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Abstract We consider matrices with infinite power series as entries and suppose
that those matrices are represented in an “approximate” form, namely, in a truncated
form. Thus, it is supposed that a polynomial matrix P which is the l-truncation (l
is a non-negative integer, degP = l) of a power series matrix M is given, and P is
non-singular, i.e., detP 6= 0. We prove that the strong non-singularity testing, i.e., the
testing whether P is not a truncation of a singular matrix having power series entries,
is algorithmically decidable. Supposing that a non-singular power series matrix M
(which is not known to us) is represented by a strongly non-singular polynomial
matrix P, we give a tight lower bound for the number of initial terms of M−1 which
can be determined from P−1. In addition, we report on possibility of applying the
proposed approach to “approximate” linear differential systems.

Keywords Polynomial matrices, Strong non-singularity, Linear differential sys-
tems, Truncated series

1 Introduction

We discuss an “approximate” representation of infinite power series which appear as
inputs for computer algebra algorithms. A well-known example is given in [10], it is
related to the number of terms in M that can influence some components of formal

Sergei A. Abramov
Dorodnicyn Computing Center,
Federal Research Center Computer Science and Control
of the Russian Academy of Sciences,
Vavilova 40, Moscow, 119333, Russia, e-mail: sergeyabramov@mail.ru

Moulay A. Barkatou
XLIM UMR 7252 CNRS
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exponential-logarithmic solutions of a differential system xs+1y′ = My, where s is
a non-negative integer, M is a matrix whose entries are power series; see also its
generalization in [11] and our previous paper [4].

In the present paper, we consider matrices with infinite power series (over a field
K of characteristic 0) as entries and suppose that those series are represented in
a truncated form. Thus, it is assumed that a polynomial matrix P which is the l-
truncation M〈l〉 (l is a non-negative integer, degP = l) of a power series matrix M is
given, and P is non-singular, i.e., detP 6= 0. We prove that the the question of strong
non-singularity, i.e., the question whether P is not the l-truncation of a singular
matrix having power series entries, is algorithmically decidable.

Assuming that a non-singular power series matrix M (which is not known to us)
is represented by a strongly non-singular polynomial matrix P, we give a tight lower
bound for the number of initial terms of M−1 which can be determined from P−1.
As it turns out, for the answer to these questions, the number h = degP+ valP−1

plays the key role, and h > 0 is a criterion of the impossibility of a prolongation
of polynomials to series so that the determinant of the matrix vanishes. If this in-
equality holds then first, for any prolongation, the valuations of the determinant and
the inverse of the approximate matrix and, resp., of the prolonged matrix coincide.
Second, in the expansions of the determinants of the approximate and prolonged
matrices the coefficients coincide for xval detP, as well as h subsequent coefficients
(for larger degrees of x). The similar statement holds for the inverse matrices.

In addition, we prove that if M is an n× n-matrix having power series entries,
detM 6= 0 then there exists a non-negative integer l such that M〈l〉 is a strongly
non-singular polynomial matrix. If the entries of M are represented algorithmically
(for each power series that is an entry of M, an algorithm is specified that, given an
integer i, finds the coefficient of xi) then an upper bound for such l can be computed.

In Section 7, we discuss the possibility of applying the proposed approach to
approximate linear differential systems of arbitrary order with power series matrix
coefficients: if a system S is given in the approximate truncated form S̃, ord S̃= ordS,
and the leading matrix of S̃ is strongly non-singular then one can guarantee, under
some extra specific conditions, that Laurent series solutions of the truncated system
S̃ coincide with Laurent series solutions of the system S up to some degree of x that
can be estimated by the algorithm we proposed in [4].

In our paper we are considering a situation where a truncated system is initially
given and we do not know the original system. We are trying to establish, whether it
is possible to get from the solutions of this system an information on solutions of any
system obtained from this system by a prolongation of the polynomial coefficients
to series. In comparison with, e.g., [8, 10], this is a different task.

