
On regular and logarithmic solutions of ordinary

linear di�erential systems

?

S.A. Abramov

1

, M. Bronstein

2

, and D.E. Khmelnov

1

1

Dorodnicyn Comp. Center of the Russ. Acad. of Sciences, Moscow 119991, Russia,

fsabramov,khmelnovg@ccas.ru

2

INRIA { Caf

�

e, BP 93, 06902-Sophia Antipolis Cedex, France

Abstract. We present an approach to construct all the regular solutions

of systems of linear ordinary di�erential equations using the desingular-

ization algorithm of Abramov & Bronstein (2001) as an auxiliary tool.

A similar approach to �nd all the solutions with entries in C(z)[log z] is

presented as well, together with a new hybrid method for constructing

the denominator of rational and logarithmic solutions.

1 Introduction

Let C be an algebraically closed �eld of characteristic 0, z be an indeterminate

over C, and

L = Q

�

(z)D

�

+ � � �+Q

1

(z)D +Q

0

(z); (1)

where D = d=dz and Q

�

(z); : : : ; Q

0

(z) 2 C[z]. A regular solution of Ly = 0

(or of L) at a given point z

0

2 C, is a solution of the form (z � z

0

)

�

F (z) with

F (z) 2 C((z � z

0

))[log(z � z

0

)], where C((z � z

0

)) is the �eld of (formal) Lau-

rent series over C. If F (z) has valuation 0, then � is called the exponent of

the regular solution (otherwise it is an exponent moduloZ). Using the change

of variable �z = z � z

0

, we can assume without loss of generality that z

0

= 0.

The problem of constructing all the regular solutions is solved by the Frobenius

algorithm (1873, [8, Chap.IV],[9],[14, Chap.V]), which is based on the indicial

equation f(�) = 0 of L at 0. Not only the roots of f(�) = 0, each taken sepa-

rately, are substantial for the Frobenius algorithm, but also their multiplicities

and whether some roots di�er by integers. Later, in 1894, L. He�ter proposed

another algorithm to solve the same problem ([10, Kap.II,VIII],[14, Chap.V]).

For a given root � of the indicial equation, He�ter's algorithm constructs a basis

(possibly empty) for all the regular solutions with exponent �. Once � is �xed,

that algorithm does not depend on the multiplicity of �, nor on the existence of

another root at an integer distance from �. It constructs a sequence E

0

; E

1

; : : :

of linear di�erential equations, whose right-hand side contains solutions of the

preceding equations. If

z

�

�

g

0

(z) + g

1

(z)

log z

1!

+ g

2

(z)

log

2

z

2!

+ � � �+ g

m

(z)

log

m

z

m!

�

?

Work partially supported by the ECO-NET program of the French Foreign A�airs

Ministry, project No. 08119TG, and by RFBR grant No. 04-01-00757.

is a regular solution of (1) then g

i

(z) 2 C((z)) is a solution of E

i

for each i. All

the regular solutions of (1) with exponent � have been found when we reach an

equation E

m+1

that has no nonzero Laurent series solution.

To apply the original Frobenius or He�ter algorithm at an arbitrary sin-

gularity of a system of linear di�erential equations would require transforming

the system to a scalar di�erential equation (e.g. by the cyclic vector method).

That scalar equation usually has huge coe�cients, making this approach quite

unpractical. If z = 0 is a regular singularity of a �rst-order system of the form

dY

dz

= A(z)Y (z); A(z) 2Mat

N

(C(z)) (2)

then, it is possible in theory to use a variant of the Frobenius algorithm that can

be applied directly [8, p. 136, exercise 13], but this approach cannot be applied

to irregular singularities or higher-order systems.

A generalization of He�ter's algorithm for constructing the regular solutions

of �rst order systems of the form (2) is described in [5, x5] (an extended version is

in [6, x3]). That algorithm is direct, i.e. it does not use any uncoupling procedure.

A necessary step is however to �nd all the Laurent series solutions of a given

system. For this task and for producing the indicial equation f(�) = 0, the

algorithm of [6,5] transforms the system into its super-irreducible form (see [11]).

