU and A′

U is evident. ��

4.2 Complexity Comparison

We now give a complexity analysis of AD and A′
U . Let n = max{degV (x),

degW (x)} and h = dis(V (x),W (x)). We compare the complexities TD(n, h) and
TU (n, h) of AD and A′

U . In this context, the complexity is the number of the
field operations in k in the worst case.

Both algorithms perform polynomial multiplications for getting U(x). We do
not specify the used polynomial multiplication algorithm, but suppose that the
worst case is when it is necessary to multiply a big number (which is equal to
degU(x)) of first degree polynomials.

Both algorithms spend the same time to find the full factorization of V (x)
and W (x) and to compute their dispersion set. In addition, A′

U constructs the

12 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

set Q as well as the set of corresponding hi, the set of critical points, and the
set of corresponding valuations. The cost of this computation in the worst case
is O(n) plus the cost of sorting critical points. This gives totally O(n logn).

On the other hand, AD computes gcd’s; if h ≥ n then in the worst case, the
cost of this computation is

∑n
i=0 Tgcd(n− i), where Tgcd(n) is the complexity of

the gcd computation for two polynomials whose maximal degree is n. If 0 < h <
n then the cost in the worst case is

∑h
i=0 Tgcd(n−i). Obviously

∑n
i=0 Tgcd(n−i) =

∑n
i=0 Tgcd(i),

∑h
i=0 Tgcd(n − i) =

∑n
i=n−h Tgcd(i), and we have the following

proposition.

Proposition 3. If Tgcd(n)/(n logn)→∞ then the difference TD(n, h)−TU (n, h)
is positive for almost all n, h ∈ N

+ and

TD(n, h) − TU (n, h) =

⎧
⎨

⎩

∑n
i=0 Tgcd(i) +O(n log n), if h ≥ n,

∑n
i=n−h Tgcd(i) +O(n log n), if h < n.

(14)

In the next proposition we use the Ω-notation which is very common in complex-
ity theory ([19]). Unlike O-notation which is used for describing upper asymp-
totical bounds, the Ω-notation is used for describing lower asymptotical bounds.

Proposition 4. Let Tgcd(n) = Ω(nd), d > 1. Then the difference TD(n, h) −
TU (n, h) is positive almost all n, h ∈ N

+ and is Ω(R(n, h)), where

R(n, h) =

⎧
⎨

⎩

nd+1, if h ≥ n,

hnd, if h < n.

Proof. The case h ≥ n follows from (14) and d > 1. In the case h < n we can
use the inequality

n∑

i=m

id >
nd(n−m)
d+ 1

(15)

which is valid for any integer 0 < m ≤ n and real d ≥ 1. Taking m = n−h we get
the claimed. To prove (15) note that the function xd is monotonically increasing
when x ≥ 0 and d ≥ 1. This gives for m < n (the case m = n is trivial):

n∑

i=m

id >

n∑

i=m+1

id >

n∑

i=m+1

∫ i

i−1

xd dx =
∫ n

m

xd dx =
nd+1

d+ 1

(

1 −
(m

n

)d+1
)

.

Since in our case 1 − (m
n

)d+1 ≥ 1 − m
n , we get (15). ��

To the authors’ knowledge Tgcd(n) = Ω(nd), d > 1, for the algorithms now in
use in actual practice for gcd computations.

The fast Euclidean algorithm [12, Ch. 11] has complexity O(n log2 n log logn)
if Fast Fourier Transform is used to multiply polynomials. But this version of

Factorization of Polynomials and GCD Computations 13

the fast Euclidean algorithm is not practical due to a big constant hidden in O.
Nevertheless, if we suppose that the fast Euclidean algorithm is used and the
estimate Ω(n log2 n log logn) (or, even Ω(n log2 n)) is valid for the complexity
of this algorithm then by Proposition 3 the difference TD(n, h) − TU (n, h) is
positive (i.e., TU (n, h) < TD(n, h)) for almost all n, h ∈ N

+.

5 Implementation

Below we consider an implementation in Maple of A′
U (Section 5) and demon-

strate the corresponding time comparison with AD (Section 6). As it was shown
in Proposition 2 both algorithms give the same result, and the comparison is
correct. The algorithm from [11] is similar to AD by Proposition 2, and we do
not involve this algorithm into the comparison.

As we mentioned in Section 3.1 the algorithm AD implementation is available
in Maple as an internal procedure of the package LREtools. We implemented
our new algorithm A′

U and performed experimental comparison of the two
algorithms.

The implementation has several peculiarities which are discussed below.

