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1. INTRODUCTION

In [9], an algorithm for finding all regular solutions
of a full�rank linear differential system of arbitrary
order with polynomial coefficients was proposed (see
also [1, Section 7.4]). In this paper, we rely on more
general assumptions on the original differential sys�
tem, supposing that all its coefficients are power series.

Let K be a number field: � ⊆ K ⊆ �. The ring of
polynomials and the field of rational functions of x
over K are denoted as K[x] and K(x), respectively.
The ring of formal power series of x over K is denoted
as K[[x]], and the field of formal Laurent series, as

K((x)). For a nonzero element a(x) =  from

K((x)), its valuation valxa(x) is defined as

(1)

with valx0 = ∞.Valuation of a vector or matrix with
series entries is assumed to be equal to the minimum of
valuations of the components.

If R is a ring (in particular, a field), then Matm(R)
denotes the ring of square matrices of order m with
entries from R. Im denotes the identity matrix of order
m, and MT denotes the transpose of a matrix M.

It is convenient to write differential systems in

terms of the operation θ = x  rather than  (the

transition from one notation to the other presents no
difficulties). We consider systems of the form

(2)

where y = (y1, y2, …, ym) is a column of unknown func�
tions of x. As for the coefficients

(3)

aix
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valxa x( ) min i : ai 0≠{ },=
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dx
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����

Ar x( )θry Ar 1– x( )θr 1– y … A0 x( )y+ + + 0,=

A0 x( ) A1 x( ) … Ar x( ),, , ,

we assume that Ai(x) ∈ Matm(K[[x]]), i = 0, 1, …, r,
with Ar(x) (the leading matrix of the system) being
nonzero. We consider systems the equations of which
are independent over K((x))[θ]. Such systems are
called full�rank systems. For full�rank systems, we
propose an algorithm for constructing their regular
solutions, i.e., solutions of the form

(4)

where λ ∈ , w(x) ∈ ((x))m[lnx], and  is the alge�
braic closure of the field K. Each solution of this kind
can be written as

(5)

where k ∈ � (i.e., k is a nonnegative integer) and

gs(x) ∈ ((x))m, s = 0, 1, …, k. If valxgs(x) = 0,
then λ is called an exponent of solution (4); otherwise,
it is called an exponent modulo 1. If λ is an exponent
modulo 1 for a regular solution y(x), we will say that
y(x) admits the factor xλ or that xλ is an admissible factor
of the solution y(x). Clearly, if xλ is an admissible factor
of some nonzero regular solution, then xλ' is an admis�
sible factor of this solution if and only if λ – λ' ∈ �.
Transition from xλ to xλ' in (5) changes valuations of
the series gs(x).

The set

(6)
is called a complete set of admissible factors of regular
solutions of system S if (i) no exponents of the ele�
ments of set (6) differ by an integer; (ii) each element

 of set (6) is an admissible factor for some nonzero
regular solution of system S; (iii) for every nonzero

y x( ) xλw x( ),=

K K K

xλ gs x( ) x,ln
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s 0=
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regular solution of system S, set (6) contains an admis�
sible factor for this solution.

All regular solutions of a given system that admit
one and the same factor form a linear space over �.
Our algorithm finds admissible factors (up to integer
addends in the exponents) for a given system and con�
structs bases of the corresponding solution spaces. To
make problem statement more specific, it is required
to specify the way the infinite series in the original sys�
tem are given and the form the regular solutions are
output by the algorithm. As for the input data, we rely
on a quite universal approach that assumes that each
power series that is a coefficient of the system is given

algorithmically: for any entry a(x) =  of a

matrix from (3), there is an algorithm Ξa that, for i ∈ �,
calculates the value

(7)

It follows from [5, Proposition 2] that, for the given
representation of system coefficients, both verification
of independence of the equations over K[[x]][θ] and
verification of solution existence in K((x))m\{0} (i.e.,
existence of a nonzero Laurent solution) are algorith�
mically undecidable problems. It should be noted that,
as can easily be seen, the Laurent solutions are the
simplest regular solutions. However, the original sys�
tem is assumed to have full rank (i.e., the equations of
the system are independent over K[[x]][θ]). For this
case, an algorithm for constructing the Laurent solu�
tions is presented in [4]. This algorithm will play an
important role in the subsequent discussion, which is
further addressed in Section 2.

Here, we note that, from the standpoint of the sub�
sequent discussion, it does not matter whether Ξa is a
real algorithm, whose description is available, or just a
black box. Not all conceivable series can be repre�
sented algorithmically; our algorithm works with other
series as well. In what follows, we will speak of algo�
rithmic series representation having in mind that the
actual situation is as was outlined above.

