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Abstract. We consider summation of consecutive values ϕ(v), ϕ(v +1),
. . . , ϕ(w) of a meromorphic function ϕ(z) where v, w ∈ ZZ. We assume
that ϕ(z) satisfies a linear difference equation L(y) = 0 with polynomial
coefficients, and that a summing operator for L exists (such an operator
can be found – if it exists – by the Accurate Summation algorithm, or
alternatively, by Gosper’s algorithm when ord L = 1).
The notion of bottom summation which covers the case where ϕ(z) has
poles in ZZ is introduced.

1 Introduction

Similarly to [8, 3, 5, 1], this paper is concerned with the problem of summing the
elements of a P -recursive sequence f(k), k ∈ ZZ, i.e., a sequence which satisfies
a linear difference equation with polynomial coefficients.

Let Ek be the shift operator such that Ek(f(k)) = f(k + 1) for sequences
f(k) where k ∈ ZZ. Let

L = ad(k)Ed
k + · · ·+ a1(k)Ek + a0(k) ∈ C(k)[Ek]. (1)

We say that an operator R ∈ C(n)[Ek] is a summing operator for L if

(Ek − 1) ◦R = 1 +M ◦ L (2)

for some M ∈ C(k)[Ek]. It is easy to see that if there exists a summing operator
for L, then there also exists one of order < d (simply replace R by its remainder
when divided by L from the right). Hence we can assume w.l.g. that ordR =
ordL− 1 = d− 1:

R = rd−1(k)Ed−1
k + · · ·+ r1(k)Ek + r0(k) ∈ C(k)[Ek]. (3)

If a summing operator exists, then it can be constructed by the Accurate Sum-
mation algorithm [3] or, when d = 1, by Gosper’s algorithm [8]. In those cases
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where R ∈ C[k,Ek] exists, equality (2) gives an opportunity to use the discrete
Newton-Leibniz formula

w−1∑
k=v

f(k) = g(w)− g(v) (4)

for all integers v < w, and for any sequence f such that L(f) = 0, taking
g = R(f).

However, it was shown in [5] that if R has rational-function coefficients which
have poles in ZZ, then this formula may give an incorrect result (see Example
5 of the present paper). This gives rise to defects in many implementations of
summation algorithms. In [5, 1] a way was proposed to construct a basis for the
space WL,R of all solutions of L(y) = 0 for which (4) is valid for all integers
v < w. It was also proved that dimWL,R > 0 in the case d = 1.

In the present paper we give a new sufficient condition for the correctness
of definite summation by Gosper’s algorithm and by the Accurate Summation
algorithm.

In Section 3 below we prove that if a summing operator exists for L with
ordL = d, then dimWL,R > 0 regardless of the value of d.

In Section 4 we suppose that L acts on analytic functions:

L = ad(z)Ed
z + · · ·+ a1(z)Ez + a0(z) ∈ C(z)[Ez], (5)

where Ez(ϕ(z)) = ϕ(z+1) for analytic functions ϕ(z) where z ∈ C. We consider
the summing operator (if it exists) in the form

R = rd−1(z)Ed−1
z + · · ·+ r1(z)Ez + r0(z) ∈ C(z)[Ez].

Let ϕ(z) be a meromorphic solution of L(y) = 0. It turns out that if ϕ(z) has
no pole in ZZ, then R(ϕ)(z) has no pole in ZZ as well, and we can use (4) to
sum values ϕ(k) for k = v, v + 1, . . . , w. This follows from a stronger statement
also proved in Section 4. The fact is that even if ϕ(z) has some poles in ZZ, the
summation task can nevertheless be performed correctly. For any k ∈ ZZ the
function ϕ(z) can be represented as

ϕ(z) = ck,ρk
(z − k)ρk + ck,ρk+1(z − k)ρk+1 + . . .

with ρk ∈ ZZ and ck,ρk
6= 0. If L(ϕ) = 0, then there exists the minimal element

ρ in the set of all ρk, k ∈ ZZ. We associate with ϕ(z) the sequence f(k) such
that f(k) = ck,ρk

if ρk = ρ, and f(k) = 0 otherwise. Then the sequence f(k)
satisfies the equation L(y) = 0, if we use Ek instead of Ez in L. We associate a
sequence g(k) with R(ϕ) in a similar way, and the value of ρ for R(ϕ) will be
the same as for ϕ. Now formula (4) is correct. This type of summation we call
bottom summation.

Some important auxillary statements (Section 2) on sequences of power series
are based on the idea of the ε-deformation of a difference operator which was
first used by M. van Hoeij in [7]; later this idea was used in [4] and in [2] as well.