5.1 Full Factorization

The algorithm A′
U (and AU as well) is based on the full factorization of the

given polynomials V (x) and W (x). Our implementation uses the result of the
factorization not only to construct the set M of irreducible polynomials, but also
computes (11) using it. Note that it is not the case for the implementation of the
algorithm AD in Maple. It uses the procedure LREtools[dispersion] to compute
the dispersion of polynomials which implements the algorithm [20], i.e., uses the
full factorization. But the next steps of the algorithm AD are implemented as
presented not exploiting the result of the factorization of the previous step.

5.2 Shift Computation

Our implementation uses vastly the auxiliary procedure, which given p(x), r(x) ∈
Irr(k[x]) computes the shift s ∈ Z such that p(x) = r(x + s) or defines that no
such s exists (actually it is a particular case of computing Np(x)(r(x)) when
r(x) ∈ Irr(k[x])). The procedure is used both to compute the set M and to
compute Ci,W , Ci,V , Di,W , Di,V for further computations of the exponents γ.
The shift computation is implemented efficiently using the main idea of the
algorithm [20] presented in the end of Section 2.

5.3 Computing Universal Denominator

Though we compute the values γ successively, it is better to compute the uni-
versal denominator at once for all qi(x + j), rather than compute the universal
denominator also successively. In the latter case, the intermediate computations
of the preliminary results might be costly at least in Maple.

14 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

6 Three Experiments

Using our implementation of the algorithm A′
U and the implementation of the

algorithms AD that is embedded in Maple, we have performed three experiments
to compare the algorithms.

6.1 Experiment 1

We have applied both algorithms to the following similar inputs:

(a) V (x) = W (x) =
∏l

i=1(x+m+ 1/i)(x−m+ 1/i) for m = 20, 100, 500, 2500,
l = 1, 15, 30, 45, 60;

(b) V (x)=W (x)=
∏l

i=1(x+m+i+1/i)(x−m−i+1/i) for m=20, 100, 500, 2500,
l = 1, 15, 30, 45, 60.

The corresponding universal denominators found by both algorithm for the in-
puts are, respectfully, the following:

(a)
∏l

i=1

∏m
j=−m(x− j − 1 + 1/i);

(b)
∏l

i=1

∏m+i
j=−m−i(x − j + 1/i).

The experiment is based on the example from [15], which is transformed to be
more complicated by using l similar pair factors instead of the only one pair.
Tables 1 and 2 show the CPU time1 needed to compute the corresponding univer-
sal denominators by three implementations for each of the pair V (x) and W (x).
The input polynomials are expanded before calling the implementations. The
expansion is needed to create equal conditions for both algorithms (otherwise
the factored input definitely simplifies the work for A′

U). In addition, it has been
found that the implementation of the algorithm [20] in Maple for computing the
dispersion of two polynomials uses some additional preprocessing which leads to
inefficiency for the inputs in the factored form at least in our experiments, so
the expanded input allows eliminating this question in our comparison.

Table 1. Results of the experiment 1(a), in seconds

m=20 m=100 m=500 m=2500
A′

U AD A′
U AD A′

U AD A′
U AD

l=1 0.000 0.016 0.000 0.015 0.015 0.015 0.016 0.031
l=15 0.079 0.141 0.094 0.141 0.172 0.203 0.546 0.438
l=30 0.375 0.547 0.407 0.562 0.547 0.656 1.266 1.109
l=45 0.719 1.140 0.828 1.235 1.172 1.531 3.015 2.531
l=60 2.032 2.875 2.390 3.344 3.000 4.516 5.063 5.704

The results show that the algorithms behave differently with the growth of m
and l. The results of AD are getting relatively worse with the growth of l if we fix
any m, and the results of A′

U are getting relatively worse with the growth of m if

1 For all the experiments: Maple 13, Windows XP, Pentium 4 1.7 GHz, 512 MB RAM.

Factorization of Polynomials and GCD Computations 15

Table 2. Results of the experiment 1(b), in seconds

m=20 m=100 m=500 m=2500
A′

U AD A′
U AD A′

U AD A′
U AD

l=1 0.016 0.015 0.000 0.000 0.000 0.016 0.031 0.031
l=15 0.078 0.375 0.109 0.422 0.172 0.531 0.578 1.032
l=30 0.359 2.890 0.407 3.063 0.531 3.484 1.266 5.344
l=45 0.860 10.641 0.796 11.547 1.516 13.234 3.078 17.656
l=60 2.406 31.187 2.719 33.484 2.657 37.125 4.766 44.797

we fix any l. The latter observation may be explained if we analyze the structure
of the algorithms in respect to the particular problem in hand: actually, for the
fixed m and given l A′

U performs similar set of operations l times, but AD needs
to perform gcd computations with the polynomials of l times higher degrees.