Let us clarify the representation of regular solutions
output by the algorithm. We will start from the concept
that is very important in the following discussion. Let

l ∈ � ∪ {–∞} and a(x) ∈ ((x)). We define the l�trun�

cation (x) of the series a(x) to be the result of zero�
ing out all coefficients of powers that are greater than

or equal to l; if l = –∞, then (x) = 0. Thus, (x)
is always a Laurent polynomial, i.e., an element of the

ring [x, x–1]. Similarly, the l�truncation of a system is
the system obtained from the original one by the
replacement of all series containing in its coefficients
by their l�truncations. Let WS(λ) denote the space of
the regular solutions of system S that admit the factor

xλ, and let (λ) denote the space obtained from WS(λ)
by the replacement of each element of form (5) with

aix
i

i 0=
∞

∑

Ξa i( ) ai.=

K

a l〈 〉

a l〈 〉 a l〈 〉

K

WS
l〈 〉

(thus, WS(λ) coincides with WS(λ + n) for any n ∈ �;

however, this cannot be guaranteed for (λ) and

(λ + n)). Since the space WS(λ) is finite�dimen�

sional, the valuations of the series gs(x) and (x) are
clearly bounded from below. In this case, for all suffi�

ciently large l, we have dimWS(λ) = dim (λ).

Now, let us formulate the problem of construction of
regular solutions that is solved by the algorithm pro�
posed in the paper. We call it the PR problem. It is
assumed that a full�rank system S of form (2) and d ∈ �
are given.

PR: Find a complete set of admissible factors of non�
zero solutions of system S. Determine l0 ∈ � such that,

for each xλ from this set, WS(λ) = dim (λ) for all

l ≥ l0 and find a basis of the space (λ).

It makes sense to recall that, in the scalar case, the
problem of finding regular solutions can be solved by
means of algorithms known from the theory of differ�
ential equations. The Frobenius algorithm relies on
studying roots of the indicial equation [2, Ch. IV; 16;
19, Ch. V]. When constructing solutions by this algo�
rithm, not only values of the roots of the indicial equa�
tions, but also their multiplicities, are taken into
account, as well as the existence of roots differing from
one another by integers. The Heffter algorithm [17,
Chs. II and VIII; 19, Ch. V] constructs a (possibly,
empty) basis of regular solutions that admit the factor
xλ not taking into account the multiplicity of the root
λ and the possibility of existence of other roots differ�
ing from λ by an integer. Owing to this, the Heffter
algorithm turns out more convenient from the stand�
point of generalization to systems of arbitrary order:
the algebraic equation—an analogue of the indicial
equation in the scalar case—one manages to construct
for a differential system may contain, for example,
redundant roots that bear no information on the space
of system solutions.

In [14], the Heffter algorithm was extended to the
first�order systems y'(x) = A(x)y(x). The generaliza�
tion of the Heffter algorithm to the case of abitrary�
order systems with polynomial coefficinets was pro�
posed in [9]. If the leading matrix of the original differ�
ential system is nonsingular, then one can apply the
algorithm from [13] to systems of arbitrary order,
which is based on a different approach. Note that,
although the coefficients are assumed to be infinite
series, the method of representation of such series is
not discussed in [13, 14] (in the examples considered
in these publications, the coefficients are, basically,
rational functions). It is assumed in those works that, for
each series, one can check whether it is equal to zero

xλ gs
l〈 〉 x( ) xln

s

s 0=

k

∑

WS
l〈 〉

WS
l〈 〉

gs
l〈 〉

WS
l〈 〉

WS
l〈 〉

WS

l0 d+〈 〉
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(independent of whether this series is predefined or
obtained as a result of some operations on other series).

In this paper, we extend the Heffter approach to the
arbitrary�order systems with the coefficients given by
algorithmically specified series. In Section 4, an algo�
rithm for solving problem PR is proposed. Its imple�
mentation in Maple [20] is discussed in Section 5.

2. CONSTRUCTION 
OF LAURENT SOLUTIONS

2.1. Truncated Laurent Solutions

Let VS denote the space of the Laurent solutions of

a system S and , l ∈ �, be the space whose ele�
ments are l�truncations of the corresponding elements
of the space VS. The algorithm from [4] solves the PL

problem, which is stated below. It is assumed that a
full�rank system S of form (2) and d ∈ � are given.

PL: Determine l0 ∈ � such that dimVS = dim

for all l ≥ l0 and find a basis of the space .

