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Abstract

We discuss two algorithms which, given a linear difference equation with
rational function coefficients over a field k of characteristic 0, construct a
finite set M of polynomials, irreducible in k[x], such that if the given equation
has a solution F (x) ∈ k(x) and valp(x)F (x) < 0 for an irreducible p(x), then
p(x) ∈ M . After this for each p(x) ∈ M the algorithms compute a lower
bound for valp(x)F (x), which is valid for any rational function solution F (x) of
the initial equation. The algorithms are applicable to scalar linear equations
of arbitrary orders as well as to linear systems of first-order equations.

The algorithms are based on a combination of renewed approaches used in
earlier algorithms for finding a universal denominator (Abramov, Barkatou),
and on a denominator bound (van Hoeij). A complexity analysis of the two
proposed algorithms is presented.
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1. Introduction

Let k be a field of characteristic 0. We consider systems of the form

Y (x + 1) = A(x)Y (x), (1)
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Y (x) = (Y1(x), Y2(x), . . . , Yn(x))T , A(x) = (aij(x)) ∈ Matn(k(x)). It is as-
sumed that there exists the inverse matrix A−1(x) = (ãij(x)) ∈ Matn(k(x)).
If an inhomogeneous system Y (x + 1) = A(x)Y (x) + G(x) is given and A(x)
is as in (1), G(x) ∈ k(x)n, then by adding to Y (x) an (n + 1)-st component
with value 1, one can transform the given system into a homogeneous sys-
tem with an invertible matrix belonging to Matn+1(k(x)) (see, e.g., [12, Sect.
2.2]). For this reason we restrict our consideration to (1). At the same time
we will consider scalar equations of the form

y(x+n)+an−1(x)y(x+n−1)+ · · ·+a1(x)y(x+1)+a0(x)y(x) = ϕ(x), (2)

ϕ(x), a1(x), . . . , an−1(x) ∈ k(x), a0(x) ∈ k(x) \ {0}, and such an equation is
inhomogeneous if ϕ(x) is a non-zero rational function. By clearing denomi-
nators we can rewrite (2) as

bn(x)y(x + n) + · · ·+ b1(x)y(x + 1) + b0(x)y(x) = ψ(x), (3)

ψ(x), b1(x), . . . , bn−1(x) ∈ k[x], b0(x), bn(x) ∈ k[x] \ {0}.
Currently, a few algorithms for finding rational (i.e., rational function)

solutions of equations (2), (3) and systems (1) are known. The algorithms
from [3, 5, 6, 10] first construct a universal denominator, i.e., a polynomial
U(x) such that in the scalar case an arbitrary rational solution y(x) of (2)
or (3) can be represented as

y(x) =
z(x)

U(x)
, (4)

where z(x) ∈ k[x] (in other words, if (2) has a rational solution f(x)
g(x)

which
is in the lowest terms then g(x)|U(x)). In the case of system an arbitrary
rational solution of (1) can be represented as

Yi(x) =
Zi(x)

U(x)
, i = 1, 2, . . . , n, (5)

where Z1(x), Z2(x), . . . , Zn(x) ∈ k[x]. When a universal denominator is con-
structed, one can substitute (4), (5) with undetermined z(x) resp. Zi(x) into
the initial equation resp. system to reduce the problem of searching for ra-
tional solutions to the problem of searching for polynomial solutions. After
this, e.g., the algorithms from [2, 7] (the scalar case) and the corresponding
algorithm from [6, 10, 16] (the case of system) can be used.
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The algorithm from [12] is applicable to the system (1) when k = C. It
finds n rational functions R1(x), R2(x), . . . , Rn(x) ∈ C(x) such that for any
rational solution of (1) we have

Yi(x) = Zi(x)Ri(x), i = 1, 2, . . . , n, (6)

where Z1(x), Z2(x), . . . , Zn(x) ∈ C[x] (the numerator of Ri(x) is a factor of
the numerator of the i-th entry Yi(x) of any rational solution Y (x)). The
substitution (6) is used instead of (4), (5).

The approach related to [12] can lead to a more “productive" substitution.
But the general situation is not so simple. We will return to this question
shortly.

The algorithms from [3, 5, 6, 10] are based on computation of gcd’s and do
not work directly with zeros and poles of rational functions from k(x) (in the
general case such zeros and poles belong to an extension of k). By contrast,
the algorithm from [12] first finds a finite set S̄ ⊂ C of candidates for poles
of all possible rational solutions and then for each c ∈ S̄ and 1 6 i 6 n
computes a lower bound for valx−cYi(x) (such a bound can be a positive
number in specific cases). These bounds are used to construct the rational
functions R1(x), R2(x), . . . , Rn(x).