2 Preliminaries

Let K be a field of characteristic 0. We denote by K[[x]] the ring of formal power
series and K((x)) = K[[x]][x−1] its quotient field (the field of formal Laurent series)
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with coefficients in K. For a nonzero element a = ∑aixi of K((x)) we denote by
vala the valuation of a defined by vala = min{i such that ai 6= 0}; by convention,
val0 = ∞.

If l ∈ Z,a(x) ∈ K((x)) then we define the l-truncation a〈l〉 ∈ K[x,x−1] as the
Laurent polynomial obtained by omitting all the terms of valuation larger than l in
a.

The ring of n×n matrices with entries belonging to a ring (a field) R is denoted
by Mat n(R). The identity n×n-matrix is denoted by In. The notation MT is used for
the transpose of a matrix (vector) M.

For M ∈ Mat n(K((x))) we define valM as the minimum of the valuations of
the entries of M. We define the leading coefficient of a nonzero matrix M ∈
Mat n(K((x))) as lcM = (x−valMM)|x=0. For M ∈ Mat n(K[x]) we define degM as
the maximum of the degrees of the entries of M.

A matrix M ∈Mat n(K((x))) is non-singular if detM 6= 0, otherwise M is singu-
lar.

For M ∈Mat n(K((x))) we denote by M∗ the adjugate matrix of M, i.e. the trans-
pose of the cofactor matrix of M. One has

MM∗ = M∗M = (detM)In,

and, when M is non-singular

M−1 = (detM)−1M∗, (1)

Given M ∈ Mat n(K((x))), we define M〈l〉 ∈ Mat n(K[x,x−1]) obtained by re-
placing the entries of M by their l-truncations (if M ∈ Mat n(K[[x]]) then M〈l〉 ∈
Mat n(K[x])).

3 Strongly Non-Singular Polynomial Matrices

Definition 1 Let P ∈Mat n(K[x]) be a non-singular polynomial matrix and denote
by d its degree. We say that P is strongly non-singular if there exists no singular
matrix M ∈Mat n(K[[x]]) such that M〈d〉 = P.

Remark 1 Clearly, a non-singular matrix P ∈Mat n(K[x]) of degree d is strongly
non-singular if and only if there exists no Q ∈Mat n(K[[x]]) such that P+ xd+1Q is
singular.

Now we prove a simple criterion for a polynomial matrix to be strongly non-
singular.

Proposition 1 Let P ∈ Mat n(K[x]), detP 6= 0. Then P is strongly non-singular if
and only if

degP+valP∗ > val detP. (2)
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Proof. Let d = degP, v = val detP and

P̃ = (P∗)T

be the cofactor matrix of P.
Necessity: Suppose that the condition (2) is not satisfied. Let P̃ = (p̃i, j)i, j=1,...,n, and
p̃i0, j0 an entry of P̃ such that

d +val p̃i0, j0 < v,

then v−val p̃i0, j0 > d +1. Divide detP by p̃i0, j0 , considering them as power series.
The quotient is a power series q, valq > d + 1. For the matrix Q = (qi, j)i, j=1,...,n
such that

qi, j =

{
−x−d−1q, if i = i0 and j = j0,
0, otherwise,

(3)

we get det(P+xd+1Q) = 0 by the Laplace expansion along the i0-th row. According
to Remark 1 the matrix P is not strongly non-singular.

Sufficiency: Suppose that the condition (2) is satisfied and let Q ∈Mat n(K[[x]]).
Since valxd+1Q > d +1 we have

val det(P+ xd+1Q) = v,

and det(P+ xd+1Q) 6= 0.

Remark 2 Obviously, the inequality (2) can be rewritten in the equivalent form

val(P−1)+degP > 0, (4)

since valP∗−val detP = val(P−1) due to (1). Note also that

degP > valdetP (5)

is a sufficient condition for a matrix P to be strongly non-singular, since (5) im-
plies (2).