The algorithm for solving the PL problem is based
on the consideration of a recurrence system for a
sequence of coefficients of arbitrary Laurent solutions
of the original differential system. These recurrence
systems are discussed in Section 2.2. The recurrence
systems are reduced to a “convenient” form by the EG
algorithm [1, 3, 6, 7] (more precisely, by a special version
of this algorithm [4], which is outlined in Section 2.3).

2.2. Sequence of Coefficients of Laurent Solution

We will use notation E for the shift operator. The
application of this operator to a two�sided sequence
a(n) yields the two�sided sequence b(n) = a(n + 1),
n ∈ �.

The transformation
x  E–1, x–1  E, θ  n (8)

determines the isomorphism

(9)

of the ring of the differential operators �m =
Matm(K((x)))[θ] onto the ring of the recurrence opera�
tors �m = Matm(K[n])((E–1)) and converts the original
differential system S to the induced recurrence system

(10)

which can also be written as

where
• z(n) = (z1(n), …, zm(n))T is a column of unknown

sequences such that zi(n) = 0 for all negative integers n
for which |n | is big enough, i = 1, 2, …, m;

• B0(n), B–1(n), … ∈ Matm(K[n]), with the matrix
entries being polynomials of degree r or less;

VS
l〈 〉

VS
l〈 〉

VS

l0 d+〈 〉

�: �m �m

B0 n( )z n( ) B 1– n( )E 1– z n( ) …+ + 0,=

B0 n( )z n( ) B 1– n( )z n 1–( ) …+ + 0,=

• B0(n) is a nonzero matrix (the leading matrix of
system (10)).

In the scalar case, such a transformation yielding
the recurrence relation was considered in [8, 11, 12];
for the case of systems, it was considered in [4].

The induced system R obtained by the application
of � is of full rank (i.e., the equations of system (10)
are independent over K(n)[[E–1]]) if and only if the
original differential system S is of full rank [4]. The
system S has a Laurent solution y(x) = z(ν)xν + z(ν +
1)xν + 1 + … if and only if the two�sided sequence

of vector coefficients satisfies the induced recurrence
system R of form (10), i.e., the following equalities
hold:

…
If the matrix B0(n) is nonsingular, then the set of

roots of its determinant yields a finite superset of the set
of valuations of all Laurent solutions of system S. How�
ever, in many cases, this matrix is singular, even when
the leading matrix Ar(x) of system S is nonsingular.

2.3. EG Algorithm

Let us discuss the basic idea of the special version of
the EG algorithm suggested in [4] (in what follows, it
will be referred to as simply the EG algorithm). Its
purpose is to convert system (10) to a recurrence sys�
tem with a nonsingular leading matrix.

Along with transforming the induced system itself,
we will modify vector γ = (γ1, γ2, …, γm) with nonnega�
tive integer components, which is initially set equal to
γ = (r, r, …, r).

The “reduction + shift” step of the transformation
of the recurrence system consists of the following three
substeps:

(a) If the rows of the leading matrix are linearly
dependent over K(n) with the coefficients

(11)

then set

Choose i such that
(12)

and replace the ith equation of the induced recurrence
system by the linear combination of all equations of
the system with the coefficients v1(n), v2(n), …, vm(n).
(As a result, the ith row of the leading matrix vanishes.
This stage is called reduction.)

… 0 0 z ν( ) z ν 1+( ) …, , , , ,

B0 ν( )z ν( ) 0,=

B0 ν 1+( )z ν 1+( ) B 1– ν 1+( )z ν( )+ 0,=

B0 ν 2+( )z ν 2+( ) B 1– ν 2+( )z ν 1+( )+

+ B 2– ν 2+( )z ν( ) 0,=

v1 n( ) v2 n( ) … vm n( ), , , K n[ ],∈

μ γj degvj n( )+( ).
0 j m≤ ≤

vj n( ) 0≠

max=

0 i m, vi n( ) 0, γi degvi n( )+≠≤ ≤ μ=
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(b) Apply operator E to the ith equation of the sys�
tem obtained after the reduction. (This stage is called
shift.)

(c) Increase γi by degvi(n), i.e., perform γi := μ.
The repetition of the steps “reduction + shift” will

never result in the equation with the zero left�hand
side, i.e., to the equation 0 = 0, since the equations of
the system are assumed to be independent over
K(n)[[E–1]]. In [4], it is proved that this process termi�
nates: at a certain step, the rows of the leading matrix
turned out independent over K(n).

