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Abstract

A terminating condition of the well-known Zeilberger's algorithm for a given hypergeometric
term T (n, k) is presented. It is shown that the only information®x, k) that one needs in order
to determine in advance whether this algorithm will succeed is the rational furiEtiork + 1)/

T(n, k).
0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let K be a field of characteristic 0. A hypergeometric term (or simply a téf@) in
k over K satisfies a linear recurrence of the form

JWT(k+1)+gk)T (k) =0, 1)

f» g € K[k]\ {0}, the variablé is integer-valued. Theertificate C; (T) of the termT (k) is
the rational functior?" (k + 1)/ T (k) = —g(k)/f (k). Aterm T (n, k) in two integer-valued
variables oveKK satisfies the recurrences
A, DT +1,k)+g1(n, k)T (n, k) = 0, (2)
fa(n, )T (n, k+1) + g2(n, k)T (n, k) = 0, Q)

f1, 81, f2, g2 € K[n, k] \ {0}. T(n, k) has then-certificateC,(T) = T(n + 1,k)/T (n, k)
and thek-certificateCy (T) = T (n, k + 1)/ T (n, k) which are rational functions of andk.
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By using a standard notatiafy,, £y for the shift operators w.r.t andk, respectively, we
canwriteC,(T) = E,T/T andCy(T) = E;T/T.

Throughout the paper until Section 5.3, the fi&@ds mostlyC for the case of terms in
two variables:, k, andK is C(n) for the case of terms in one varialildand we will note
this explicitly). In Section 5.3 we discuss more practical suppositions on theKielthe
usage of a field of rational functions of v, x, ... allows us to consider terms depending
on the parametets v, x, et cetera.

Zeilberger’s algorithm, named hereafterzsis a useful tool for proving combinatorial
identities that involve definite sums of hypergeometric terms [10,13,18]. Given a term
T (n,k), Z tries to construct foiT (n, k) a Z-duplex (L, F) which consists of a linear
difference operatoE with coefficients which are polynomials inoverC

L=a,(n)E + -+ a1(n)E, + ao(n), 4)
i.e.,L € C[n, E,], and a rational functiod (n, k) € C(n, k) such that
LT(n,k)=G(n,k+1) — Gn, k) (5)
where
G(n, k)= Fn, k)T (n, k). (6)

ObviouslyG (n, k) is a term.

Itis not true that &-duplex exists for every terfi(n, k). Even if aZ-duplex exists for
T (n, k), it is not uniquely defined. In this casg, terminates with one of th&-duplexes
and the operatok in the returnedZ-duplex is of minimal order [18] (though the induced
recurrence, e.g., for the definite sutth) = ) ;_ T (n, k) can have the order that is not
minimal). The algorithm uses an item-by-item examination on the qsdwsr L. It starts
with the value of 0 forp and increasep until it finds a Z-duplex(L, F) for T. In this
case,Z is said to bepplicableto T'(n, k). If a Z-duplex does not exist fdf (n, k), thenZ
does not terminate, and it is said to e applicableto T'(n, k). So in the context of this
paper ‘Z is applicable tdl' (n, k)” means ‘Z succeeds off' (n, k).

Algorithmically speaking,Z works with the certificates of" in order to find the
coefficientsag(n), ..., a,(n) in (4) and the rational functior¥ (n, k) in (6). From this
standpoint, the basis & can be formulated as in the following proposition.

Proposition 1. If Z is applicable to a term T'(n, k), then Z is applicable to any term
T'(n, k) that has the same certificates.

The question to which term8 is applicable was not conclusively answered although a
sufficient condition has been known for quite a long time. The “fundamental theorem” [10,
13,16,17] states that A-duplex exists ifT (n, k) is aproper term (or, in short, ap-term),

i.e., it can be written in the form

[T T@in +bik +¢i) , 4

P(n, k , 7
O T+ bkt e)™ " @
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where P(n, k) € Cln, k], a;,bi,a;,b; € Z,I,m € N, ¢;,c;,u, v e C. A polynomial p €
Cln, k] is defined to beénteger-linear if it has the forman + bk + ¢, wherea, b € Z,c € C
(note that any constante C is an integer-linear polynomial witlh= 5 = 0). Equivalently,
any p-term can be written in the form

T\, T(@i (n, k) ok
T TG, k)

wherew; (n, k), B; (n, k) are integer-linear polynomials, whil®(n, k), u,v,l,m are as
in (7). If a p-term in (8) hasP = 1, then we call this term #actorial term. If T can
be written asRT’ whereR is a rational function and” is a factorial term, then we call
T anr-term (the prefixr refers to rational functions; in the same mannemefers to
polynomials, and also to the word “proper”). Eagtierm is evidently am-term.