The algorithm from [12] gives quite exact lower bounds. However it is
based on matrix operations (matrix entries are in C(x)) which are costly.
The number of these operations depends on the number of elements of the
set S̄. Notice in addition that even when the entries of the matrix A belong
to Q(x), in the general situation the algorithm requires computation with
algebraic numbers.

Starting from some properties of rational solutions proven in [3, 5, 6]
we show in this paper that a proper subset of S̄ can be taken as a set of
candidates for poles in a large number of cases (Proposition 4 and the ensuing
example). Moreover, we use these properties of rational solutions in a general
situation: instead of C we consider an arbitrary field k of characteristic 0,
and construct a finite set M of irreducible polynomials from k[x] instead of
a set of candidates for poles (Section 3). No computation in extensions of k
is used.

Note that besides manipulations with irreducible over Q polynomials the
work with algebraic numbers includes some additional actions. The algorithm
working directly with irreducible polynomials is preferable from the stand-
point of computer algebra (in addition this version of the algorithm handles
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not only Q or C as a ground field, but an arbitrary field k of characteristic
zero).

So the algorithm from [12] is modified in this paper (Sections 3, 4) in
two directions: first, instead of complex numbers we consider irreducible
polynomials from k[x], and second, following results of [3, 5, 6] the set of the
irreducible polynomials which are used to find lowers bounds of valuations is
constructed in a specific way. We describe in details the modification AB of
the algorithm from [12]. A scalar version of the algorithm AB is described
as well.

A new version AU of the algorithms from [5, 6, 10] which is based on
consideration of the set M of irreducible polynomials from k[x] is proposed
in Section 5. We prove an exact formula for a suitable bound of the exponent
of each element of M (Theorem 1). Generally speaking, in the case of system
this formula provides one with a universal denominator of smaller degree than
the algorithm from [10]. (The algorithm from [10] can be modified in such a
way that its application to a system will give the result corresponding to the
formula from Theorem 1; in our paper we consider the published version of
that algorithm.)

There exist such examples when substitutions (5), (6) are identical, but
the algorithm from [12], resp. the algorithm AB spends much more time
than the algorithms from [5, 6], resp. the algorithm AU . This is shown in
Section 6 (Theorem 2).

It is common knowledge that “...Several algorithms in symbolic compu-
tation depend on a subroutine for finding the rational solutions of ordinary
linear difference equations (OLDE), and several algorithms are known for
implementing of such subroutines ...” [15]. Concerning the algorithms which
depend on such a subroutine mention may be made of, e.g.,

— the algorithm for finding hypergeometric solutions of OLDE with ra-
tional coefficients and a hypergeometric right-hand side [19],

— the difference version of the Accurate summation algorithm [8], [9],
which is a generalization of the well known Gosper algorithm [11],

— the algorithm for finding Liouvillian solution of second order homoge-
neous irreducible OLDE with rational coefficients [14], etc.

As for algorithms for implementing of such subroutines, in this paper
we concentrate on the algorithms based on constructing a set of irreducible
polynomials that are candidates for divisors of denominators of rational so-
lutions, and on finding a bound for the exponent of each of these candidates.
Such algorithms use the full factorization of polynomials. Note that very
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fast (not only theoretically) factoring algorithms are known, — see, e.g., [13].
We emphasize that only reducing the problem of finding rational solutions to
the problem of finding polynomial solutions is discussed in this paper (some
references on publications related to the search for polynomial solutions were
mentioned above).

Acknowledgments. The authors are grateful to M. Barkatou, M. Kauers,
and M. Petkovšek for interesting and helpful discussions.

2. Preliminaries

Working with polynomial and rational functions over k we will write
f(x)⊥g(x) for f(x), g(x) ∈ k[x] to indicate that f(x) and g(x) are coprime;
if F (x) ∈ k(x), then den F (x) is the monic polynomial from k[x] such that
F (x) = f(x)

den F (x)
for some f(x) ∈ k[x], f(x)⊥ den F (x). In this case we write

num F (x) for f(x). The set of monic irreducible polynomials of k[x] will be
denoted by Irr(k[x]). If p(x) ∈ Irr(k[x]), f(x) ∈ k[x], then we define the
valuation valp(x)f(x) as the maximal m ∈ N such that pm(x)|f(x) (valp(x)0 =
∞), and valp(x)F (x) = valp(x)(num F (x))−valp(x)(den F (x)) for F (x) ∈ k(x).

If p(x) ∈ Irr(k[x]), f(x) ∈ k[x] \ {0} then we define the finite set

Np(x)(f(x)) = {m ∈ Z : p(x + m)|f(x)}. (7)

IfNp(x)(f(x)) = ∅ then define maxNp(x)(f(x)) = −∞ and minNp(x)(f(x)) =
∞.