We describe in this paper another adaptation of He�ter's algorithm to linear

di�erential system, which uses the desingularization algorithm of [2, 3] instead of

transforming a system into its super-irreducible form. This allows us to handle

higher order systems, i.e. operators such as (1) where the Q

i

are matrices of

polynomials, directly, i.e. without converting them to larger �rst-order systems.

We study the e�ciency of the approach both from the theoretical and practical

viewpoints, and it shows that solving them directly is more e�cient.

In a similar way, we solve the related problem of �nding all the solutions

with entries in C(z)[log z], which we call logarithmic solutions. This problem

is decomposed into �rst �nding a universal denominator for the solutions, and

then �nding solutions with entries in C[z][logz]. The latter problem is solved

by a slightly modi�ed version of our algorithm for the regular solutions. For the

denominator, in addtion, we propose a new hybrid method that combines the

algorithm of [2] with a reduction algorithm speci�c to regular singularities [7].

The hybrid method is applicable to the case of �rst order systems, and in this

case it speeds up the computation quite often (see Sect. 5).

2 Desingularization of linear recurrence systems

Linear recurrences with variable coe�cients are of interest for many applications

(e.g. combinatorics and numeric computation). Consider a recurrence of the form

P

l

(n)x

n+l

+ P

l�1

(n)x

n+l�1

+ � � �+ P

t

(n)x

n+t

= r

n

(3)

where l � t are arbitrary integers, x = (x

1

; : : : ; x

N

)

T

is a column vector of un-

known sequences (such that x

i

= (x

1

i

; : : : ; x

N

i

)

T

), P

t

(n); : : : ; P

l

(n) 2Mat

N

(C[n]),

P

t

(n) 6= 0 6= P

l

(n) and r

n

2 C[n]

N

. The matrices P

l

(n) and P

t

(n) are called

respectively the leading and trailing matrices of the recurrence. When P

t

(n) and

P

l

(n) are nonsingular, the roots of their determinants are important for deter-

mining the structure of the solution space, as they give bounds on the solutions

whose support is bounded above or below. It may happen however that P

t

(n)

or P

l

(n) is singular (or both). In that case, they do not yield bounds on the

solutions, but it is also di�cult, from a computational standpoint, to use the

recurrence (3) to compute the sequence of vectors that it generates. A natural

solution in that case is to transform the recurrence system into an equivalent

one with either the leading or trailing matrix nonsingular. That transformation

may be a \quasi{equivalence", in the sense that the eventual changes in the so-

lution space can be easily described. Such a transformation (the EG-algorithm)

was developed in [1] and later improved in [2]. In addition to the transformed

system, it also yields a �nite set of linear constraints such that the solutions of

the original system are exactly those of the transformed system that also satisfy

the new constraints (each of the constraints is a linear relation that contains a

�nite set of variables x

j

i

).

3 Regular solutions

We consider in this section the higher order system LY = 0 where L is of the

form (1) with Q

0

; : : : ; Q

�

2 Mat

N

(C[z]) and Q

�

nonsingular.

3.1 Description of the algorithm

Using the standard basis (z

m

)

m�0

ofC[z], we construct (see [2, x2]) its associated

recurrence system Rc = 0, where R = P

l

(n)E

l

+ � � �+ P

t

(n)E

t

, E is the shift

operator and P

j

(n) 2 Mat

N

(C[n]) for t � j � l. If detP

l

(n) is identically 0, then

it is possible (see Section 2) to transform the recurrence system into an equivalent

one (together with a �nite set of linear constraints) with detP

l

(n) 6= 0, so assume

from now on that '(n) = detP

l

(n) 6= 0. Let (n) = '(n � l) and n

0

; n

1

be

respectively the minimal and maximal integer roots of (n) (if there is no integer

root, then LY = 0 has no Laurent series solution). Any Laurent series solution of

LY = 0 has no term c

k

z

k

with c

k

2 C

N

and k < n

0

. Using the recurrence Rc = 0

and the additional constraints, we can, by a linear algebra procedure, compute

a basis of the linear space of initial segments c

n

0

z

n

0

+ c

n

0

+1

z

n

0

+1

+ � � �+ c

M

z

M

,

where M is a �xed integer, chosen greater that n

1

and all the indices appearing

in the linear constraints. Observe that if our di�erential system is inhomogeneous

with a Laurent series right-hand side (whose coe�cients are given by a linear

recurrence system), then we can similarly construct a basis of the a�ne space of

its Laurent series solutions. If (n) has a non-integer root �, then the preliminary

change of variable Y = z

�

�

Y produces a new system for

�

Y , hence a new recurrence

with a new

�

 (n) = (n � �). Therefore, we can always work with the integer

roots of . For any integer m � 0, the result of applying L to g(z) log

m

(z)=m!

is clearly of the form

L

m;m

(g)

log

m

z

m!