It is possible, however, to give examples showing that the conditiois“a p-term”
is not a necessary condition for the existence @f-duplex for7. The main contribution
of this paper is a criterion for the applicability & to a given term, i.e., a necessary and
sufficient condition for the applicability of. (This criterion can be formulated in different
forms.) Additionally, an algorithm to recognize the applicability®fto a given term is
presented.

Before embarking upon further discussion, we would like to stress one more time that
the following three statements are equivalent:

P(n, k) (8)

(a) Z is applicable tar', i.e., it terminates in finite time for the given certificatestofs
input;

(b) there exists &-duplex forT;

(c) Z constructs &-duplex forT in finite time.

Traditionally, programs that implemegt are organized in such a manner that each of
themtriesto construct &-duplex(L, G) for a given terml” such that the order df does
not exceed a fixed boungl, e.g.,B = 6. Consequently, the lack of a criterion prevents the
use ofZ to its full capacity.

In [4] a criterion for the applicability ofZ to a given rational function is presented
(the rational functions are a particular case of terms). This criterion can be described as
follows. Consider a given rational functia(n, k) as a rational function ik overC(n).

It is then possible to apply an algorithm to solve Huglitive decomposition problem (or
synonymously, the decomposition problem of indefinite sum) [1,2,14 to represent
this rational function as

(Exk—DU+V, 9)

whereU, V € C(n) (k) are such that the denominatorfhas the minimal degree w.rk.

(We will refer to this representation as an additive decompositioR @fith summable

component U and non-summable component V.) By the criterion, Z is applicable to
R(n, k) iff V, represented as a ratio of two relatively prime polynomials ffGfn, k],

has the denominator that is a product of integer-linear polynomials.
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Note that additive decomposition (9) of a rational functi®iis not unique in general.
Butif R = (Ex — 1)U’ + V' is another additive decomposition, then the denominat®f of
factors into integer-linear factors iff the denominatontfdoes.

It is self-evident that the set of rational functions is a proper subset of the set of all
terms, and we shall present in this paper a conclusive answer to the question of specifying
the class of term& (n, k) to which Z is applicable.

As aforementionedz works with the certificate€, (T) andCy (T') instead of withT'.

Our algorithm which determines the applicability 8f follows the same concept. The
criterion and the algorithm that will be presented are based on the additive decomposition
(of terms in one variable over a fiekd). In this sense this result is a generalization of [4].

The algorithm that we present needs only the rational fundjgf) as input.

A preliminary version of this paper has appeared as [3].

2. Preliminaries

In addition to the “fundamental theorem,” we shall use recent results on a special type
of a term in two variablesrfterms) [6], on the additive decomposition of terms in one
variable (the construction of this decomposition uses a special form of representation of
rational functions in one variable) [5]. We shall also use a tool to determine whether a
polynomial fromCin, k] factors into a product of integer-linear polynomials [4]. In this
section, we give a summary of these results.

Throughout the paper, we consider rational functiong aver C(n), i.e., elements
of the field C(n)(k), as the ratios of relatively prime polynomials fro@ix, k], and
irreducibles fromC(n)[k] in the form of irreducibles frontC[n, k]. This allows us to
identify the irreducibles o€ (n)[k], C[n][k] andC[n, k].

2.1. A structure theorem for termsin two variables
Two rational functionsSy (n, k) andSz(n, k) arecompatible if
S1(n, k)So(n + 1, k) = S1(n, k + 1) S2(n, k). (20)

Theorem 1[6]. Let the non-zero rational functions S1, S2 be compatible. Then there exists
an r-term 7' (n, k) suchthat C,,(T) = S1, Cx(T) = S>.

This theorem is a “conservative version” of the well-known Ore—Sato theorem [11,15].
This “conservatism” is motivated by examples such as the followingT'let k) = |n —k|.
Notice thatT satisfies the equations of the form (2) and (3), namely:

n—kTm+1Lk+*k—n—1Twm,k)=0,
m—kTn,k+1)+k—-—n+1T(n,k)=0,
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although|n — k| is not anr-term [8]. However, the same equations holdfor k which
is anr-term. So, though it is not true that any term israterm, it is always possible to
construct anr-term which has the same certificates as the given term.

Theorem 1 plays a key role in the verification of the criterion to be proposed in this
paper (it is due to Proposition 1).