It is easy to see that the inputs (a) are more convenient for the algorithm
AD: the gcd is computed only once for each input, the number of multiplied
polynomials is 2m+ 1, while for A′

U this number is (2m+ 1)l . In spite of this
handicap the timing of A′

U looks better for the whole experiment (Table 1).
The input (b) corresponds near to the worst case for both algorithms A′

U and
AD (the input size is a pair of numbers as in Section 4.2), and an advantage of
A′

U is evident (Table 2).
We have noted in Section 3.4 that no special way for time saving computing

of the exponents γp(x) was proposed in the description of AU given in [14]. If one
uses formula (11) for each p(x) ∈ M then the total computation time increases
dramatically. We have implemented a straightforward version of AU as well for
the preliminary experiments and, for example, the result of AU for the input of
type (a) with m = 2500, l = 60 is 350 seconds.

6.2 Experiment 2

We have also applied the algorithms to several sets of randomly generated pairs
of polynomials V (x) and W (x). Each set contains 500 pairs, and each polynomial
is generated using Maple command randpoly(x,degree=d,terms=l), i.e., it is a
polynomial of degree up to d and it contains up to l terms. Note that given
such generated polynomials, the universal denominator found by the considered
algorithms is most probably xn for some n ∈ N, and moreover it is just 1 for
most of the cases. Still the experiment is meaningful, since if we try to search
for the rational solution of absolutely arbitrary equations, it would be exactly
like this. 9 sets are generated for d = 10, 20, 30 and l = 2, d/2, d. Table 3 shows
the CPU time needed to compute the corresponding universal denominators
by the implementations for each of the set. We do not need to expand the
input polynomials before calling the implementations in the experiment since
the polynomials are expanded by construction.

The results show that A′
U is better than AD in this experiment for all the

sets.

16 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

Table 3. Results of the experiment 2, in seconds

l=2 l=d/2 l=d
A′

U AD A′
U AD A′

U AD

d=10 1.578 6.016 5.953 9.578 6.734 10.157
d=20 1.750 8.094 8.594 12.938 9.828 13.969
d=30 1.922 10.422 12.235 17.234 13.985 19.375

6.3 Experiment 3

We have also applied the algorithms to several sets of other randomly gener-
ated pairs of polynomials V (x) and W (x). Each set contains again 500 pairs,
but the polynomials are generated differently. Each polynomial is generated as a
product of at most l factors of the form (x− ri)di , where ri is a random integer
between −10 and 10, di is a random integer between 0 and d. Such method of
generation ensures that the found universal denominators will be non trivial. 9
sets are generated for d = 2, 4, 6 and l = 1, 5, 10. Table 4 shows the CPU time
needed to compute the corresponding universal denominators by the implemen-
tations for each of the set. The input polynomials are expanded before calling
the implementations.

Table 4. Results of the experiment 3, in seconds

l=1 l=5 l=10
A′

U AD A′
U AD A′

U AD

d=1 0.219 0.890 1.094 2.453 2.672 6.265
d=3 0.390 1.390 2.953 6.500 5.844 14.937
d=5 0.437 1.609 4.328 9.750 8.313 23.250

The results show that A′
U is better than AD in this experiment for all the sets.

7 Conclusion

Our investigation presented in the paper has confirmed that it might be useful
to revisit the problems which were solved earlier by the algorithms which use
incomplete factorization based on computation of the greatest common divisors
as a result of the desire to avoid the use of the full factorization. The full factor-
ization based algorithm AU (and its new improved version A′

U) for the universal
denominator construction is proved to deliver the same results as the old gcd
computation based algorithm AD, but the implementation of A′

U is shown to be
more efficient. It is especially logical to switch to the new approach, in particu-
lar, in Maple, since the existing Maple implementation of the algorithm AD uses
already the factorization based auxiliary algorithm for computing the dispersion,
i.e., the required factorizations are computed already.

Factorization of Polynomials and GCD Computations 17

Note that new algorithms should not be necessary obtained out of the old
ones just by substituting gcd computations with the corresponding computations
using the results of factorizations. It might be more useful to re-think the whole
algorithm over again based on the new approach. In this way, A′

U utilizes the
new computations based on the new formula (11), and they are implemented
efficiently, e.g., taking into account the fact that when we compute (11) for
p(x) = qi(x + j) ∈ Mqi(x) from (12), the corresponding γqi(x+j) might be equal
for many successive j.