+ � � �+ L

m;1

(g)

log z

1!

+ L

m;0

(g); (4)

where the coe�cients of the di�erential operators L

i;j

belong to Mat

N

(C(z)).

Proofs of the following proposition can be found in [10] and [12, Sect. 3.2.1].

Proposition 1 The coe�cients of all the L

i;j

in (4) belong to Mat

N

(C[z; z

�1

]).

In addition, L

0;0

= L and L

i+j;j

= L

i;0

for any i; j � 0.

Let L

i

= L

i;0

(= L

i+j;j

for any j � 0). Using (4) and Proposition 1 we obtain

L

k

X

m=0

g

k�m

(z)

log

m

z

m!

!

=

k

X

m=0

0

@

k�m

X

j=0

L

j

(g

k�m�j

)

1

A

log

m

z

m!

:

Therefore,

Y =

k

X

m=0

g

k�m

(z)

log

m

z

m!

(5)

is a solution of LY = 0 if and only if (g

0

(z); : : : ; g

k

(z)) is a Laurent series solution

of the inhomogeneous linear system

L

0

(g

i

) = �

i

X

j=1

L

j

(g

i�j

) for 0 � i � k : (6)

When we �nd g

0

(z) using the �rst equation L

0

(g

0

) = 0 of (6), that solution con-

tains arbitrary constants. When we use g

0

(z) in the right-hand side of the next

equation L

0

(g

1

) = �L

1

(g

0

) of (6) those arbitrary constants appear linearly in the

right-hand side. Using the same technique as when solving such scalar paramet-

ric inhomogeneous equations (see for example [4]), we �nd together with g

1

(z)

linear constraints on the arbitrary constants appearing in g

0

and g

1

. Repeating

this process, we �nd at each step that g

0

; : : : ; g

i

depend on unknown constants

together with a linear system for those constants. In order for this process to

terminate, we need to ensure that we always reach an integer k such that (6)

has no Laurent series solution with g

0

6= 0. He�ter proved this in the scalar case,

and his proof carries over to systems.

Proposition 2 The set K = fk � 0 such that (6) has a solution with g

0

6= 0g

is �nite. If K is empty, then LY = 0 has no nonzero solution in C((z))[log z].

Otherwise, K = f0; : : : ; �g for some � � 0 and any solution in C((z))[log z] of

LY = 0 has the form (5) where (g

0

; : : : ; g

�

) is a solution of (6) with k = �.

In addition, any solution of (6) with entries in C((z)) generates a solution of

LY = 0.

Proof. Let G

k

be the linear space of all the (regular) solutions of the form (5) of

LY = 0, and Y 2 G

k

. Writing Y =

P

k+1

m=0

h

k+1�m

(z) log

m

(z)=m! where h

0

= 0

and h

i+1

= g

i

for 0 � i � k, we see that G

0

� G

1

� � � � � G

k

� G

k+1

� � � �.

Let k > 0 be in K and (g

0

; : : : ; g

k

) be a solution of (6) with g

0

6= 0. Then,

(g

0

; : : : ; g

k�1

) is a solution of (6) with k � 1 and so on, which implies that

f0; : : : ; kg � K and that dim

C

G

k

� k. This produces k linearly independent

solutions of the form (5) of LY = 0. On the other hand, since LY = 0 is

equivalent to a scalar equation of order at most �N , dim

C

G

k

� �N for all k, so

K is either empty or of the form f0; : : : ; �g for some � � �N . Therefore, if we

compute G

0

; G

1

; : : : using (6), we eventually �nd an integer k � �N for which

the system (6) has a solution only for g

0

= 0. At this point, G

k�1

contains all

the solutions of LY = 0 with entries in C((z))[log z].