2.2. Rational normal forms

We write p L ¢ to indicate that the polynomials, g are relatively prime. LetA be a
field of characteristic O and, f1, f2 € A[k]. If f1 L E]" f for all m € Z then the rational
function F = f1/f2 is shift-reduced. If f L E;" f for all m € Z \ {0} then the polynomial
f is shift-free.

Define a normal form for rational functions which reveals the shift structure of their
factors. For a given non-zero rational functiBre K (k), let F, V € A(k) be such that

ExV
R=F=t", (11)
v

whereF is shift-reduced, then the right-hand side of (11) rational normal form (RNF)
of R.
If (11) is an RNF ofR,

v
F=ﬁ fil fa, V=" vl

12 v2

and, in addition,f1 1 v1 - Exv2 and f2 L vp - Exv1, then (11) is astrict RNF of R. An
algorithm to construct a strict RNF for a givéhwas discussed in [5,7] (we will refer to
this algorithm asrnf). It is shown in [5,7] that a rational function can have several RNFs,
even strict ones.

If R € K (k) whereK = C(n), then, actuallyR € C(n, k). In this case we say that (11)
is an RNF ofR(n, k) w.r.t. kK and can assume that the numerators and the denominators of
F andV belong toCln, k].

Denote by Z, the set of all rational functions of and k¥ whose numerators
and denominators, considered as elements ftjm k], are products of integer-linear
polynomials (in particularZ, x contains all the polynomials frori[n, k] that are such
products).

Theorem 2 [6]. For agiventerm T'(n, k), set S = Cx(T). Let

E.V
F— 12
2 12)

be an RNF of S wir.t. k. Then F € Z, ;. If T (n, k) is afactorial term, then V € Z,, ;. If
T(n,k)eZy,thenF=1,V € Z, .
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2.3. Additive decomposition of termsin one variable

Recall that non-zero term& (k) and 7’(k) over K aresimilar (denoted asl' (k) ~
T'(k)) if there existsF (k) € K (k) such thatT’(k) = F (k)T (k), and the sum of two non-
zero termsT (k) and T’ (k) is a term iff T (k) ~ T'(k) [12]. If we apply an operator from
C(n, k)[Ey] to atermT (k), then we obtain a term which is either zero or similaft).
Therefore, if a non-zero terffi(k) is represented a&(k) = (Ex — 1)T1(k) + T>(k) where
T1(k), T>(k) are terms, theff (k) ~ T; (k) if T; (k) is non-zero, K i < 2.

Theorem 3 [5,7]. Let T (k) and T1(k) be similar terms over K and T»(k) = T (k) —
(Er — DT1(k) beanon-zero term. Let

Cop=nt Alf  v=L ui L, (13)

12 v2

be an RNF of the certificate of T>(k) such that for any irreducible p € C(n)[k] and for
a € N\ {0} suchthat p*|v2, the following relations hold:

EV
ok
Vv

El'plvc = m=0, (14)
E'plfi = m<0, El'plfp = m>0 (15)

(m is assumed to be integer). Then for any term T (k), T; (k) ~ T (k) or T;(k) =0, the
term T (k) = T (k) — (Ex — 1)T; (k) is non-zero, and for any RNF

E V'’ v
F’ v V’:—/l, v L g,
v

2

of the certificate of 7, (k), there existsan m € Z such that E}” p® | v5,.

For a giventernt (k), the algorithm from [5,7] which solves the additive decomposition
problem constructs two ternig (k), T>(k) such thatl>(k) = T' (k) — (Ex — 1)T1(k) and
eitherT> = 0 or the certificate of» has an RNF of the form (13) where is shift-free (i.e.,
relation (14) holds), and the two relations in (15) hold for any irreducible faetof v5.

It follows from Theorem 3 that the polynomiap has minimal degree. As in the rational
case[T1, T» are the summable and, respectively, non-summable components of an additive
decompositiolf = (Ey — 1)1y + T».

This formulation agrees with the additive decomposition problem for rational func-
tions [1,2,14] since ifl> € C(n)(k) then F = 1 andv; is the denominator of>.

Note that for a given terri’ (k), the mentioned algorithm from [7] which constructs an
additive decomposition of (k) follows a number of steps. In the first step, the auxiliary
algorithmdcert is applied. For a given strict RNF &% (7), it constructs RNFs ofy, T»

(if T1(k) =0 or T»(k) =0, thenF (k) =0, V(k) = 1 in the corresponding RNF of the
form (11)). The algorithnacert can be slightly simplified by avoiding the construction of
an RNF ofCy (T1). We will refer to this simplified version in Section 3.3 deert’.
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2.4. Factorization into integer-linear polynomials

As in [4], we will face the problem of recognizing whether a given polynomial &and
k factors into integer-linear polynomials. The following theorem is the key to the solution
of the problem.