Example 1 Every non-singular constant matrix is strongly non-singular. More gen-
erally, every polynomial matrix P such that valdetP = 0 is strongly non-singular. 2

It follows from the given proof of Proposition 1 that if P is not strongly non-
singular, then one can construct explicitly a matrix Q ∈ Mat n(K[[x]]) such that
det(P + xdegP+1Q) = 0, and Q has only one nonzero entry, which is factually a
rational function of x that can be expanded into a power series.

Example 2 Consider the following matrix

P =

(
x 0
1 x

)
. (6)
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One has degP = 1,valP∗ = 0,val detP = 2, so inequalities (2), (4) are not satisfied.
Hence P is not strongly non-singular. Its cofactor matrix P̃ is given by

P̃ =

(
x −1
0 x

)
,

In accordance with (3), the corresponding matrix Q is

Q =

(
0 −x−2 x2

−1
0 0

)
=

(
0 1
0 0

)
.

The matrix

P+ x2Q =

(
x x2

1 x

)
is singular as expected. 2

Proposition 2 Let P be a strongly non-singular polynomial matrix of degree d. Let
v = valdetP and h = valP−1 +degP. Then for any Q ∈Mat n(K[[x]]) one has

det(P+ xd+1Q)−detP = O(xv+h+1). (7)

Proof. Put P̄ = x−valP−1
P−1 so that val P̄ > 0. For any Q ∈Mat n(K[[x]]) one has

P+ xd+1Q = P(In + xd+1P−1Q) = P(In + xd+1+valP−1
P̄Q)

Hence
det(P+ xd+1Q) = detPdet(In + xh+1P̄Q).

The matrix P is strongly non-singular hence h > 0, and since val(P̄Q)> 0 it follows
that

det(In + xh+1P̄Q) = 1+O(xh+1),

and therefore det(P+ xd+1Q) = detP+O(xv+h+1).

As a consequence, Proposition 2 states that det(P+ xd+1Q) and detP have the
same valuation v for any Q ∈Mat n(K[[x]]). Moreover, the h+ 1 first terms in the
power series expansion of det(P+xd+1Q) coincide with the corresponding terms of
detP.

Example 3 Let

P =

(
1+ x 0

1 1− x

)
.

Here detP = 1− x2, v = valdetP = 0 hence the matrix P is strongly non-singular.
Here degP = 1 and h = valP−1 +degP = 1 Let

Q =

(
1+ x+ x2 + · · · 0

0 0

)



6 Sergei A. Abramov and Moulay A. Barkatou

then

P+ x2Q =

(
1+ x+ x2 + · · · 0

1 1− x

)
.

We have
detP = 1− x2, det(P+ x2Q) = 1

and (7) holds (here xv+h+1 = x2). 2

4 Inverse Matrix

The following proposition states that if P is strongly non-singular then for any Q ∈
Mat n(K[[x]]), the Laurent series expansions of the matrices P−1 and (P+xd+1Q)−1

have the same valuation and their first h + 1 terms coincide where h = degP +
valP−1.

Proposition 3 Let P be a strongly non-singular polynomial n×n-matrix of degree
d and let h = degP+ valP−1. Then for any Q ∈ Mat n(K[[x]]) the Laurent series
expansions of (P+ xd+1Q)−1 and P−1 coincide up to order valP−1 +h, i.e.,

(P+ xd+1Q)−1−P−1 = O(xvalP−1+h+1). (8)

In particular, one has

val(P+ xd+1Q)−1 = valP−1 and lc(P+ xd+1Q)−1 = lcP−1 (9)

for any Q ∈Mat n(K[[x]]).

Proof. Let P̄ = x−valP−1
P−1 so that val P̄ > 0. For any Q ∈Mat n(K[[x]]) one has

(P+ xd+1Q)−1 = (In + xd+valP−1+1P̄Q)−1P−1

It follows from (4) that h > 0, hence

(In + xh+1P̄Q)−1 = In + xh+1C1 + xh+2C2 + · · ·

where the Ci are constant matrices and the dots denote terms of higher valuation. It
follows that

(P+ xd+1Q)−1 = P−1 +O(xh+1) ·P−1 = xvalP−1
(P̄+O(xh+1) · P̄)

Hence
(P+ xd+1Q)−1 = xvalP−1

(P̄<h+1>+O(xh+1))

and the claim follows.