Summarizing, our scheme for constructing regular solutions of LY = 0 is:

1. Construct its associated matrix recurrence in the form (3) and transform it

into an equivalent one with nonsingular leading matrix (see Section 2). Let

P

0

l

(n)z

n+l

+ P

0

l�1

(n)z

n+l�1

+ � � �+ P

0

t

(n)z

n+t

= r

0

n

(7)

be the resulting recurrence (it may include in addition a set of linear con-

straints). Compute all roots of '(n) = det(P

0

l

(n)), divide them into groups

having integer di�erences, and construct the set � consisting of one repre-

sentative for each groups.

2. For each � 2 �, compute regular solution whose exponent is �:

(a) Compute a system S

�

by substituting Y = z

�

Y

�

and by following multi-

plication of the system by z

���

. This induces a transformation of (7). We

get a recurrence R

�

: P

00

l

(n)z

n+l

+P

00

l�1

(n)z

n+l�1

+ � � �+P

00

t

(n)z

n+t

= r

0

n

,

where P

00

i

(n) = P

0

i

(n + �), i = l; l � 1; : : : ; t, and since P

0

l

(n) is nonsin-

gular, so is P

00

l

(n) and no additional desingularisation is required. The

transformed recurrence R

�

may include a set of linear constraints which

are transformed correspondingly.

(b) Determine the number M

�

of required initial terms of Laurent series,

which is greater than all the integer roots of the determinant of the

leading matrix of R

�

as well as all the indices appearing in the additional

constraints.

(c) Successively solve systems (6) for the required number of terms of its

Laurent series solutions, using the recurrence R

�

while it is possible.

This yields regular solutions y

�

of S

�

in the form (5).

3. Combine all the solutions into the general regular solution y =

P

�2�

z

�

y

�

.

Note that we construct regular solutions by representing all involved Laurent

series by truncated expansions until an appropriate terms, such that the number

of linearly independent solutions is determined correctly and computation of the

subsequent terms can be performed one by one by means of recurrenses fR

�

g.

3.2 Computing and implementation remarks

The associated recurrence system The main part of the algorithm is solv-

ing the individual systems from the sequence (6). Note however that all those

systems have in the left-hand side the same operator L

0

= L. Therefore, the as-

sociated linear recurrence systems also have the same left-hand sides, but their

right-hand sides are di�erent. In order to desingularize the recurrence system

only once, we apply during the �rst desingularization (step 1 above) all the trans-

formations to a generic right-hand side. As a result, we have the transformed

recurrence with a non-singular leading matrix, a �nite set of linear constraints

and the transformed right-hand side in a generic form. Each component of this

generic transformed right-hand side is a linear combination of possibly shifted

components of the original right-hand side before desingularization. In this way

we can use the same transformed recurrence for solving any system from the

sequence (6) specifying the concrete right-hand side by substituting the corre-

sponding values into the generic right-hand side (such substitutions commute

with any elementary transformation that our desingularization algorithm uses).

Computing the right-hand sides This is not so simple since the right-hand

side for the i-th system in (6) is h

i

= �

P

i

j=1

L

j

(g

i�j

), where g

0

; : : : ; g

i�1

are

Laurent series solutions of the preceding systems. Since we represent (truncated)

Laurent series solution by segment of initial terms, we need to determine the

required numbers of initial terms of g

0

; : : : ; g

i�1

. That number is determined

in an algorithmic way and depends on the number M

�

of initial terms of the

transformed right-hand side, which is determined in step 2b of the algorithm for

all the systems in the sequence (6), and ensures that the next terms of the series

are computed from the preceding ones by a simple use of the recurrence. So we

compute the transformed right-hand side in the following way:

1. Taking into account M

�

and the components of the transformed generic

right-hand side, compute the numbers of required initial terms of the com-

ponents of the right-hand side before transformation, to ensure that the

number of initial terms in the transformed right-hand side is equal to M

�

.

2. Taking into account the form of the operators L

1

; : : : ; L

i

, compute the num-

bers of initial terms of g

0

; : : : ; g

i�1

required to ensure the needed numbers

of initial terms of the components of right-hand side before transformation.

3. Compute the corresponding initial segments of g

0

; : : : ; g

i�1

.