Theorem 4 [4]. A polynomial f(n, k) € C[n, k] belongs to Z, x iff for any irreducible
factor p(n, k) of f(n, k), therearel, J €Z,1 > 0,suchthat p(n+ I,k + J) | f(n, k).

For a given polynomialf (n, k) € Cln, k], Theorem 4 provides a criterion for the
factorability of f into integer-linear polynomials. Additionally in [4] an algorithm to
determine iff belongs toZ,  was presented. This algorithm does not require a complete
factorization of the input polynomiaf (n, k) into irreducible factors. In summary, this
algorithm (we will refer to it as algorithrilf) is as follows. The problem of recognizing
whether a given polynomigd(n, k) factors into polynomials of the formn + bk + ¢,

a,b eZ, c eCis equivalent to the possibility of factoring(n, k) into polynomials

that do not depend on and polynomials of the form + dk + ¢, d € Q \ {0}, ¢ € C.

We can extract fromg(n, k) the maximal factorv(k) that does not depend on Let

w(n, k) = g(n, k)/v(k). Considerd as a new variable and substitute- dn into w(n, k)

for k (this gives us a polynomial(d, n, k)) and represent the result as a polynomiat in
with coefficients inC[d, k]. Then find all rational valuedy, ..., d,, of d such that these
coefficients have a hon-constant greatest common divisor, which we denotéag) for

the valued;, i =0, ..., m. (This can be achieved by using resultant approach.) The answer
to the question under consideration is “yes")f;- , deg, w; (n, k) = deg, w(n, k).

2.5. Theexistence of a Z-duplex for a sum of two similar terms

The notion of similarity of terms in one variable can be readily generalized to terms
in two variables, i.e.T(n,k) ~ T'(n, k) if T'(n, k) = R(n, k)T (n,k), R(n, k) € C(n, k).
Similar to the univariate case, the st 7’ of non-zero terms in two variables is a term
iff T ~ T’. The following simple theorem about the existence &f-duplex for a sum of
two similar terms is presented in [4].

Theorem 5[4]. If there exist Z-duplexesfor similar terms T'(n, k) and T’ (n, k), then there
existsa Z-duplex for theterm T (n, k) + T’ (n, k).
3. Stemsof rational functionsand r-terms
3.1. The stemof arational function
For any rational functionQ (n, k) there exists a uniquely defined monic polynomial

s(n, k) such that(n, k) has no integer-linear factor, and the denominaterefk) Q (n, k)
factors into integer-linear polynomials. We cafk, k) thestem of Q(n, k).
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3.2. Thestemof an r-term

Let T (n, k) be anr-term. If there exists a monice C[n, k] such that

e s(n, k) has no integer-linear factor,
e s(n, k)T (n, k) is ap-term,

thens(n, k) is called thestem of the termT (n, k). Hence, ifs(n, k) is a stem ofT (n, k)
then

T(n, k)= T'(n, k),

s(n, k)

whereT’(n, k) is a p-term. The following theorem shows that the stem of aftgrm is
uniquely defined.

Theorem 6. Let T (n, k) be an r-term. Let s be a monic polynomial in n, k that has no
integer-linear factor, and suchthat s7 isa p-term. Let

EV
F—— 16
a (16)

be any RNF wi.r.t. k of Cx(T). Then s isthestemof V.

Proof. We can find a polynomiap(n, k) such that forR = p/s the termT’ = RT is a
fractal term. Se = Cy(T), S’ =Cy(T’). Then

ExR
§=9"K=2 (17)
R

If §” is shift-reduced w.r.tk, then the right-hand side of (17) is an RNF$fOtherwise,
we can transform (17) into an RNF §fby constructing an RNF of’, says’ = GZ¥. It

follows from (17) thatG 48 is an RNF ofS. By Theorem 2G, W € Z,,«. (Note that

F in (16) belongs t&Z,, x by Theorem 2 as well.) We have

F  Ex(RWV™
G  Rwv-1

The right-hand side of the last equality is an RNFQIG. By Theorem 2RWV 1 e Z, ;.
SinceW € Z, x, V differs from R by an element fronZ,, ;. The claim follows. O

Corollary 1. Let T (n, k) be an r-term and (16) be any RNF w.r.t. k of Ci(T). Then the
stem of V isequal tothe stemof T (n, k).
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3.3. Analgorithmto recognizeif an r-termisa p-term
The following corollary follows directly from Theorem 6.
Corollary 2. Anr-term T (n, k) isa p-termiff its stemisequal to 1.
In order to recognize if an-term T (n, k) is a p-term, one constructs an RNF w.kt.of
Cx(T) of the form (11) and checks whether the denominatdr dfelongs taZ,, « by using

the algorithm mentioned in Section 2.4.
So thek-certificate of an-term T (n, k) suffices to recognize if (n, k) is a p-term.