Example 4 Going back to the matrices P,Q from Example 3, we see that
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P+ x2Q =

( 1
1−x 0
1 1− x

)
and we can compute

(P+ x2Q)−1 =

(
1− x 0
−1 1

1−x

)
=

(
1− x 0
−1 1+ x+ x2 + · · ·

)
while

P−1 =

(
1

1+x 0
−1

1−x2
1

1−x

)
=

(
1− x+ x2 + · · · 0
−1− x2−·· · 1+ x+ x2 + · · ·

)
.

Taking into account that here d = 1, h = 1, we see that (8) and (9) hold. 2

Remark 3 Examples 3, 4 show that estimates (7), (8) are tight: O(xv+h+1) and
O(xvalP−1+h+1) cannot be replaced by O(xv+h+2) and, resp., O(xvalP−1+h+2).

5 Product of Strongly Non-Singular Matrices

The product of two strongly non-singular matrices is not in general a strongly non-
singular matrix.

Example 5 By Proposition 1, the matrices

P1 =

(
x 1
1 0

)
, P2 =

(
1 x
0 −x2

)
are both strongly non-singular, but their product

P1P2 =

(
x 0
1 x

)
,

is not, as it has been shown in Example 2. 2

However, the following proposition holds:

Proposition 4 Let P1,P2 ∈Mat n(K[x]) be strongly non-singular, and such that

degP1P2 = degP1 +degP2. (10)

Then P1P2 is a strongly non-singular matrix.

Proof. The inequality

val(P1P2)
−1 > valP−1

1 +valP−1
2 (11)

takes place (it holds for any matrices). Thus, it follows that if (10) is satisfied and
(4) holds for both P1 and P2 then it holds for P1P2 as well.
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6 Width and s-Width of Non-Singular Matrices with Power
Series Entries

In [3], the width of a non-singular (full rank) matrix M ∈Mat n(K[[x]]) was defined
as the minimal non-negative integer w such that any truncation M〈l〉 of M, l > w,
is non-singular. Besides the notion of the width we will consider a similar notion
related to the strong non-singularity.

Definition 2 The s-width (the strong width) of a non-singular (full rank) matrix M ∈
Mat n(K[[x]]) is the minimal non-negative integer ws such that any M̂ ∈Mat n(K[[x]])
which satisfies M̂〈ws〉 = M〈ws〉 is a non-singular matrix.

We will use the notations w(M),ws(M) when it is convenient.

It was shown in [3, Rmk 3] that the width w(M) is well defined for any non-
singular matrix M ∈Mat n(K[[x]]). The following Proposition states that the s-width
ws(M) is also well defined for any non-singular M ∈Mat n(K[[x]]) and it is bounded
by −val(M−1).

Proposition 5 Let M ∈Mat n(K[[x]]) with detM 6= 0 and set l0 =−val(M−1). Then
the matrix (M〈l〉+ xl+1Q) is non-singular for any Q ∈Mat n(K[[x]]) and any l > l0.

Proof. For any Q ∈Mat n(K[[x]]) and for any non-negative integer l one has

M〈l〉+ xl+1Q = M+O(xl+1) = M(In + xl+1+valM−1
O(1)).

Hence
det(M〈l〉+ xl+1Q) = (detM)det(In + xl+1+valM−1

O(1))

If we take l >−val(M−1) then

val(det(M〈l〉+ xl+1Q)) = val(detM)

for all Q ∈Mat n(K[[x]]). Thus the claim follows.

Evidently,
ws(M)> w(M)

for any non-singular matrix M ∈Mat n(K[[x]]). However, as it is shown by the fol-
lowing example, it may happen that ws(M)> w(M); in other words, ws(M) 6= w(M)
in general.