2 Series-Valued Sequences

We start with some notations and definitions. Let ε be a variable (rather than
a “small number”). As usual, C[[ε]] is the ring of formal power series in ε and
C((ε)) = C[[ε]][ε−1] is its quotient field (the field of formal Laurent series in ε).

If s ∈ C((ε)) \ {0} then we define the valuation of s in the following way:

ν(s) = −min {m | m ∈ ZZ, εms ∈ C[[ε]]},

in addition we set ν(0) = ∞. If s ∈ C((ε)), m ∈ ZZ then [εm]s is the coefficient of
εm in the series s, and [ε∞]0 = 0. It follows from the definition of the valuation
that if s, t ∈ C((ε)) then

ν(st) = ν(s) + ν(t), [εν(st)](st) = ([(εν(s)]s)([(εν(t)]t), (6)

and
ν(s+ t) ≥ min{ν(s), ν(t)}. (7)

If K is a ring, then KZZ denotes the ring of all maps ZZ → K, i.e., the
ring of all two-sided K-valued sequences. Note that the operator Ek is a ring
automorphism of KZZ.

If S ∈ C((ε))ZZ, then ν(S) denotes the sequence in ZZZZ whose k-th element is
ν(S(k)). If m ∈ ZZ, then [εm]S denotes the sequence in CZZ whose k-th element
is [εm](S(k)). We say that S is of bounded depth if the sequence ν(S) is bounded
from below, i.e., there exists

m = min
k
ν(S(k)). (8)

If S is of bounded depth, then m in (8) is the depth of S. In this case the bottom
of S, which is a sequence in CZZ, is defined by

bott(S) = [εm]S.

An operator Λ ∈ C((ε))ZZ[Ek] of the form

Λ = SdE
d
k + · · ·+ S1Ek + S0, S0, S1, . . . , Sd ∈ C((ε))ZZ, (9)

defines a map C((ε))ZZ → C((ε))ZZ where (ΛS)(k) =
∑d

j=0 Sj(k)S(k+ j). If each
sequence Sj has bounded depth mj for j = 0, 1, . . . , d, then we say that Λ is of
bounded depth m = min0≤j≤dmj . In this case the bottom of Λ is

bott(Λ) =
d∑

j=0

([εm]Sj)E
j
k ∈ CZZ[Ek].

Proposition 1. Let Λ be an operator of the form (9), of bounded depth. Let
S ∈ C((ε)) satisfy Λ(S) = 0. If for all but finitely many k ∈ ZZ we have

ν(S0(k)) = ν(Sd(k)) = min
0≤j≤d

ν(Sj(k)), (10)

then S is of bounded depth and Λ̃(bott(S)) = 0, where Λ̃ = bott(Λ).



Proof. Fix k ∈ ZZ and i ∈ {0, 1, . . . , d}. From Λ(S) = 0 it follows that

ν(Si(k)S(k + i)) = ν

− ∑
0≤j≤d, j 6=i

Sj(k)S(k + j)

 ,

so by (6) and (7) we have

ν(Si(k)) + ν(S(k + i)) ≥ min
0≤j≤d

j 6=i

ν(Sj(k)) + min
0≤j≤d

j 6=i

ν(S(k + j)). (11)

Assume that ν(Si(k)) = min0≤j≤d ν(Sj(k)). Then it follows from (11) that
ν(S(k + i)) ≥ min 0≤j≤d

j 6=i
ν(S(k + j)). Specializing this to i = 0 and i = d and

using (10) we obtain that

ν(S(k)) ≥ min
1≤j≤d

ν(S(k + j))

and
ν(S(k + d)) ≥ min

0≤j≤d−1
ν(S(k + j))

for all but finitely many k ∈ ZZ. Therefore S is of bounded depth. The equality
Λ̃(bott(S)) = 0 now follows from (6). ut

Example 1. Let

Λ = S1Ek + S0, S1(k) = k + 1 + ε, S0(k) = −k − ε

and

S(k) =
{
− 1

ε , if k = 0,∑∞
i=0

(
− 1

k

)i+1
εi, otherwise.

Then S1(k)S(k + 1) = −S0(k)S(k) = −1 for all k, and Λ(S) = 0 as a conse-
quence. The depth of S is −1.

We see that
bott(S)(k) =

{
−1, if k = 0,
0, otherwise,

and bott(Λ) = (k+ 1)Ek − k. It is easy to see that (k+ 1)f(k+ 1)− kf(k) = 0,
where f(k) = bott(S)(k); so Λ̃(bott(S)) = 0, where Λ̃ = bott(Λ).