4. An additive decomposition of an r-term
Theorem 7. Any r-term T (n, k) can be represented in the form
(Ex — D Ti(n, k) + T2(n, k),

where T1(n, k), To(n, k) are r-terms, and either T>(n, k) is zero or the stem of To(n, k) is
shift-freewir.t. k.

Proof. SetS = Ci(T). LetT be any non-zero term ihover the fieldC(n) with Cu(T) =
where S is considered as an element frdii{n) (k). Such a term can be constructed as
follows. Letkg € Z be such thatS(n, i) is a non-zero rational function frof(r) for all

i €Z,i > ko. Set

k—1
Tiy=]]sw.i. (18)

i=ko

T is a term in one variablé (over C(n)), and, therefore, it is possible to construct its
additive decomposition, that was discussed in Section 2.3:

T (k) = (Ex — DTa(k) + To(k). (19)

This means if an RNF o€ (7%) has the form (13), then for any irreducible p|vz,

the relations in (14), (15) hold. Evidently there exit, R> € C(n)(k) such that7; =

R1T T2 = R2T (if T =0, thenR; = 0). ConsiderR1, R2> as elements of(n, k). Set
T1 = R1T, To = R>T. We claim that

=(Ex—1)T1 + T>. (20)

Indeed, set

T3 =(Ey — 1)%1. (21)
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Since eltheng =0orT3~ T, there existsRs € C(n)(k) such thatTs = RsT . It follows
fromT = T3 + Tz thatR3 + R2 = 1 and, consequentl¥, = 73 + T> whereT3; = R3T. The
claim is proven if we can show that

Ts=(Ey — 1DT1. (22)
By (21) we havels = (Ex — 1)R1T, or
R3= (ExR1)B — Ry, (23)

whereB = C(T). It follows from (23) and fronC(T) = C(T) that relation (22) holds.
Hence, relation (20) also holds. Evidendly(T2) = C¢(T2) and, therefore, any RNF w.r.t.
k of Cx (T2), written in the form (13), has; shift-free w.r.t.k. O

5. The applicability of Z
5.1. r-termswhose stems are shift-free w.r.t. k

Let A be a field of characteristic 0. A polynomigl(x) € A(x) is spread if for any
irreduciblep(x) which dividesf (x) there ism € Z \ {0} such thatp(x + m)| f (x).

Theore[n 8. Let T'(n, k) Qe an r-term vyhose stemis not spread. Then there does not exist
ateem T (n, k) suchthat T = (E, — 1)T.

Proof. Let F£Y- be an RNF ot (1), F, V € C(n, k), and are represented as

F=é Sil fo, V=E, v1 L vo.

12 v2
It follows from the hypothesis of the theorem that the sten¥ dfas an irreducible factor
p(n, k) such thatp(n, kK + m) is not a factor ofvo for anym € Z \ {0}. By Theorem 2,
F € Z, . Hence, f1, f> have no factor of the fornp(n,k + m), m € Z. Since the
hypothesis Theorem 3 (including the relations in (14) and (15)) is satisfied, the claim
follows. O

For the case where a givan(n, k) € C(n, k) is also a polynomial irk over C(n) or
over C[n], we denoteF (n, k) as F (n; k). If some polynomial substitutions = ¢(n, k),
k=1 (n, k) for n andk are applied taF (n; k), then the expression

F(p(n, k); ¥ (n, k) (24)
is also considered as a polynomiakioverC(n) or overCln].

Theorem 9. Let T'(n, k) bean r-termwhichisnot a p-term. Let the stem of 7' be shift-free
w.r.t. k. Then for any operator L € Cln, E,], the stemof theterm LT isnot spread w.r.t. k.
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Proof. Let s(n,k) be the stem ofT'(n, k). We can find a rational functiomR(n, k)
whose denominator is the stem Btn, k), the numerator has no integer-linear factor and
additionallyT = RT’ whereT’ is a factorial term. Let the operatére C[n, E,] be of the
form (4). ThenLT is the product oM R andT’, where

M=a,(WtoEl + -+ ar(m)t1E, +ao(n), t1,...,tp € Zyk,

that is, M is an operator fronC(n, k)[ E, ] whose coefficients belong 16, x. Recall that
the denominator oR is shift-free w.r.tk.