Let A(x) be as in (1), then we define

den A(x) = lcmn
i=1 lcmn

j=1 den aij(x), den A−1(x) = lcmn
i=1 lcmn

j=1 den ãij(x).

If F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n then den F (x) =
lcmn

i=1 den Fi(x), and valp(x)F (x) = minn
i=1 valp(x)Fi(x). A solution F (x) =

(F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n of (1) as well as a solution F (x) ∈ k(x)
of (2), (3) is a rational solution. If den F (x) 6= 1 then this solution is non-
polynomial, and polynomial otherwise.

The first computer algebra algorithm for finding solutions of (3) which
belong to k(x) was proposed in [3]. One of the statements proven in [3] can
be formulated (using notation (7)) as follows:

Proposition 1. ([3]) Let F (x) ∈ k(x) satisfy (3), p(x) ∈
Irr(k[x]), and p(x)| den F (x) (i.e., 0 ∈ Np(x)(den F (x))). Let l =
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maxNp(x)(den F (x)), m = minNp(x)(den F (x)). Then p(x + l)|bn(x − n),
p(x + m)|b0(x).

As a consequence, if equation (3) has a non-polynomial rational solution
then deg gcd(b0(x + d), bn(x − n)) > 0 for some d ∈ N. Indeed, let p(x) be
as in Proposition 1. Define d = l − m, then p(x + l) = p(x + m + d). So
p(x + m)|b0(x) and p(x + m + d)|bn(x− n).

In [6] this was generalized for system (1).

Proposition 2. ([6]) Let F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n satisfy
(1), p(x) ∈ Irr(k[x]), and p(x)| den F (x). Let l = maxNp(x)(den F (x)), m =
minNp(x)(den F (x)), u0(x) = den A−1(x), u1(x) = den A(x). Then p(x +
l)|u1(x− 1), p(x + m)|u0(x).

As a consequence, if the system (1) has a non-polynomial rational solution
then deg gcd(u1(x− 1), u0(x + d)) > 0 for some d ∈ N.

Concerning denominators, the algorithm from [6] for systems is a gener-
alization of the algorithm from [5] for the scalar case.

Define V (x) = bn(x − n), W (x) = b0(x) for equation (3), and V (x) =
u1(x − 1), W (x) = u0(x) where u1(x) = den A(x), u0(x) = den A−1(x), for
system (1). Compute h as the greatest non-negative integer such that V (x)
and W (x + h) have a nontrivial common divisor (if such integers do not
exist then h = −∞; in this case the initial equation has no non-polynomial
rational solution). This is so called dispersion of V (x) and W (x), which
denoted by dis (V (x),W (x)) and can be computed as the largest integer root
of the polynomial Resx(V (x),W (x + m)) ∈ k[m] ([1]). The value

h = dis (V (x),W (x)) (8)

also can be obtained from the full factorization of V (x) and W (x) ([18]).
This is successfully used, e.g., in Maple [20]: LREtools[dispersion].

We have to comment on our reference to [5]. The fact is that this algo-
rithm for the scalar case firstly was published in [4], but in that publication
the loop i = 0, 1, . . . , h instead of i = h, h − 1, . . . , 0 was mistakenly used
(N is h in [4]). We refer to [5] where this mistake was corrected. This
algorithm is exploited in current versions of Maple: LREtools[ratpolysols],
LinearFunctionSystems[UniversalDenominator].

It is pertinent to note that the idea of Proposition 1 is used in [15] for con-
structing “aperiodic” factors of a universal denominator of rational solutions
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for partial linear difference equations. Note also that in [10] a more general
problem than the search for rational solutions of system (1) was solved. How-
ever the algorithm from [10, Prop. 3] can be used to compute a universal
denominator related to (1).

3. The set M

Let k be again a field of characteristic 0. In this section we define a
finite set M such that if a given system or scalar equation has a rational
non-polynomial solution, whose denominator is divisible by an irreducible
polynomial p(x) ∈ Irr(k[x]) then p(x) ∈ M (the set M depends on the
original system or equation).

Consider first the case of system (1). Let u0(x) = den A−1(x), u1(x) =
den A(x). We start with the finite set

Q = {q1(x), q2(x), . . . , qs(x)}, s > 1, (9)

of all elements of Irr(k[x]) such that

minNqt(x)(u0(x)) = 0, maxNqt(x)(u1(x− 1)) > 0, (10)

t = 1, 2, . . . , s. For each qt(x) ∈ Q consider

Mqt(x) = {qt(x), qt(x + 1), . . . , qt(x + ht)}, (11)

where
ht = maxNqt(x)(u1(x− 1)). (12)

Define the set M :

M =
s⋃

t=1

Mqt(x). (13)

Proposition 3. Let F (x) ∈ k(x)n satisfy (1), p(x) ∈ Irr(k[x]), and
p(x)| den F (x). Then p(x) ∈ M .