3 When a Summing Operator Exists

If ϕ(z) ∈ C(z), then we write ϕ̂(k) for the sequence ϕ(k + ε), k ∈ ZZ, of rational
functions expanded into Laurent series about ε = 0. We associate with every
operator

N = bl(z)El
z + · · ·+ b1Ez + b0(z) ∈ C(z)[Ez]

the operator

N̂ = b̂l(k)El
k + · · ·+ b̂1(k)Ek + b̂0(k) ∈ C((ε))ZZ[Ek]

which acts on sequences from C((ε))ZZ.



Proposition 2. Let L ∈ C[z,Ez]. Assume that R ∈ C(z)[Ez] is a summing
operator for L. Let S ∈ C((ε))ZZ be such that L̂(S) = 0. Then

(Ek − 1)(R̂(S)) = S. (12)

Proof. By (2), there is an operator M ∈ C(z)[Ez] such that

(Ez − 1) ◦R = 1 +M ◦ L. (13)

The map N 7→ N̂ is a ring homomorphism from C(z)[Ez] to C((ε))ZZ[Ek]. There-
fore (13) implies

(Ek − 1) ◦ R̂ = 1 + M̂ ◦ L̂.

Applying both sides of this equality to S, we obtain (12). ut

Proposition 3. Let L ∈ C[z,Ez], and let R ∈ C(z)[Ez] be a summing operator
for L. Let S ∈ C((ε))ZZ be such that L̂(S) = 0. Then depth(R̂(S)) = depth(S),
and

(Ek − 1)(bott(R̂(S))) = bott(S). (14)

Proof. It follows from (12) that depth(R̂(S)) ≤ depth(S). To prove equality, we
distinguish two cases.

1. depth(R̂(S)) = ν(R̂(S)(k)) for all k ∈ ZZ.
Assume that depth(R̂(S)) < depth(S). Then bott(R̂(S)) is a non-zero con-
stant sequence. However since R has rational coefficients, there exists k0 ∈ ZZ
such that for all k ≥ k0, the valuation of any coefficient of R̂ is non-negative
and, as a consequence,

ν(R̂(S)(k)) ≥ min
0≤i≤ord R

ν(S(k + i)) ≥ depth(S) > depth(R̂(S))

for all k ≥ k0. Then bott(R̂(S))(k) = 0 for all k ≥ k0. Hence bott(R̂(S))
is not a non-zero constant sequence. This contradiction implies that
depth(R̂(S)) = depth(S).

2. depth(R̂(S)) = ν(R̂(S)(k)) < ν(R̂(S)(k + 1)) or depth(R̂(S)) =
ν(R̂(S)(k)) > ν(R̂(S)(k − 1)), for some k ∈ ZZ.
By (12), also in this case depth(R̂(S)) = depth(S).

Now it follows from (12) that (14) is valid. ut

Theorem 4. Let L ∈ C[z,Ez], ordL = d, and let

R = rd−1(z)Ed−1
z + · · ·+ r1(z)Ez + r0(z) ∈ C(z)[Ez]

be a summing operator for L. Denote by V the set of all the poles of
r0(z), r1(z), . . . , rd−1(z). Then there exist non-zero f, g ∈ CZZ such that

(i) L(f(k)) = 0 for all k ∈ ZZ,
(ii) g(k) = rd−1(k)f(k+d−1)+ · · ·+r1(k)f(k+1)+r0(k)f(k) for all k ∈ ZZ\V ,

and



(iii) the discrete Newton-Leibniz formula

w−1∑
k=v

f(k) = g(w)− g(v)

is valid for all integers v < w.

Proof. Pick any non-zero U1, . . . , Ud ∈ C((ε)), and using L̂ find a sequence S ∈
C((ε))ZZ such that S(i) = Ui, i = 1, 2, . . . , d, and L̂(S) = 0. So there exists a non-
zero sequence S such that L̂(S) = 0. Write f = bott(S), g = bott(R̂(S)). Then
(iii) is valid by Proposition 3, and (i) is valid since L has polynomial coefficients.
Finally, for all k /∈ V we have g(k) = bott(R̂(S))(k) = R(bott(S))(k) = R(f)(k),
so (ii) is valid. ut

4 The Analytic Case

In the rest of this paper we assume that the sequences under consideration are
defined on an infinite interval I of integers, where either I = ZZ, or

I = ZZ≥l = {k ∈ ZZ | k ≥ l}, l ∈ ZZ.

It is easy to see that Propositions 1 – 3 remain valid if we consider sequences
defined on ZZ≥l, and define the operators ZZ and bott with respect to ZZ≥l instead
of with respect to ZZ.