Suppose that the stem & R is spread w.r.tk. It is shown in [4, Lemma 3], that if
M= pr,f +---+bg € C[n, E,], then this implies the following: for any irreducible factor
p(n, k) of the denominator oR (n, k) there exists a factar(n, k) of this denominator such
that

pn,ky=qgn+1Lk+J), 1,J€Z, I>0. (25)

As shown in the proof [4], we consider the partial fraction decompositiak oferC(n),
and use the fact that i,, € C[n], then the application df,, E}" to a simple fraction with
the denominatop(n; k)* results in a simple fraction with the denominator

p(n +m; k)" (26)

If by € Zn k, then sincep(n, k) divides the stem of’, p(n, k) is not integer-linear, and

the application ob,, E!' to a simple fraction with the denominatei(n, k)* results in

a rational function, considered as a rational functiok overC(n), whose patrtial fraction
decomposition contains a simple fraction with the denominator (26) and no simple fraction
with the denominator of the form(n + m1; k)*1, m1 # m, u1 > 0. Consequently, for the
simple fractions with the denominators of the form (26), the logic from [4] remains valid
for the case where the coefficients of the difference opefdtbelong toZ, ;. Therefore,

if p(n,k) is an irreducible factor of the denominator 8f then this denominator also
has a factog (n, k) such that equality (25) is satisfied. It follows from Theorem 4 that all
irreducible factors of the denominator Bfn, k) are integer-linear, a contradiction

5.2. An algorithmto recognize the applicability of Z to an arbitrary term

Let T'(n, k) be a term. By Theorem 1, there existsraterm To(n, k) that has the same
certificates as those of the original term. By Proposition 1 we can how corfgidestead
of T. Let Ty, T» be terms such that

To=(Ey— DT+ 17

and 7> = 0 or the stem off» is shift-free w.r.t.k. Suppose thal» # 0. By Theorem 5
the termTy has aZ-duplex iff 7> has aZ-duplex. By Theorem 8, ifl> has aZ-duplex
(L, G), then the stem of. 7> should be spread w.rk. By Theorem 9, this condition is not
satisfied unless the stemBf is 1, i.e.,T> is a p-term. By combining this information with
the “fundamental theorem,” we arrive at the following theorem.
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Theorem 10. For a given term T (n, k), let To(n, k) be an r-term that has the same
certificates. Let theterms T1, T> be such that 7> # 0, the stem of T is shift-free and

To= (Ex —DT1+ T>. (27)
Then Z isapplicableto T'(n, k) iff T> isa p-term.

This gives a criterion for the applicability & to a given term. We have mentioned,
however, that by Corollaries 1, 2, thecertificateC, (T2) suffices to recognize if> is a
p-term. In turn,Cx(T2) can be constructed by algorithdeert’ (Section 2.3) starting with
Ci (Tp) only. ButCy(Tp) = Cx(T). This way the answer to the question Zsapplicable to
T (n, k)?" can be provided algorithmically, starting with thecertificate ofT (n, k):

1. Construct by algorithrarnf (Section 2.2) a strict RNB (n, k)U (n, k + 1) /U (n, k) of
Cx(T). Considering (T) as thek-certificate of aternt in k over the rational function
field of n, construct bydcert’ (Section 2.3) an RNF (n, k) V(n, k+1)/ V(n, k) of the
k-certificate of the non-summable component of an additive decompositiiiftthe
non-summable componentis 0, then Bet 0, V = 1).

2. By algorithmilf (Section 2.4) recognize if the denominatorioffactors into integer-
linear factors (the answer is “yes,” if, in particuladt,is a polynomial) Z is applicable
to T'(n, k) iff such factorization is feasible.

Notice that in spite of the non-uniqueness of an additive decomposition (as a
consequence, a possibtecertificate of the non-summable component is not unique in
general), and non-uniqueness of RNF of kheertificate, by Theorem 10 this algorithm
gives the one-valued answer to the question on the applicabilisy of

Example 1. For the hypergeometric term [9, 3.112]

o aw(mL\(2n—2%—1
T(n, k) = (1) ( ) )( T )

k—n—12k—n)2k—n+1)

S=C(T)= 2k+Dk—n+1D2k—-2n+1)

By algorithmsrnf we get a strict RNF w.r.& of S in the formD £::

_ (Zk—n)(2k—n+1) B 1
C2k+1)(2k—2n+ 1)’ S (k—n)k—n—-1)"

By algorithmdcert’ we get an RNF of thé&-certificate of the non-summable component
T, from the additive decomposition (18). This RNF is of the faFrfik":

_(2k—n—2)(2k—n—l) _ﬂ_—n2—3n+4k—2
C 2k+1D2k—2n+1) vy Ak-n-—1)
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Sincewvy can be written as a product of integer-linear polynomialsis applicable to
T (n, k). Notice that in this example, the given teffritself is ap-term.