Proof. As a consequence of Proposition 2 we have Np(x)(u0(x)) 6= ∅ 6=
Np(x)(u1(x − 1)). Evidently l > 0,m 6 0 for l = maxNp(x)(u1(x − 1)),m =
minNp(x)(u0(x)). Take q(x) = p(x+m), h = l−m. Then minNq(x)(u0(x)) =
0, maxNq(x)(u1(x− 1)) = h, p(x) = q(x−m), and 0 6 −m 6 h. 2
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The algorithm from [12] starts with constructing the set S of c ∈ C for
which A has a pole at c or det A(c) = 0. As it is proven in [12], the finite set

S̄ = {c ∈ C : ∃c1, c2∈S c− c1 − 1 ∈ N, c2 − c ∈ N}. (14)

is such that if a rational solution of the system has a pole at c ∈ C then
c ∈ S̄.

To have analogy with the algorithm from [12] (and in particular with the
above formula (14)) we define the set Sk[x] of polynomials p(x) ∈ Irr(k[x])
such that p(x)| den A(x) or p(x)| num(det A(x)), and the set

S̄k[x] = {p ∈ Irr(k[x]) : ∃
p1,p2∈Sk[x], l,m∈N p(x+l+1) = p1(x), p(x−m) = p2(x)}

(if k = C and S̄ = {c1, c2, . . . } then S̄k[x] = {x − c1, x − c2, . . . }). Using
the same reasoning as in [12] it is not difficult to prove that if F (x) ∈ k(x)n

satisfies (1), p(x) ∈ Irr(k[x]), and p(x)| den F (x) then p(x) ∈ S̄k[x]. Now we
compare the sets S̄k[x] and M .

Proposition 4. M ⊆ S̄k[x].

Proof. Let Mqt(x) of the form (11) be one of the sets belonging to the right-
hand side of (13). Prove that

qt(x), qt(x + 1), . . . , qt(x + ht) ∈ S̄k[x]. (15)

Notice that by (10), (12) we have

qt(x)| den A−1(x), (16)

and
qt(x + ht + 1)| den A(x). (17)

The relation (17) implies that qt(x + ht + 1) ∈ Sk[x].
Consider relation (16). We have

A−1(x) =
1

det A(x)
· CT (x),

where C(x) is the matrix of cofactors. Each cofactor is a determinant of
order n − 1, whose entries are some of entries of A(x). So the denominator

8



of each cofactor divides (den A(x))n−1. Therefore the denominator of any of
entries of A−1(x) divides the product

(num det A(x)) · (den A(x))n−1.

Since qt(x) is irreducible, it follows from (16) that at least one of the relations

qt(x)| num(det A(x)), qt(x)| den A(x)

is valid (in the case n = 1 the first relation is valid). This gives qt(x) ∈ Sk[x].
So qt(x), qt(x + ht + 1) ∈ Sk[x], and (15) is proven. 2

However M and S̄k[x] do not coincide in some cases. For example, let
k = C, m be a positive integer, and

A(x) =

(
x+m

x(x−m)
0

0 x+m
x(x−m)

)
.

In this case

A−1(x) =

(
x(x−m)

x+m
0

0 x(x−m)
x+m

)
,

det A(x) = (x+m)2

x2(x−m)2
, den A(x) = x(x−m), den A−1(x) = x + m, and

S = {−m, 0,m}, S̄ = {−m + 1,−m + 2, . . . , 0, 1, . . . ,m},
Sk[x] = {x+m,x, x−m}, S̄k[x] = {x+m−1, x+m−2, . . . , x, x−1, . . . , x−m}.
But M = ∅, and by Proposition 3 the system has no non-polynomial rational
solution. We do not need substitution (6).

For the scalar case the set M can be constructed similarly, taking
b0(x), bn(x− n) instead of u0(x), u1(x− 1).