Example 6 Consider the matrix

M =

(
x x3

1 x

)
. (12)

One has detM = x2− x3 6= 0, detM〈0〉 = 0,

M〈1〉 = M〈2〉 =
(

x 0
1 x

)
, det

(
x 0
1 x

)
6= 0,
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and M〈l〉 = M for l > 3. Thus w(M) = 1. However, ws(M)> 1, due to the fact that

det
(

x x2

1 x

)
= 0.

It is easy to check that ws(M) = 2. 2

Remark 4 The above example shows that the matrix M〈ws〉 is not necessarily a
strongly non-singular matrix. In fact, the matrix M〈ws〉 is strongly non-singular if,
and only if, degM〈ws〉 = ws.

Proposition 6 Let M ∈Mat n(K[[x]]) with detM 6= 0. Then the set

L(M) = {l ∈ N |M〈l〉 is strongly non-singular} (13)

is non-empty if, and only if, M is either an infinite power series matrix or a polyno-
mial matrix which is strongly non-singular.

Proof. Let d = degM, with d = +∞ when M ∈ Mat n(K[[x]] \ K[x]), and l0 =
−val(M−1). If L(M) 6=∅ and d <+∞ then M〈l〉 is strongly non-singular for some
integer l > 0, and hence M is strongly non-singular as well. Reciprocally, suppose
that d = +∞. Then there exists an l > l0 such that degM〈l〉 = l. Now, according to
Proposition 5, the matrix M〈l〉 is strongly non-singular. Hence L(M) 6=∅.

Proposition 7 Let M ∈Mat n(K[[x]]) with detM 6= 0. Suppose that L(M) 6= ∅ (see
(13)), and denote the smallest element of L(M) by w̃s(M). Then

ws(M)6−valM−1 6 w̃s(M).

In particular, the three quantities coincide if, and only if, the matrix M〈ws〉 is strongly
non-singular.

Proof. We know that the first inequality ws(M) 6 −val(M−1) always holds. It re-
mains to prove the second inequality. Let l ∈ L(M) and set P = M〈l〉. One has
l > degP and degP+ valP−1 > 0, since P is strongly non-singular. On the other
hand, by Proposition 3, one has valP−1 = valM−1. It follows that

l +valM−1 > degP+valP−1 > 0.

The last part of the proposition follows from the fact that M〈ws〉 is strongly non-
singular if, and only if, ws ∈ L(M).

The matrix M in Example 6 satisfies the inequalities

ws(M) =−valM−1 = valdetM = 2 < w̃s(M) = 3.

This shows in particular that, in general, val detM is not an upper-bound of w̃s, while
we always have



10 Sergei A. Abramov and Moulay A. Barkatou

ws(M)6−val(M−1)6 val detM.

The following example shows that ws(M) is not always equal to val detM.

Example 7 Let

M =

(
x 0
0 x

)
.

It is easy to check that ws(M) = 1 = w̃s(M). Indeed, detM〈0〉 = 0 and

detM〈1〉 = x2, det(M〈1〉+ x2Q) = det
(

x+O(x2) O(x2)
O(x2) x+O(x2)

)
= x2 +O(x3).

In the same time, val detM = 2. 2

Proposition 8 There exists an algorithm which, given a non-singular matrix M ∈
Mat n(K[[x]]\K[x]) that is represented algorithmically1 computes w̃s(M).

Proof. For l = 0,1, . . . , we set step-by-step P = M〈l〉 and test wether condition (4)
holds. Proposition 6 guarantees that this process terminates.

Note that the existence of an algorithm for computing ws(M) for a non-singular
matrix M represented algorithmically is still an open problem, although we can
compute upper bounds w̃s(M), val detM for it.

7 Linear Differential Systems with Truncated Coefficients

We write ϑ for x d
dx and consider linear differential systems with power series coef-

ficients of the form

Ar(x)ϑ ry+Ar−1(x)ϑ r−1y+ · · ·+A0(x)y = 0 (14)

where y = (y1,y2, . . . ,ym)
T is a column vector of unknown functions of x and where

the coefficient matrices
A0(x),A1(x), . . . ,Ar(x) (15)

belong to Mat m(K[[x]]). We suppose that A0(x),Ar(x) are non-zero and mini{valAi}=
0. For a system S of the form (14) we define the l-truncation S〈l〉 as the differen-
tial system with polynomial matrix coefficients obtained from S by omitting all the
terms of valuation larger than l in the coefficients of S (the l-truncation is with re-
spect to x only, not with respect to ϑ ).