Remark. We could construct the complete additive decomposition (18). This yields

k=1 . . .
f=l_[ (l.—l’l —.1)(21 —n)(2.z —n+1) 7
0 20+ —n+1)@2i—2n+1)

_ kn?(1—n)(2nk + 2k —2n® —3n — 1)
T A-2nk-n—-1)2k—n—2)2k—n-—1)
k—1

1

(2i —n)(2i —n+1)

ng(i+1)(2i—2n+1)’

5 }n(4nk—5n+4k—n3—4n2—2)’ﬁ(zi—n—z)(zi—n—l)
2773 L—2n)(k—n—1) Uit nei-2+

but for our goal we do not need this, and the RNEgfT>) as given before this remark is
sufficient.

Example 2.

o) = (D <n+1><2n—2k—1>
’ nk+1\ & n-1 )

(Notice that this term is a product of the teffnin Example 1 and the rational function
1/(nk +1).)
We have

(nk +1)(k —n — 1)(2k —n)(2%k —n + 1)

$=C() = 2k +n+Dk+Dk—n+ D2k —2n+1)°

By algorithmsrnf we get

_ (2Zk-n)(2k—n+1) U n
C2k+1)(2k—2n+ 1)’ C (k+ Dk —n)k—n—1)

By algorithmdcert’ we get

2k —n—1)(2k —n —2)
2+ 12k —2n+1) °

vl_8nk2—n3k—7n2k—8nk+4k+n3+2n2—n—2

F =

V===
v 8k—n—1Dmk—n+1)
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Sincevy cannot be written as a product of integer-linear polynomiglis, not applicable to
T (n, k). This is an example where the given tefhis not ap-term, andZ is not applicable
to T, either.

Example 3.

2,2 25 _op _
T k) = (D n°k+nk—1 <2n 2k 3).

(nk+1)(nk+n+1) n—1

We haveS = Ci(T) = s1/s2 Where

s1 = —(mk+1)(2k—n)(2k—n+1)
x (= 6+ 14nk + 51n?k + 4kn* — 8k3n® — 38%n> + 4k*n?
+26k3n? + 12kn® — 5503k + 4k?n + 58k*n” + 140 + 11n
—251° + 8n* — 10k — 4k2),
s2 = 2mk+2n+ 1) (k—n+2)(2k —2n + 3)
x (6nk + 4k?n — 3n’k — 2k — 4k? — n® + n — 3n3k + 4k°n?
+ 4k%n® — 8k3n® — 14k%n3 + 10k%n? + 4k*n? + 4kn*).

By algorithmsrnf we get

_ (&K =n@k—n+1 o
- 2k—n+2)(2k—2n+3)’ T up

where

ur = —2k + 6nk — 3n%k + 4n*k? + 4k*n — 3n3k + %K% — 8n3k°
— 14n3K2 + 4n2k* — n? + n — B2 + 10n%k3 + dnk,
up = 4nk +D(nk +n+1).

By algorithmdcert’ we have

_ (k—n—1D(k—n—2) _v1 4k—3n+2
T 2(k—n+3)2k—2n+5)’ T 4 '

ThereforeZ is applicable tdrl’ (n, k), even though the given terffiis not ap-term.
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5.3. Remarkson thefield K'; parameterized terms

So far we considered rational functions and terms over the figldadC(#n). In this
sense the fiel@ played the role of the ground field.

Algorithmically speaking, this choice of the ground field is not completely appropriate
(it was made for simplicitys sake) because, for example, algorithnisdcert’, ilf involve
the search for integer and rational roots of algebraic equations with coefficients from the
ground field. On the other hand, it is known th&ican be applied to some parameterized
terms, since the “fundamental theorem” is valid for the case where the coefficients of
P(n,k) andu, v, ¢;s, ¢;s, involved in (7), depend on parameters. The problem is how
to avoid the difficulties associated with the root computation and, additionally, to cover the
interesting parameterized case.