4. Compute the initial segment of the right-hand side before transformation

substituting the initial segments of g

0

; : : : ; g

i�1

into h

i

.

5. Compute the initial segment of the transformed right-hand side substituting

the initial segment of the right-hand side before transformation into the

transformed generic right-hand side.

Extending solution components Computing the transformed right-hand side

depends on computing the initial segments of g

0

; : : : ; g

i�1

(step 3 in Section 3.2).

Since the required number of initial terms of the solution component g

k

may be

greater than the number of the initial terms computed in the preceding steps

of the algorithm, we need to extend that component, which requires computing

additional terms using the associated recurrence. This means in turn that we

need to extend the corresponding transformed right-hand side, computing it

using the approach from Section 3.2 while replacing M

�

by the new number.

Note that this may again require extending other solution components, so this

procedure is recursive.

Computing initial segments When we compute the transformed right-hand

side of the recurrence, solving a system from the sequence (6) for the required

number of initial terms can be done step by step using the recurrence. In each

step one of the following options occurs:

- the next term is computed as a function of the previous terms;

- a linear constraint on the previous terms appears, which can be either solved

or inconsistent, in which case there is no Laurent series solution;

- the next term is a new arbitrary constant (which may be speci�ed later in the

computation when solving constraints).

After all those steps, either all the initial terms have been computed (some of

them being arbitrary constants) or we have proven that there is no Laurent series

solution. Note that:

1. Since each of the g

0

; : : : ; g

i�1

may have arbitrary constants, the right-hand

side for the i-th system in the sequence (6) may have the same arbitrary

constants. This leads to the fact that, during the computation of the Lau-

rent series solution of the i-th system, some of the arbitrary constants may

be speci�ed when resolving newly appearing constraints. This could turn

the current initial segment of g

0

to zero. Since the number of terms in the

segment is such that all the remaining terms are computed by the associ-

ated recurrence whose leading matrix is non-singular, this implies that g

0

is identically zero. As noted earlier, when this happens, then all the solu-

tion components have been computed and i-th system has no Laurent series

solutions with g

0

6= 0.

2. As noted earlier, since G

k

� G

k+1

, we can use only the last solution found of

the form (5) with g

0

6= 0 as the regular solution whose exponent is �, since

it also contains all the previously found solutions of that form.

4 Logarithmic solutions

Finding regular solutions is a local problem. We consider in this section the

analogous global problem of �nding solutions whose entries are in C(z)[log z] of

the higher order system LY = 0 where L is of the form (1) with Q

0

; : : : ; Q

�

2

Mat

N

(C[z]) and Q

�

nonsingular. In the case of �rst-order systems Y

0

= AY , an

algorithm, based on super-irreducible forms, for computing such solutions was

presented in [5]. As for regular solutions, we present here an alternative that does

not require conversion to �rst order systems, and that uses desingularization

(see Section 2) instead of super-irreducible forms. Recall that �nding rational

solutions of LY = 0 proceeds in two distinct steps: we construct �rst a universal

denominator, i.e. d 2 C[z] such that dY 2 C[z]

N

for any solution Y 2 C(z)

N

of LY = 0. We then search for the polynomial solutions of the system obtained

by the change of variable

�

Y = dY in L. As remarked in [5, x5.1], a universal

denominator for rational solutions is also valid for logarithmic solutions. As

described in [2, x8.1], the irreducible factors of a universal denominator must

all divide det(Q

�

) and we can compute such a universal denominator using the

algorithm described there. This reduces our problem to �nding solutions whose

entries are in C[z][logz]. Before solving that problem in Section 4.2, we �rst

present a heuristic for accelerating the computation of universal denominators

in the case of �rst-order systems.

4.1 A hybrid heuristic for �rst-order systems

We restrict in this section our systems to be of the form (2). If all the �nite

singularities of that system are known to be regular, then the reduction method

of [7] transforms all of them simultaneously into simple poles, that is, it returns

a change of variable that transforms the system into an equivalent one where the

denominator of A is squarefree. In that case, the exponents at all the singularities

can be easily computed as eigenvalues of the associated residue matrices, yielding

a fast way to compute a universal denominator. That algorithm repeats the

following single reduction step: as long as the denominator of A is not squarefree,

choose a row of A whose common denominator d 2 C[z] is not squarefree. Using

only extended gcd computations, compute an invertible T 2 Mat

N

(C(z)) whose

rows form a C[z]-basis of the free C[z]-module C[z]

1�N

+C[z]! where C[z]

1�N

is the module of row-vectors and ! is the selected row of A multiplied by the

squarefree part of d. Apply then the change of variable

�

Y = TY to dY=dz = AY

and repeat this process, which is shown in [7] to yield a matrix with a squarefree

denominator after �nitely many steps.