1 For each power series that is an entry of M, an algorithm is specified that, given an integer i, finds
the coefficient of xi — see [2].
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7.1 Width and s-Width of Differential Systems of Full Rank

Definition 3 Let S be a system of full rank over K[[x]][ϑ ]. The minimal integer w
such that S〈l〉 is of full rank for all l > w is called the width of S; this notion was
first introduced in [3]. The minimal integer ws such that any system S1 satisfying
the condition S〈ws〉

1 = S〈ws〉, is of full rank, is called the s-width (the strong width) of
S.

We will use the notations w(S),ws(S) when it is convenient.

Any linear algebraic system can be considered as a linear differential system of
zero order. This let us state using Example 6 that for an arbitrary differential system
S we have ws(M) 6= w(M) in general. However the inequality

ws(S)> w(S)

holds.
It was proven in [3, Thm 2] that if a system S of the form (14) is of full rank then

the width w of S is well defined, and the value w may be computed if the entries of
S are represented algorithmically.

Concerning the s-width, we get the following proposition:

Proposition 9 Let S be a full rank system of the form (14). Then the s-width ws(S)
is defined. If the power series coefficients of S are represented algorithmically then
we can compute algorithmically a non-negative integer N such that ws(S)6 N.

Proof. The idea that was used to prove the mentioned Theorem 2 from [3] can be
used here as well. For this, the induced recurrent system R is considered (such R
is a specific recurrent system for the coefficients of Laurent series solutions of S).
This system has polynomial coefficients of degree less than or equal to r = ordS.
The original system S is of full rank if and only if R is of full rank as a recurrent
system. A recurrent system of this kind can be transformed by a special version of
EG-eliminations ([3, Sect.3]) into a recurrent system R̃ whose leading matrix is non-
singular. It is important that only a finite number of the coefficients of R are involved
in the obtained leading matrix of R̃ (due to some characteristic properties of the used
version of EG-eliminations). Each of polynomial coefficients of R is determined
from a finite number (bounded by a non-negative integer N) of the coefficients of
the power series involved in S. This proves the existence of the width and of the
s-width as well. The mentioned number N can be computed algorithmically when
all power series are represented algorithmically.

In conclusion of the proof, note that we can compute the width of S since
we can test ([1, 5, 7]) whether a finite order differential system with polynomial
coefficients is of full rank or not. From this point we can consider step-by-step
S〈N−1〉,S〈N−2〉, . . . ,S〈1〉,S〈0〉 until the first one of them is not of full rank. If all the
truncated systems are of full rank then w = 0. However, it is not exactly clear how
to find ws(S), using the upper bound N. Is this problem algorithmically solvable?
The question is still open.
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Remark 5 If Ar, the leading matrix of S, is non-singular then ws(S)6 ws(Ar), since
a system with non-singular leading matrix is necessarily of full rank.

7.2 When Only a Truncated System is Known

In this section we are interested in the following question (this is the main issue
of the whole Section 7): suppose that for a system S of the form (14) only a finite
number of terms of the entries of A0(x),A1(x), . . . ,Ar(x) is known, i.e., we know not
the system S itself but the system S〈l〉 for some non-negative integer l. Suppose that
we also know that

(a) ordS〈l〉 = ordS, and
(b) Ar(x) is invertible.

Is it possible to check the existence of nonzero Laurent series of S from the given
approximate system S〈l〉 and if yes how many terms of these solutions of S can be
computed from the solutions of S〈l〉? We will show that under the condition that the
leading (polynomial) matrix of S〈l〉 is strongly non-singular we can apply our ap-
proach from [4] to get a non-trivial answer to this question.