4. Algorithm AB

Following [12] define AN(x) = A(x − 1)A(x − 2) . . . A(x − N) for each
N ∈ N. Then

Y (x) = AN(x)Y (x−N) (18)

for each solution Y (x) of (1). As we have mentioned in Section 1, the algo-
rithm from [12] is applicable to a system of the form (1) when k = C. Let
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the set S̄ be as in (14). For each c ∈ S̄ the algorithm takes N ∈ N such that
c−N /∈ S̄. If Y (x) = (Y1(x), Y2(x), . . . , Yn(x))T is a rational solution of (1)
then valx−cYi(x − N) > 0, i = 1, 2, . . . , n. An investigation of the valuation
at x− c of entries of AN(x) gives some lower bounds (the left-hand bounds)
for

valx−cYi(x), i = 1, 2, . . . , n. (19)

Now let N be such that c + N /∈ S̄. The matrix A is invertible and we get

Y (x) = A−N(x)Y (x + N), (20)

where A−N = A−1(x)A−1(x + 1) . . . A−1(x + N − 1). This also gives some
lower bounds (the right-hand bounds) for (19). For each i the algorithm takes
the maximum of two bounds.

Below we describe a generalization of the algorithm from [12] for the case
of an arbitrary field k of characteristic 0 (we also will use the set M instead
of S̄, S̄k[x]).

Let p(x) ∈ Irr(k[x]), N be a positive integer, 1 6 i 6 n. Define
B(p(x), N, i) as the minimum of the valuations at p(x) of the entries in the
i-th row of AN(x). Then the inequality valp(x)Yi(x−N) > 0, i = 1, 2, . . . , n,
implies

valp(x)Yi(x) > B(p(x), N, i), i = 1, 2, . . . , n. (21)

In the same way we can use a matrix of the form A−N(x) (see (20)). For
positive integer N define B(p(x),−N, i) as the minimum of the valuations
at p(x) of the entries in the i-th row of A−N(x). If N ∈ N is such that
valp(x)Yi(x + N) > 0, i = 1, 2, . . . , n then

valp(x)Yi(x) > B(p(x),−N, i), i = 1, 2, . . . , n. (22)

Similarly to [12], bounds (21) are the left-hand bounds, while (22) are the
right-hand bounds.

Let the set Q be as in (9) and Mqt(x) be as in (11), t = 1, 2, . . . , s. Let

h = max{h1, h2, . . . , ht}. (23)

The algorithm is as follows.

Computing successively matrices AN(x) for N = 1, 2, . . . , h + 1 we find
for each t such that 1 6 t 6 s and ht > N − 1 the values

B(qt(x + ht −N + 1), N, i), i = 1, 2, . . . , n,
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which give us left-hand bounds for valqt(x+ht−N+1)Yi(x), i = 1, 2, . . . , n. Anal-
ogously we compute successively matrices A−N(x) for N = 1, 2, . . . , h+1 and
find for each t such that 1 6 t 6 s and ht > N − 1 the values

B(qt(x + N − 1),−N, i), i = 1, 2, . . . , n,

which give us right-hand lower bounds for valqt(x+N−1)Yi(x), i = 1, 2, . . . , n.
We have two lower bounds for each of the valuations valqt(x+j)Yi(x), i =
1, 2, . . . , n, t = 1, 2, . . . , s, j = 0, 1, . . . , ht, and can take the maximal one, we
denote it by αi,j,t. The rational functions

Ri(x) =
∏

16t6s
06j6ht

q
αi,j,t

t (x + j), i = 1, 2, . . . , n,

are used in the substitution (6).

In [12] the algorithm is described only for systems of the form (1). Scalar
equations (2), (3) with zero right-hand side are assumed ([12, Sect. 3]) to
be transformed to the system with the companion matrix A(x) of the initial
scalar equation. But the matrix operations are quite costly. In addition it is
not difficult to give a scalar version of the algorithm. We describe this version
assuming again that the ground field is an arbitrary field k of characteristic
0.

First we show that for an arbitrary positive integer N we can construct
an equation

y(x) = vN, n−1(x)y(x−N) + · · ·+ vN, 0(x)y(x−N − n + 1) + vN, −1(x) (24)

with vN, −1(x), vN, 0(x), . . . , vN, n−1(x) ∈ k(x), which is satisfied by all rational
solutions of (2) and (3). Indeed, for N = 1 we have the equation

y(x) = −an−1(x− n)y(x− 1)− · · · − a0(x− n)y(x− n) + ϕ(x− n), (25)

which is a consequence of (2). We can define v1, −1(x) = ϕ(x − n), and
v1,i(x) = −ai(x − n), i = 0, 1, . . . , n − 1. Suppose inductively that equation
(25) is constructed for some N > 1. Then we can get the corresponding
equation for N + 1 using the equality

y(x−N) = −an−1(x−N − n)y(x−N − 1)− . . .