Not much is known about the behavior of that algorithm in the presence of

irregular singularities (except that it cannot terminate!) but we use it here as a

heuristic to separate the (proven) regular and (putative) irregular singularities

of the system. Since the proven regular singularities are transformed into simple

poles in this process, we use the eigenvalue approach to compute their exponents,

limiting the use of desingularization to the remaining ones. Note that wrongly

classifying a singularity as irregular does not a�ect the correctness of the hybrid

method, since going through the recurrence approach at such singularities yield

a correct bound. This yields the following hybrid heuristic for the universal

denominator, given a �rst-order system in the form (2):

1. Initialize the set of proven regular singularities to be R := ; and the universal

denominator to be U := 1.

2. Compute an irreducible factorisation of the denominator of A, the set F of

its irreducible factors and the subset F

1

of factors having multiplicity 1.

3. Initialize the set S := F of \unclassi�ed" singularities.

4. Repeat the following steps:

(a) For each factor in f 2 F

1

(proven regular singularities) compute its

exponent e � 0 in the universal denominator by the classical approach

for simple poles. Update U := Uf

e

.

(b) Update R := R [F

1

followed by S := SnR.

(c) Repeat the single reduction step of [7] described above, limiting it to the

factors in S (see below), and get the transformed system with matrix

A

r

until either (i) a new squarefree factor of the denominator of A

r

is

found, or (ii) we have determined that all the elements of S correspond

to putative irregular singularities, using the following heuristic: for each

f 2 S compute

{ mf | minimal positive multiplicity of f in the denominators of the

rows of the original A

{ mf

0

| the same but for the rows of the transformed A

r

{ sf | sum of the multiplicities of f in the denominators of the rows

of the original A

{ sf

0

| the same but for the rows of the transformed A

r

We declare f to be a putative irregular singularity if one of the following

conditions hold:

{ mf

0

> mf ;

{ mf

0

= mf and sf

0

> sf ;

{ mf

0

= mf , sf

0

= sf and this situation is repeated for the third

successive single reduction step (note that we count the number of

such successive stabilities of mf and sf and pass that count from

one reduction step to the next one)

If f has been declared to be a putative irregular singularity, then we

remove it from S for the next single reduction step.

(d) Let F

1

� FnR be the set of factors of the denominator of A

r

with

multiplicity 1. If F

1

6= ;, then go back to step 4a otherwise leave the

loop.

5. For each f 2 FnR (putative irregular singularities) compute its exponent

e � 0 in the universal denominator by the desingularization approach of [2]

(see Sect. 2). Update U := Uf

e

.

Note that the above algorithm is computing the exponent of factors reduced to

simple poles as soon as they appear during the reduction, so we can exclude

them from the following reductions. This is more e�cient than computing them

at the end since each single reduction step increases the degrees and coe�cients

of the entries of A

r

. We can use the exponents computed using the transformed

matrix A

r

at each step as the correct exponents in a universal denominator for

the original matrix A because the change of variables at each single step are

given by inverses of polynomial matrices [7, Theorem 2].

To limit the single reduction step to the factors in S � F at step 4c, we

adapt the single reduction step as follows: the denominator d of each row of A

can be factored as d =

Q

p2S

p

e

p

Q

q =2S

q

e

q

. Choose a row of A for which e

p

> 1

for some p 2 S, let ! be that row of A multiplied by

Q

p2S

p

min(e

p

;1)

Q

q =2S

q

e

q

and compute a basis of C[z]

1�N

+ C[z]! as explained above.

A �nal remark about the hybrid method: there is some arbitrariness in select-

ing the row used in the single reduction step. In our implementation, we select

the row with the maximal sum of the multiplicities of the factors from S in its

denominator.