We first recall the following result that we proved in [4]:

Proposition 10 ([4, Prop. 6]) Let S be a system of the form (14) having a non-
singular Ar(x) and

γ = min
i

val
(
A−1

r (x)Ai(x)
)
, q = max{−γ,0}.

There exists an algorithm, that uses only the terms of valuation less than

rmq+ γ +val detAr(x)+1 (16)

of the entries of the matrices A0(x),A1(x), . . . ,Ar(x), and computes a nonzero poly-
nomial I(λ ) (the so-called indicial polynomial [9, Ch. 4, §8], [6, Def. 2.1], [4, Sect.
3.2]) such that:

• if I(λ ) has no integer root then (14) has no solution in K((x))m \{0},
• otherwise, there exist Laurent series solutions of S. Let e∗,e∗ be the minimal and

maximal integer roots of I(λ ); then the sequence

ak = rmq+ γ +val detAr(x)+max{e∗− e∗+1, k+(rm−1)q}, (17)

k = 1,2, . . . , is such that the system S possesses a solution y(x) ∈ K((x))m if and
only if, the system S〈ak〉 possesses a solution ỹ(x) ∈ K((x))m such that ỹ(x)−
y(x) = O(xe+k).

Let us now assume that we are given a truncated system S〈l〉 and denote by Ãi

its coefficients so that Ãi = A〈l〉i for i = 0, . . . ,r. Suppose that its leading coefficient
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Ãr is strongly non-singular and let d = deg Ãr, p =−val Ã−1
r and h = d− p. Since

h > 0, we have that p 6 d 6 l. Moreover, using (7) and (8) we have that

val(detAr) = val(det Ãr), val(detA−1
r ) = val(det Ã−1

r ),

and
A−1

r = Ã−1
r +O(x−p+h+1).

Hence, for i = 0, . . . ,r−1, one has

A−1
r Ai = Ã−1

r Ãi +O(x−p+h+1).

Let
γ̃ = min

06i6r−1
(val(Ã−1

r Ãi)), γ = min
06i6r−1

(val(A−1
r Ai)).

It follows that if h− p> γ̃ then γ = γ̃ . We obtain using (16) that, under the conditions

h− p > γ̃, l > mr max(−γ̃,0)+ γ̃ +val(det Ãr),

the indicial polynomial I(λ ) of S coincides with the indicial polynomial of S〈l〉.
Moreover, the sequence (17) is the same for the two systems S and S〈l〉. We thus
have proven the following

Proposition 11 Let S̃ be a system of the form

Ãr(x)ϑ ry+ Ãr−1(x)ϑ r−1y+ · · ·+ Ã0(x)y = 0

with polynomial matrices Ã0(x), Ã1(x), . . . , Ãr(x). Let its leading matrix Ãr(x) be
strongly non-singular. Let

d = deg Ãr, p =−val Ã−1
r , h = d− p, γ = min

06i6r−1
(val(Ã−1

r Ãi)), q = max(−γ,0)

and
h− p− γ > 0. (18)

Let l be an integer such that

l > mrq+ γ +val(det Ãr). (19)

Denote by I(λ ) the indicial polynomial of S̃. Let the set if integer roots of I(λ ) be
non-empty, and e∗,e∗ be the minimal and maximal integer roots of I(λ ). Let S be of
the form (14) and S〈l〉 = S̃. Let k satisfies the equality

max{e∗− e∗+1, k+(rm−1)q}= l− rmq− γ−val detAr(x). (20)

Then for any e ∈ Z and column vectors ce,ce+1, . . . ,ce+k−1 ∈ Km, the system S
possesses a solution

y(x) = cexe + ce+1xe+1 + · · ·+ ce+k−1xe+k−1 +O(xe+k),
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if and only if, the system S̃ possesses a solution ỹ(x) ∈ K((x))m such that ỹ(x)−
y(x) = O(xe+k).

Example 8 Let

Ã1 =

(
1 0

0 1− x

)
, Ã0 =

(
0 −1

−x+2x2 +2x3 +2x4 −2+4x

)
.