Let U be an open subset of C containing I, such that z ∈ U ⇒ z + 1 ∈ U .
Denote by M(U) the set of functions which are meromorphic on U . We associate
with ϕ ∈M(U) a sequence ϕ̂ ∈ C((ε))ZZ whose k-th element, k ∈ I, is a (formal)
series obtained by expanding ϕ(ε+ k) into Laurent series at ε = 0.

Proposition 5. Let L ∈ C[z,Ez], and let ϕ ∈ M(U) satisfy L(ϕ) = 0 on U .
Then L̂(ϕ̂) = 0 everywhere on ZZ, the sequence ϕ̂ ∈ C((ε))ZZ is of bounded depth,
and L̃(bott(ϕ̂)) = 0 everywhere on ZZ, where L̃ = bott(L̂).

Proof. This follows from the trivial fact that the Laurent series of the zero
function has only zero coefficients, and from Proposition 1. ut

Corollary 6. If a0, a1, . . . , ad ∈ C[z] then bott(L̂) = ad(k)Ed
k + · · ·+ a1(k)Ek +

a0(k). If in addition S ∈ C((ε))ZZ is such that L̂(S) = 0, then L(bott(S)) = 0. In
particular, if ϕ ∈ M(U) is such that L(ϕ) = 0 everywhere on U except possibly
on a set of isolated points, then L(bott(ϕ)) = 0 everywhere on ZZ.

Example 2. In Example 1 we used, in fact, L = (z+1)Ez−z, U = C, ϕ(z) = − 1
z ,

Λ = L̂, S = ϕ̂.



Theorem 7. (On the bottom summation.) Let L ∈ C[z,Ez], and let R ∈
C(z)[Ez] be a summing operator for L. Let ϕ ∈ M(U) satisfy L(ϕ) = 0 on
U , and let ψ = R(ϕ). Then the bottom summation formula

w−1∑
k=v

bott(ϕ̂)(k) = bott(ψ̂)(w)− bott(ψ̂)(v) (15)

is valid for any v < w, v, w ∈ I. In particular, if ϕ has no pole in ZZ (i.e.,
depth(ϕ̂) = 0), then the function ψ = R(ϕ) ∈ M(U) has no pole in ZZ, and the
discrete Newton-Leibniz formula

w−1∑
k=v

ϕ(k) = ψ(w)− ψ(v) (16)

is valid for any v < w, v, w ∈ I.

Proof. The statement follows from Propositions 5, 3. ut

Consider some known examples in the context of Theorem 7.

Example 3. The function ϕ(z) = zΓ (z+1) satisfies the equation L(y) = 0 where
L = zEz− (z+1)2. We have R = 1

z , ordR = 0, and ψ(z) = R(ϕ)(z) = Γ (z+1).
Evidently ϕ(z) has finite values when z = 0, 1, . . ., and has simple poles when
z = −1,−2, . . .. If we consider I = ZZ then depth(ϕ̂) = depth(ψ̂) = −1 and

bott(ϕ̂)(k) =

{
(−1)k+1k
(−k−1)! , if k < 0,

0, if k ≥ 0,

bott(ψ̂)(k) =

{
(−1)k+1

(−k−1)! , if k < 0,
0, if k ≥ 0.

As a consequence of (15) we have

w−1∑
k=v

(−1)kk

(−k − 1)!
=

(−1)w

(−w − 1)!
− (−1)v

(−v − 1)!

for any v < w ≤ 0, or equivalently

w−1∑
k=v

(−1)kk

(k − 1)!
=

(−1)w+1

(w − 2)!
− (−1)v+1

(v − 2)!

for any 1 ≤ v < w.
If I = ZZ≥0 then depth(ϕ̂) = depth(ψ̂) = 0, and by (16) we have

∑w−1
k=v kΓ (k+

1) = Γ (w+1)−Γ (v+1) for any 0 ≤ v < w or, equivalently,
∑w−1

k=v k ·k! = w!−v!.



Example 4. The rational function ϕ(z) = 1
z(z+1) satisfies the equation L(y) = 0

where L = (z + 2)Ez − z. We have R = −z − 1, and ψ(z) = R(ϕ)(z) = − 1
z . If

we consider I = ZZ then depth(ϕ̂) = depth(ψ̂) = −1 and

bott(ϕ̂)(k) = δ0,k − δ−1,k,

bott(ψ̂)(k) = −δ0,k,

where δ is the Kronecker delta. A simple direct check shows that (15) is valid.
If I = ZZ≥1 then depth(ϕ̂) = depth(ψ̂) = 0, and by (16) we have∑w−1

k=v
1

k(k+1) = − 1
w + 1

v for any 0 ≤ v < w.