4.2 Solutions with entries in C[z][log z]

Since our algorithm for �nding regular solutions at z = 0 returns truncated

Laurent series, it can easily be adapted to return only the solutions with entries

in C[z][log(z)]. Only the following changes are needed:

{ Instead of dynamically bounding the number of terms of the series to com-

pute, we compute an upper bound of the degrees of the polynomial solutions

and use that number of terms. Such an upper bound is computed from the

roots of the determinant of the trailing matrix of the associated recurrence

system (see [1, 2] for details).

{ As we are not interested in the z

�

factors, we skip the computation of the

set � of exponents moduloZat z = 0.

This yields the following algorithm for solutions in C[z][logz]:

1. Construct its associated matrix recurrence in the form (3) and transform it

into an equivalent one R with P

t

(n) nonsingular (see Section 2).

2. Compute an upper boundM on the degree of the polynomial solutions from

the integer roots of detP

t

(n).

3. Successively solve systems (6) for their polynomial solutions, using the re-

currence R while it is possible. This means setting all the coe�cients of

the series with negative indices to 0 and computing truncated series up to

the degree bound. As we compute successive right-hand sides, we can re�ne

our degree bound. Since the polynomials are computed completely, there

is no need to extend them as we compute additional right-hand sides. As

we used a recurrence with nonsingular trailing matrix to bound the degree,

it is natural to use it again in this step to compute the coe�cients of the

polynomials. So we compute them starting with the coe�cients of highest

degree and work down to the constant coe�cients. For regular solutions, we

used a nonsingular leading matrix to get the exponents and precisions, so

we obtained the coe�cients in the reverse order.

5 Complexity and experimental comparisons

Consider the higher order system LY = 0 where L is of the form (1) with

Q

0

; : : : ; Q

�

2Mat

N

(C[z]) and Q

�

nonsingular. Let � be a bound on the degrees

of the entries of the Q

i

's. There is no known complete complexity analysis for

our method, nor for the method of [6]. However, since our method computes

only one desingularisation (see Sect. 3.1) and the method of [6] computes only

one super-irreducible form, we attempt here to compare those operations.

The basic operation for desingularisation is computing ranks and nullspaces

of matrices of polynomials. Using [15], this has a complexity of O

�

(n

!

d) oper-

ations in C, where n is the size of the matrix, d a bound on the degree of its

entries, ! the exponent of matrixmultiplication and the O

�

notation means that

we ignore logarithmic factors. The leading matrix of our recurrence is of size N

and its entries are of degree bounded by � (and not � since the transformation

from di�erential equations to recurrences sends D to n), so the �rst nullspace

has a cost of O

�

(N

!

�).

The basic operation for super-irreducible forms [11] is computing character-

istic polynomials of matrices of polynomials. Using [13] this has a a complexity

of O

�

(n

!+1=3

d) operations in C. Since LY = 0 must �rst be converted to a

�rst order system of size N�, the �rst characteristic polynomial has a cost of

O

�

(N

!+1=3

�

!+1=3

�).

In practice, we expect desingularization and super-irreducible forms to con-

verge quickly, i.e. to compute relatively few nullspaces or characteristic polyno-

mials. In theory, desingularization can require N (� + �) nullspaces in the worst

case. Since we do not know the growth of the degrees of the entries, this only

yields the approximate complexity of O

�

(N

!+1

(� + �)F (�)) where F (�) en-

codes the growth in the degrees. Similarly, super-irreducible forms can require

s(s+1)=2 characteristic polynomials in the worst case, where s is the polar order

of the matrix at z = 0, which can be as high as �. This then yields an approxi-

mate complexity of O

�

(N

!+1=3

�

!+1=3

G(�)

3

) where G(�) encodes the growth in

the degrees.

We have implemented our regular solution algorithm in Maple on top of

the package LinearFunctionalSystems, which contains solvers based on [2].

Our function returns the regular solutions with truncated Laurent series of a

linear di�erential system with polynomial coe�cients. The number of terms of

the series is determined automatically to ensure that the remaining terms of the

series can be computed using the associated recurrences (i.e. its leading matrix

is invertible for all the remaining terms). In order to extend initial segments

of the Laurent series, another function is provided, which returns the regular

solution with the series extended to a given degree.