· · · − a0(x−N − n)y(x−N − n) + ϕ(x−N − n) (26)
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for eliminating y(x−N) in the right-hand side of (24).
Similarly to (24) for an arbitrary positive integer N we can construct an

equation

y(x) = wN, n−1(x)y(x+N)+ · · ·+wN, 0(x)y(x+N +n−1)+wN, −1(x) (27)

with wN, −1(x), wN, 0(x), . . . , wN, n−1(x) ∈ k(x), which is satisfied by all ra-
tional solutions of (2) and (3). First, since a0(x) in (2) is non-zero, we can
rewrite this equation as

y(x) = c1(x)y(x + 1) + c2(x)y(x + 2) + · · ·+ cn(x)y(x + n) + χ(x),

with c1(x), c2(x), . . . , cn(x), χ(x) ∈ k(x). Therefore for N = 1 we can define
w1, −1(x) = χ(x), and w1,i(x) = cn−i(x), i = 0, 1, . . . , n − 1. Suppose induc-
tively that equation (27) is constructed for some N > 1. Then we can get
the corresponding equation for N + 1 using the equality

y(x+N) = c1(x+N)y(x+N +1)+ · · ·+ cn(x+N)y(x+N +n)+χ(x+N)

for eliminating y(x + N) in the right-hand side of (27).
Equations (24), (27) are analogs of equations (18), (20).
Let p(x) ∈ Irr(k[x]), N be a positive integer. Define

B(p(x), N) as the minimum of the valuations at p(x) of the coefficients
vN, −1(x), vN, 0(x), . . . , vN, n−1(x) in (24), and B(p(x),−N) as the minimum
of the valuations at p(x) of the coefficients wN, −1(x), wN, 0(x), . . . , wN, n−1(x)
in (27).

Consider the set M defined for (2) by (13). Let the equalities (9), (11)
and (23) be valid. The algorithm for the scalar case is as follows.

Constructing successively equations (24) for N = 1, 2, . . . , h+1 we find for
each t such that 1 6 t 6 s and ht > N −1 the value B(qt(x+ht−N +1), N)
which gives us the left-hand bound for valqt(x+ht−N+1)y(x). Similarly we
construct successively equations (27) for N = 1, 2, . . . , h+1 and find for each
t such that 1 6 t 6 s and ht > N − 1 the value B(qt(x + N − 1),−N),
which gives us right-hand lower bounds for valqt(x+N−1)y(x). We have two
lower bounds for each of the valuations valqt(x+j)y(x), t = 1, 2, . . . , s, j =
0, 1, . . . , ht, and can take the maximal one, we denote it by βj,t. The rational
function

R(x) =
∏

16t6s
06j6ht

q
βj,t

t (x + j)
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is used for the substitution y(x) = z(x)R(x) into (2).

We will refer to the given modification (for both system and scalar cases)
of the algorithm from [12] as AB. Thus the novelty of this algorithm as
compared with the algorithm from [12] consists in considering irreducible
polynomials over k instead of complex numbers, and the set M instead of S̄,
S̄k[x].

5. Algorithm AU

The algorithms from [5, 6, 10] for constructing universal denominators
use a gcd computations instead of the full factorization of polynomials (but
note that these algorithms use a polynomial dispersion computation; we men-
tioned in Section 2 that currently Maple uses the full polynomial factorization
for this). The algorithm given below is represented in the same style as the
algorithm AB.

Theorem 1. Let V (x) = bn(x − n), W (x) = b0(x) for equation (3), and
V (x) = u1(x − 1), W (x) = u0(x) where u1(x) = den A(x), u0(x) =
den A−1(x) for system (1). Let F (x) be a rational solution of equation (3)
or system (1). Then

valp(x)F (x) > −min





∑

i∈N
valp(x+i)V (x),

∑

i∈N
valp(x−i)W (x)



 (28)

for any p(x) ∈ Irr(k[x]).

Proof. Let h = dis (V (x),W (x)) and N = h + 1 in (18), (20).
Both polynomials den Ah+1(x), den A−h−1(x)) are universal denominators
for system (1). Obviously den Ah+1(x)|W (x)W (x + 1) . . . W (x + h) and
den A−h−1(x)|V (x)V (x − 1) . . . V (x − h). Therefore den F (x)|V (x)V (x −
1) . . . V (x−h) and den F (x)|W (x)W (x+1) . . . W (x+h). (In the scalar case
we get similar relations considering a system Y (x + 1) = A(x)Y (x) with the
companion matrix.) The inequality (28) follows from the fact that

valp(x)

h∏
i=0

V (x− i) =
∑

i∈N
valp(x)V (x− i),

13



valp(x)

h∏
i=0

W (x + i) =
∑

i∈N
valp(x)W (x + i).