The following example demonstrates a conflict between combinatorial and
analytic definitions of the symbol

(
p
q

)
.

Example 5. Consider the hypergeometric sequence

t(k) =

(
2k−3

k

)
4k

(17)

which satisfies the equation 2(k + 1)(k − 2)t(k + 1) − (2k − 1)(k − 1) = 0. It
has been noticed in [5] that even though Gosper’s algorithm succeeds on this
sequence, producing R(k) = 2k(k+1)

k−2 , and t(k) is defined for all k ∈ ZZ, the
discrete Newton-Leibniz formula

w−1∑
k=0

t(k) = R(w)t(w)−R(0)t(0) =
2w(w + 1)

(
2w−3

w

)
(w − 2)4w

(18)

is not correct. If we assume that the value of
(
2k−3

k

)
is 1 when k = 0 and −1

when k = 1 (as is common practice in combinatorics) then the expression on the
right gives the true value of the sum only at w = 1. However, assume that the
value of

(
2k−3

k

)
is defined as

lim
z→k

Γ (2z − 2)
Γ (z + 1)Γ (z − 2)

. (19)

This limit exists for all k ∈ ZZ, but

lim
z→0

Γ (2z − 2)
Γ (z + 1)Γ (z − 2)

=
1
2
6= 1

and

lim
z→1

Γ (2z − 2)
Γ (z + 1)Γ (z − 2)

= −1
2
6= −1.

Set

ϕ(z) =
Γ (2z − 2)

Γ (z + 1)Γ (z − 2)4z



and

ψ(z) =
2z(z + 1)
z − 2

ϕ(z).

Then formula (16) gives the correct result

w−1∑
k=0

Γ (2k − 2)
Γ (k + 1)Γ (k − 2)4k

=
2w(w + 1)Γ (2w − 2)

(w − 2)Γ (w + 1)Γ (w − 2)4w
(20)

for all w ≥ 1, provided that the values of the summand and of the right-hand
side are defined by taking appropriate limits.

Note that if αk0+β is a non-positive integer, then we can often avoid a direct
computation of limits using the asymptotic equality

Γ (αz + β) ∼ (−1)αk0+β

(−αk0 − β)! · α · (z − k0)
, z → k0,

instead. If α 6= 0 and −β
α is an integer γ, then Γ (αz + β) has integer poles at

γ, γ − 1, . . . if α > 0 and γ, γ + 1, . . . if α < 0.
The following example is related to the case ordL > 1.

Example 6. For the operator L = (z − 3)(z − 2)(z + 1)E2
z − (z − 3)(z2 − 2z −

1)Ez − (z − 2)2 there exists the summing operator

R = zEz +
1

z − 3

([5]). By [6] the equation L(y) = 0 has solutions holomorphic at the half-plane
Re z > 2. Denote by ϕ(z) an arbitrary solution of this kind. By Theorem 7,
formula (16) must be correct for the case I = ZZ≥3 in spite of the fact that one of
the coefficients of R has a pole at z = 3. This implies that ϕ(z) vanishes at z = 3.
This can be easily confirmed by the substitution of z = 3 into L(ϕ) = 0, which
results in −ϕ(3) = 0. The algorithm from [4] yields ϕ(z) = (ϕ(4) + 4ϕ(5))(z −
3) +O((z − 3)2), and formula (16) gives the correct result for 3 ≤ v < w.

5 Conclusion

Indiscriminate application of the discrete Newton-Leibniz formula to the output
of Gosper’s algorithm or of the Accurate Summation algorithm in order to com-
pute a definite sum can lead to incorrect results. This can be observed in many
implementations of these algorithms in computer algebra systems.

In the present paper it is shown, in particular, that such undesirable phe-
nomena cannot occur if the elements of the sequence under summation are the
values ϕ(k), k ∈ ZZ, of an analytic function ϕ(z), which satisfies (in the complex
plane C) the same difference equation with polynomial coefficients as does the
original sequence (at integer points).



A practical consequence of this results is as follows. If the conditions formu-
lated above are satisfied, then a computer-algebra-system user can be sure that
the obtained sum was computed correctly.

On the more theoretical side, if ϕ(z) mentioned above has some poles at
integer points, then nevertheless one can find the sum of a sequence which,
however, is not the sequence of values of ϕ(k), k ∈ ZZ, but is associated with
ϕ(z) in a natural way. This can yield an interesting (and, probably, unexpected)
identity. We call this sequence associated with ϕ(z), the bottom of ϕ(z). If ϕ(z)
is defined for all z ∈ ZZ then its bottom coincides with the sequence ϕ(k), k ∈ ZZ.
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