Logically if the basic operations are significantly changed then concepts for
algorithms designing have to be updated.

Acknowledgments. The authors are grateful to M. Barkatou and M. Petkovšek
for interesting discussions, and to anonymous referees for their helpful comments.

References

1. Abramov, S.: On the summation of rational functions. USSR Comput. Math.
Phys. 11, 324–330 (1971); Transl. from Zh. vychisl. mat. mat. fyz. 11, 1071–1075
(1971)

2. Abramov, S.: Problems of computer algebra involved in the search for polynomial
solutions of linear differential and difference equations. Moscow Univ. Comput.
Math. Cybernet. 3, 63–68 (1989); Transl. from Vestn. MGU. Ser. 15. Vychisl. mat.
i kibernet. 3, 53–60 (1989)

3. Abramov, S.: Rational solutions of linear difference and differential equations with
polynomial coefficients. USSR Comput. Math. Phys. 29, 7–12 (1989); Transl. from
Zh. vychisl. mat. mat. fyz. 29, 1611–1620 (1989)

4. Abramov, S.: Rational solutions of linear difference and q-difference equations with
polynomial coefficients. In: ISSAC 1998 Proceedings, pp. 303–308 (1995)

5. Abramov, S.: Rational solutions of linear difference and q-difference equations with
polynomial coefficients. Programming and Comput. Software 21, 273–278 (1995);
Transl. from Programmirovanie 6, 3–11 (1995)

6. Abramov, S., Barkatou, M.: Rational solutions of first order linear difference sys-
tems. In: ISSAC 1998 Proceedings, pp. 124–131 (1998)

7. Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear
operator equations. In: ISSAC 1995 Proceedings, pp. 290–295 (1995)

8. Abramov, S., van Hoeij, M.: A method for the integration of solutions of Ore
equations. In: ISSAC 1997 Proceedings, pp. 172–175 (1997)

9. Abramov, S., van Hoeij, M.: Integration of solutions of linear functional equations.
Integral Transforms and Special Functions 8, 3–12 (1999)

10. Abramov, S., Ryabenko, A.: Indicial rational functions of linear ordinary differ-
ential equations with polynomial coefficients. Fundamental and Applied Mathe-
matics 14(4), 15–34 (2008); Transl. from Fundamentalnaya i Prikladnaya Matem-
atika 14(4), 15–34 (2008)

11. Barkatou, M.: Rational solutions of matrix difference equations: problem of equiv-
alence and factorization. In: ISSAC 1999 Proceedings, pp. 277–282 (1999)

12. Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

13. Gerhard, J.: Modular Algorithms in Symbolic Summation and Symbolic Integra-
tion. LNCS, vol. 3218. Springer, Heidelberg (2004)

18 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

14. Gheffar, A., Abramov, S.: Valuations of rational solutions of linear difference equa-
tions at irreducible polynomials. Adv. in Appl. Maths (submitted 2010)

15. van Hoeij, M.: Rational solutions of linear difference equations. In: ISSAC 1998
Proceedings, pp. 120–123 (1998)

16. van Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number The-
ory 95, 167–189 (2002)

17. van Hoeij, M., Levy, G.: Liouvillian solutions of irreducible second order linear
difference equations. In: ISSAC 2010 Proc. (2010)

18. Khmelnov, D.E.: Search for polynomial solutions of linear functional systems by
means of induced recurrences. Programming and Comput. Software 30, 61–67
(2004); Transl. from Programmirovanie 2, 8–16 (2004)

19. Knuth, D.E.: Big omicron and big omega and big theta. ACM SIGACT News 8(2),
18–23 (1976)

20. Man, Y.K., Wright, F.J.: Fast polynomial dispersion computation and its applica-
tion to indefinite summation. In: ISSAC 1994 Proceedings, pp. 175–180 (1994)

21. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial
coefficients. J. Symbolic Computation 14, 243–264 (1992)

22. Maple online help, http://www.maplesoft.com/support/help/

http://www.maplesoft.com/support/help/

	Factorization of Polynomials and GCD Computations for Finding Universal Denominators
	Introduction
	The Dispersion Set
	Algorithms for Constructing Universal Denominators
	The Algorithm AD from AbrProg,AbBar
	The Algorithm from Bar99
	The Algorithm AU from farah
	An Improved Version of the Algorithm AU (the Algorithm AU')

	Analysis of the Algorithms
	Equivalence of Results
	Complexity Comparison

	Implementation
	Full Factorization
	Shift Computation
	Computing Universal Denominator

	Three Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