2

Therefore if for each qt(x + j) ∈ M (Section 3) we compute

γj,t = min





∑

i∈N
valqt(x+j+i)V (x),

∑

i∈N
valqt(x+j−i)W (x)





then we get the universal denominator
∏

16t6s
06j6ht

q
γj,t

t (x + j).

We will refer to this algorithm as algorithmAU . The novelty of this algorithm
as compared with the algorithms from [5, 6, 10] consists in considering the set
M and the corresponding exponents of its elements instead of the dispersion
and the gcd’s.

Remark 1. Let di(x) = den ai(x), where ai(x) is the i-th row of the matrix
A(x), i = 1, 2, . . . , n. Let

D(x) = diag(d1(x), d2(x), . . . , dn(x)). (29)

The polynomials det D(x), det(D(x)A(x)) are used in [10] instead of
den A(x), den A−1(x) for constructing a universal denominator in the case
of system (1). Let v0(x) = det(D(x)A(x)), v1(x) = det D(x), where D(x) is
as in (29). It is proven in [10] that gcd

(∏h
i=0 v0(x− i),

∏h
i=0 v1(x + i)

)
is

a universal denominator. This can be used for another proof of Theorem 1.
The scalar case of Theorem 1 follows also from [5, Th. 2].

In [10] two following statements were proven

1. If equation (3) has a solution F (x) ∈ k(x) and m ∈ N is such that
bn(x− n)⊥b0(x + l) for any integer l > m, then den F (x)|∏m

i=0 bn(x− n− i)
and den F (x)|∏m

i=0 b0(x + i).
2. If the system (1) has a solution F (x) ∈ k(x)n, v0(x) = det(D(x)A(x)),

v1(x) = det D(x), where D(x) is as in (29), and m ∈ N is such that v1(x −
1 − l)⊥v0(x) for any integer l > m, then den F (x)|∏m

i=0 v1(x − 1 − i) and
den F (x)|∏m

i=0 v0(x + i).

The second statement can be strengthened.
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Proposition 5. Let the system (1) have a solution F (x) ∈ k(x)n. Let
u0(x) = den A−1(x), u1(x) = den A(x), and m ∈ N be such that u1(x −
1)⊥u0(x + l) for any integer l > m. Then den F (x)|∏m

i=0 u1(x − 1 − i) and
den F (x)|∏m

i=0 u0(x + i).

Proof follows from Theorem 1. 2

It is well known that if a differential system Y ′(x) = A(x)Y (x) with
A(x) ∈ Matn(k(x)) has a rational solution F (x) then den F (x)|(den A(x))m

for all integer values of m large enough. Proposition 5 gives a difference
analog of this.

It is not
difficult to show that den A(x)| det D(x), den A−1(x)| det(D(x)A(x)) where
D(x) is as in (29). In some cases the strong inequalities deg(den A(x)) <
deg(det D(x)), deg(den A−1(x)) < deg(det(D(x)A(x))) are valid and the rea-
son for this is obvious: det D(x) = d1(x)d2(x) . . . dn(x), whereas den A(x) =
lcm(d1(x), d2(x), . . . , dn(x)). If, e.g., A(x) of order n is

A(x) = diag

(
x(x + 1)

(x + 3)(x + 4)
,

x(x + 1)

(x + 3)(x + 4)
, . . . ,

x(x + 1)

(x + 3)(x + 4)

)
, (30)

then D(x) = diag((x+3)(x+4), (x+3)(x+4), . . . , (x+3)(x+4)), det D(x) =
(x+3)n(x+4)n, while den A(x) = (x+3)(x+4); similarly det(D(x)A(x)) =
xn(x+1)n, while den A−1(x) = x(x+1). For the system Y (x+1) = A(x)Y (x)
with A(x) as in (30) we get the universal denominator x(x+1)2(x+2)2(x+3)
using AU as well as the algorithm from [6], while the universal denominator
computed by the algorithm from [10] is, resp. xn(x + 1)2n(x + 2)2n(x + 3)n.
But as we mentioned in the Introduction, the algorithm from [10] allows a
modification to avoid this excessiveness.

6. Complexity analysis

We have noticed that the algorithm from [12] often gives quite exact lower
bounds. By Theorem 1 from [12] for k = C these bounds are even sharp if
the system (1) has a fundamental solution matrix which consists of rational
functions. In some sense, the fact that this algorithm requires a significant
amount of time is vindicated by decreasing the degrees of polynomial solu-
tions of the equation that appears after the corresponding substitution into
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the initial system (equation). But as we show below, the situation is not so
simple.