Let A be a field of characteristic O (this is actually equalia@ A). It is easy to show
that if there is an algorithm to compute rational roots of any polynoryiial) over A,
then there exists a corresponding algorithm for any simple extens{éh, algebraic or
transcendental. This implies that we can consider as the ground field (inst€gcanf
field of the formQ(04, ..., 6,,), where for each; either it is known tha#; is transcendental
overQ(by, ..., 6;—1), or an irreducible polynomiaP; (x) overQ(#s, ..., 6;—1) such that
P;(6;) =0 is given. (In the first casg can be considered as a parameter.)

Let K be a field of such formK—the algebraic closure ok. We can consider an
integer-linear polynomial as a polynomial of the foum + bk + ¢, wherea,b € Z,
¢ € K (the definitions 0fZ, x, p-terms and--terms have to be adjusted accordingly). The
“fundamental theorem” and Theorems 1, 4 still hold. Besides this there is no problem
with computing integer and rational roots of algebraic equations &vend K (n) and
algorithmssrnf, dcert’, ilf can be used. This gives an opportunity to apply the proposed
algorithm toCy (T) € K (n, k) to determine in advance wheth&rwill succeed orl’ (n, k).

Example 4.

T(n, k)= (m— ﬁ)k<’:1;f <k i 1)2 - ﬁ@z)

We considerQ(m, +/2) as the ground fieldm is transcendental ove®, while V2 is
algebraic ovef)(m). We haveS = Cy(T) = s1/s2 where

s1= (—n+k)?(m—v2)(mn+k—1)
X (—8 — 16k — 8mn — kv/2n% + 2k?N/2n + 2k%m + k3m + m?n
— 2m%n? + m?n® + km — mnv2 — V2mn® — 10mnk — 4mnk?
+ mn®k + k2nm? + 2knm? — 2kn?m? — kn/2 — k3v/2 — 2k2/2
— 2knm~/2+ 2kn’m~/2 — k*nm~/2 + 2k~/2n — 10k% — 23
+ 2n2m\/§),
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s2 = (mn+k+ 1)k +2)?
X (m2n3 — V2mn® — 2kn?m? + 2kn’m~/2 4 k?nm? — k’nm~/2
+ mn?k — kv/2n% — Amnk? + 2k~ 2n + k3m — k32 — mn?
+ 1?2 = 2mnk — 2k~/2n — kPm + k?~/2 — 2mn — 2k — 4k* — 2k).

By algorithmsrnf we get

_ V-2

9

(k + 2)2 u
where
up = m2n3 — mn3v2 — 2m%n?k + 2mn?k~2
+ m?nk? — mnk®v2 + mn?k — kn®~/2 — 4mnk?
+ 2k%nV2 + k3 — k32 — mn? + n?V2 — 2mnk
— 2nk~/2 — mk? + k°N/2 — 2mn — 2k3 — 4k? — 2k,
Uy = (—2+m — \/E)(mn +k)Y(mn +k—1).
By algorithmdcert’ we have

_(k—n—l)2 Ve v1
(k432 7 © (mn+k— Dy

wherevy € Q(m, v/2)[n, k1, v2 € Q(m, v/2)[n]. (We do not show; and v, due to their
sizes.) Therefor& is not applicable td’ (n, k).

Example5.

T(n,k) = (m— \/i)k<,:m_—;/kz <k i 1)2 N ﬁ@z)

As in Example 4, we considép(m, V/2) as the ground field. We have= Ci(T) = s1/s2,
where

s1= (—n+k)?(m —2)(nk — 1)
X (4+4k—m — 8n + 3mn + /2 — 12nk + mn® — 2mk
+ 5mnk 4+ mnk — 2mn®k? + mnk® + k? — 3mn® — mk? — nk®
— 6nk® + 3mnk?® — dmn®k — ~/2n%k + 2v/2n%k? — N 2nk® — 57/ 2nk
— 3V2nk? + 420k + 3V/2n% + N2k? + 2V/2k — 3V/2n — V2n°),
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s2 = (nk+2n — 1)(k +2)?
x (mn3k — 2mn22 + mnk® — mn® + 2mnk — mk? — v/2n%
202022 — /20k3 + v/ 2n? — 2320k + VK2 — k3
— 3nk? — 3nk —n + k* + 2k + 1).

By algorithmsrnf we get

(k+2)2 ’ uz

_ V-2

where

up = (mn3k — 2mn?k? + mnk® — mn? + 2mnk — mk? — v/ 2k%k
+ 2V 2022 — N 2nk3 + v 2n? — 2 2nk + V2P — nk®
—3nk2—3nk—n+k2+2k+l)n,

(m — N2 —1)(nk +n — 1) (nk — 1).

uz

By algorithmdcert’, the non-summable componentis 0, i+~ 0, V = 1. Therefore 2
is applicable tdr' (n, k).
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