For the first-order differential system S̃

Ã1(x)ϑy+ Ã0(x)y = 0

we have

d = 1, p = 0, h = 1, γ = 0, I(λ ) = λ (λ −2), e∗− e∗+1 = 3.

The conditions of Proposition 11 are satisfied.
The general solution of S̃ is

ỹ1 =C1−C1x+C2x2−C2x3 +0x4 +
2C1

15
x5 +

C1

30
x6 +

(
C1

210
+

2C2

35

)
x7 + . . . ,

ỹ2 = −C1x+2C2x2−3C2x3 +0x4 +
2C1

3
x5 +

C1

5
x6 +

(
C1

30
+

2C2

5

)
x7 + . . . ,

where C1,C2 are arbitrary constants. We can put l = 4 in (20), because deg Ã0 = 4,
deg Ã1 < 4, and (18) holds. Then (20) has the form max{3, k}= 4, thus k = 4. This
means that all Laurent series solutions of any system S of the form

A1(x)ϑy+A0(x)y = 0 (21)

with non-singular matrix A1 and such that S〈4〉 = S̃ are power series solutions having
the form

y1 =C1−C1x+ C2x2−C2x3 +O(x4),

y2 = −C1x+2C2x2−3C2x3 +O(x4),

where C1,C2 are arbitrary constants. Consider, e.g., the first-order differential sys-
tem S of the form (21) with

A1 =

(
1 0

0 1− x

)
,

A0 =

(
0 −1

−x+2x2 +2x3 +2x4 +2x5 +2x6 + x7 + x8 + . . . −2+4x

)
.

Its general solution is
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y1 =C1−C1x+C2x2−C2x3 + 0x4 +0x5 +0x6 +
C1

35
x7 + . . . ,

y2 = −C1x+2C2x2−3C2x3 +0x4 +0x5 +0x6 +
C1

5
x7 + . . . ,

which corresponds to the forecast and expectations. 2

The following example shows that if the condition ‘strong non-singularity of the
leading matrix of the truncated system’ of Proposition 11 is not satisfied then it
may happen that the correspondence between the Laurent solutions of S̃ and S as
described in that proposition do not occur.

Example 9 Consider the first-order differential system S:

A1(x)ϑy+A0(x)y = 0,

where

A1 =

(
x x3

1 x

)
A0 =

(
0 −x4 +3x3

0 −x3 +3x

)
.

Its general solution is

y1 (x) = C1 +C2 ln(x) , y2 (x) =
C2

x3

where C1,C2 are arbitrary constants.

The truncated systems S〈l〉 for l = 1,2 coincide and have the leading matrix(
x 0

1 x

)

which is non-singular but not strongly non-singular. The general solution of S〈2〉 is

y1 (x) = C1, y2 (x) =
C2

x3 .

The truncated system S〈3〉 has the leading matrix A1 which is strongly non-
singular. Note that (d, p,h,γ,q) = (3,2,1,0,0) and the condition (11), i.e., h− p−
γ > 0 of Proposition 11 is not satisfied. The general solution of S〈3〉 is

y1 (x) = C1 +C2

∫ e−x

(x−1)2 dx, y2 (x) = C2
e−x

x3 (x−1)
.

The expansions of y1(x) and y2(x) at x = 0 are respectively given by

y1 (x) = C1 +C2(x+
1
2

x2 +O
(
x3)),
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y2 (x) = C2(−x−3− 1
2

x−1− 1
3
− 3

8
x− 11

30
x2 +O

(
x3)).

Let now consider, instead of S, the first-order system R :

B1(x)ϑy+B0(x)y = 0

where B1 = A1 and

B0 =

(
0 −x5 +3x3

0 −x3 +3x

)
,

so that R〈3〉 = S〈3〉. We find that the general solution of R is

y1 (x) = C1, y2 (x) =
C2 e

1
2 x2

x3 .

It has no logarithmic term, and the statement of Proposition 11 holds. 2
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