We will compare the algorithms AB, AU as they were described above.
Each of these algorithms achieves some “speed-up” in certain situations (con-
cerning the original versions, see the last paragraph of [12, Sect. 2.1], and [6,
Sect. 3.3], respectively; observe that after this “speed-up”, Theorem 1 from
[12] no longer applies to the algorithm of that paper).

First we consider the scalar case. If equation (3) of order n is such that
max{deg b0(x), deg b1(x), . . . , deg bn(x), ψ(x)} = l and the set M defined by
(13) consists of m elements then the triple (l,m, n) will be called the combined
size of the equation.

The process of applying each of the algorithms AB, AU can be divided
into two steps. In the first step, each of these algorithms constructs the
set M . In the second step, the algorithms compute the exponents βj,t (the
algorithm AB) and γj,t (the algorithm AU) of the factors qt(x+ j) ∈ M . The
cost of the first step is the same for both algorithms. We will consider the
number of exponents which must be computed to be the cost of the second
step of AU (therefore this cost is equal to m; thus we suppose that all γj,t

are computed independently, although many of them may be equal). As for
AB, the cost of the second step is m plus the cost of constructing all needed
equations (24), (27). Therefore the difference TB(l, m, n)−TU(l, m, n) of the
complexities of AB and AU can be considered as the cost of constructing
these equations in the worst case. We see that the number of such equations
is maximal when m = h + 1, where h is the dispersion corresponding to the
original equation. Therefore in the worst case we have

M = {q(x), q(x + 1), . . . , q(x + m− 1)} (31)

where q(x) ∈ Irr(k[x]).
In the next theorem we use the Ω-notation which is very common in com-

plexity theory ([17]). Unlike O-notation which is used for describing upper
asymptotical bounds, the Ω-notation is used for describing lower asymptoti-
cal bounds.

Theorem 2. Let l,m, n be positive integer numbers. In this case
(i) for the worst-case complexities TU(l, m, n) and TB(l,m, n) of the al-

gorithms AB and AU the difference TU(l, m, n)− TB(l, m, n) is non-negative
and TU(l,m, n)− TB(l,m, n) = Ω(lmn);
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(ii) there exists a homogeneous equation El,m,n of combined size (l,m, n)
such that (31) is valid for this equation, and applying AB to El,m,n results
in a rational function R(x) = 1

g(x)
, g(x) ∈ k[x], such that U(x)|g(x), where

U(x) is the result of applying AU to El,m,n.

Proof. (i) Let, e.g., the equation (24) be constructed for some 1 6 N < m.
Then constructing the equation (24) for N + 1 requires in the worst case
more than nl field operations in k. We have to construct such equations for
N = 1, 2, . . . , m.

(ii) First consider the case n = 1 and define El,m,1 as

xly(x + 1)− (x−m)ly(x) = 0. (32)

This equation has the rational solution

F (x) =
1

((x− 1)(x− 2) . . . (x−m))l
.

We define El,m,n for an arbitrary n > 1 as

(x+n−1)ly(x+n)+
n−1∑
i=1

(2x+2i−m−1)ly(x+ i)− (x−m)ly(x) = 0. (33)

This equation is satisfied by F (x). Indeed, let φ be the shift operator:
φ(y(x)) = y(x+1). Then the operator xlφ−(x−m)l corresponds to equation
(32). If we left-multiply this operator by φn−1 + φn−2 + · · · + 1 then we get
the operator which correspond to (33). So F (x) satisfies (33). Therefore, if
applying AB to El,m,n we obtain R(x) ∈ k(x), then

num R(x) = 1, den F (x)| den R(x). (34)

The set M for (33) is as for (32), i.e. {x− 1, x− 2, . . . , x−m}. It is easy to
check that AU gives the denominator of F (x). 2

Informally speaking, for any combined size (l, m, n) there exists such a
“bad" equation El,m,n for which AB spends a large amount of time (the
maximal for the given combined size!) but the output is not better than
the output of AU , and AU spends a much smaller amount of time on this
equation.

The case of system is analogous (we can transform any scalar equation
into a system, using the companion matrix).
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Remark 2. It is easy to see that TU(l, m, n) in contrast to TB(l,m, n)
does not depend on n (factually if we define the complexities T ′

U(l, m),
T ′

U(l, m) then T ′
U(l, m) = TU(l, m, n), while T ′

U(l, m) = ∞ for all non-
negative l, m). In addition TU(l,m, n) will not be changed if we define
l = min{deg b0(x), deg bn(x)}, while TB(l,m, n) will be equal to ∞ for all
n > 1.
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[19] M. Petkovšek, Hypergeometric solutions of linear recurrences with poly-
nomial coefficients, J. Symbolic Comput. 14 (1992), 243–264.

[20] Maple online help: http://www.maplesoft.com/support/help/

19