For comparison purposes, we used the Maple package ISOLDE, which imple-

ments the algorithm of [6]. We compared the two programs on several sets of

generated systems

3

. Although our program is faster in the majority of examples,

the gains for �rst-order systems are only by a small constant factor. Moreover,

since the programs use di�erent approaches, this comparison can only conclude

that the two methods are of comparable e�ciency for �rst-order systems and

their weak and strong features are displayed on di�erent systems. For exmaple,

for one of the sets, most systems were solved faster by our program, but ISOLDE

had a lower total CPU time for one of the subsets since it solved much faster a few

systems in that subset. Those results indicate as well the di�culty of developping

a polyalgorithm that would automatically detect the most e�cient method to

use for each particular input. The main advantage of our method is however its

direct applicability to higher-order systems, where the experimental results con-

�rm the better e�ciency. For the comparison we generated a set of higher-order

systems and as well transformed all the systems in the set to corresponding �rst

order systems. Then we solved the higher-order systems directly by our program

and solved the corresponding �rst-order systems both by our program and by

ISOLDE. All systems in the set were solved faster by direct approach. To be fair,

3

All comparisons are available at www.ccas.ru/sabramov/casc2005.html

we should remark that our program has been steadily improved by the recent up-

date of some modules, while ISOLDE has not been updated for a long time. So we

do not exclude the possibility that further improvements in ISOLDE could lead

to some changes in our comparisons. They nevertheless re
ect accurately the

current status of those programs, as well as parallel similar conclusions obtained

by comparing them on the computation of rational solutions [3].

We have also implemented our logarithmic solution algorithm on top of the

package LinearFunctionalSystems, together with an option in the correspond-

ing procedure UniversalDenominator to allow the use of the hybrid heuristic.

Again we generated several sets of systems, and solved them with and without

the hybrid heuristic for the universal denominator. The results showed that the

hybrid method generally yields a signi�cant speedup, though it might lead to

additional work without any gain sometimes.

References

1. Abramov, S.: EG{eliminations. Journal of Di�erence Equations and Applications

5 (1999) 393{433

2. Abramov, S., Bronstein, M.: On solutions of linear functional systems. In Pro-

ceedings of ISSAC'2001, ACM Press (2001) 1{6

3. Abramov, S., Bronstein, M., Khmelnov, D.: Regularization of linear recurrence

systems. In Transactions of the A.M. Liapunov Institute. Volume 4. (2003) 158{

171

4. Abramov, S., Bronstein, M., Petkov�sek, M.: On polynomial solutions of linear

operator equations. In Proceedings of ISSAC'95, ACM Press (1995) 290{296

5. Barkatou, M.A.: On rational solutions of systems of linear di�erential equations.

Journal of Symbolic Computation 28 (1999) 547{567

6. Barkatou, M., P
�ugel, E.: An algorithm computing the regular formal solutions

of a system of linear di�erential equations. Journal of Symbolic Computation 28

(1999) 569{587

7. Bronstein, M., Trager, B.: A reduction for regular di�erential systems. In CD-

ROM, Proceedings of MEGA'2003. (2003)

8. Coddington, E., Levinson, N.: Theory of ordinary di�erential equations. McGraw-

Hill, New York (1955)

9. Frobenius, G.:

�

Uber die Integration der linearen Di�erentialgleichungen mit

ver�ander Koe�cienten. Journal f�ur die reine und angewandte Mathematik 76

(1873) 214{235

10. He�ter, L.: Einleitung in die Theorie der linearen Di�erentialgleichungen. Teubner,

Leipzig (1894)

11. Hilali, A., Wazner, A.: Formes super{irr�eductibles des syst�emes di��erentiels

lin�eaires. Numerical Mathematics 50 (1987) 429{449

12. van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular

singularities. Journal of Symbolic Computation 31 (2001) 717{743

13. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Compu-

tational Complexity 13 (2004) 91{130

14. Poole, E.: Introduction to the Theory of Linear Di�erential Equations. Dover

Publications Inc., New York (1960)

15. Storjohann, A., Villard, G.: Computing the rank and a small nullspace basis of a

polynomial matrix. In Proceedings of ISSAC'2005, ACM Press (2005)