The reduction substep can generate a set of linear
constraints due to multiplications of the equations
transformed by polynomials having integer roots. Let
us assume that the ith equation is replaced by the lin�
ear combination of all equations of the system with the
coefficients v1(n), v2(n), …, vm(n), and let n0 be the root

vi(n). For any solution y(x) = xn, ν ≤ n0, the

original system must satisfy the linear constraint

(13)

where we used notation

for the (1 × m)�matrix that is the ith row of an (m × m)�
matrix M.

The number n0 in (13) is referred to as the index of
this linear constraint.

Like in the case of systems with polynomial coeffi�
cients [1, Section 8.1], the algorithm of transforma�
tion of the induced recurrence system can be adapted
for work with inhomogeneous systems. Let the original
system for the solution of which the induced recur�
rence system is constructed have the form

with the left�hand side of the equation coinciding with
the left�hand side of system (2) and the right�hand side
being the vector with the components in the form of
the Laurent series

where ν is the valuation of the right�hand side and
r(n), n ∈ �, are vectors of the coefficients of the Lau�
rent series. Then, the right�hand side of the corre�
sponding induced recurrence system is equal to r(n)
(for n < ν, we set r(n) = 0). Upon execution of the
“reduction + shift” steps, the components of the
right�hand side do not leave their places but take part
in the reduction stage and are subjected to the action
of the operator E at the shift stage. When constructing
regular solutions of a full�rank linear differential sys�
tem of arbitrary order with polynomial coefficients in
[9], it was required to solve induced recurrence sys�
tems that differed from one another only by the right�

z n( )
n ν=
∞

∑

B0 n0( )[ ]i ∗,  z n0( ) B 1– n0( )[ ]i ∗,  z n0 1–( )+ +

… B n0– ν+ n0( )[ ]i ∗,
 z ν( )+ 0,=

M[ ]i ∗, , 1 i m,≤ ≤

Ar x( )θry Ar 1– x( )θr 1– y … A0 x( )y+ + + b x( ),=

b x( ) r n( )xn
,

n ν=

∞

∑=

hand sides. In order that all systems of this kind could
be solved by a single application of the EG algorithm,
the right�hand side was represented as a vector r(n) =
(r1(n), r2(n), …, rm(n))T, with the components being
undefined functions ri(n), i = 1, 2, …, m. A similar
approach can be used in the case under consideration.
When using the right�hand side of the generic form,
each component of the transformed right�hand side is
a linear combination of the (possibly, shifted) compo�
nents of the original right�hand side. Note that the
maximum shift of the components on the right�hand
side is equal to the maximum number of shifts of one
and the same equation in the course of the EG algo�
rithm operation. Denoting this number as ξ, we obtain
the following expressions for the components of the
transformed right�hand side:

(14)

i = 1, 2, …, m, where αijk(n) ∈ K[n] are the coefficients
corresponding to the transformations performed in
the course of the execution of the “reduction + shift”
steps (these coefficients can be expressed in terms of
coefficients (11) obtained in the course of all reduc�
tion stages). Thus, one can use one and the same
transformed recurrence systems for solving all systems
with the same left�hand side and different right�hand
sides. To this end, it is required to substitute compo�
nents of the original right�hand side of the particular
system to the transformed right�hand side in the form
of particular values rj(n), j = 1, 2, …, m. We will further
use such a kind of the EG algorithm for solving the PR

problem. The arising linear constraints will also be
inhomogeneous: the right�hand side of (13) becomes
nonzero. As before, the index of this linear constraint
is the number n0. As in the case of systems with poly�
nomial coefficients [1, Section 7.4], when searching
regular solutions, it is not sufficient to use linear con�
straints with only integer indices (in this case, to cal�
culate linear constraints (13) when eliminating the ith
row on a reduction step, all, rather than only integer,
roots of the coefficient vi(n) from (11) are taken). The
set of all indices obtained is denoted by N.

2.4. Algorithm for Solving the PL Problem

The algorithm for solving the PL problem is based
on the execution of the “reduction + shift” steps
described in Section 2.3. However, system (10) to be
transformed is infinite. The algorithm cannot work
with all matrices B–t, t = 0, 1, …, simultaneously, and
this is the point where lazy calculations storing infor�
mation about all already performed reductions and
shifts come to help. This allows us, if needed, to use
matrices B–t with the increasing values of t not repeat�
ing the already performed operations on matrices with
lesser values of t.

r̃ i n( ) αijk n( )rj n k+( ),

k 0=

ξ

∑
j i=

m

∑=
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Analyzing the roots of the determinant of the nonsin�
gular leading matrix constructed and taking into account
the linear constraints found, we can solve the PL prob�
lem. Let e* and e∗ be maximal and minimal integer

roots of this determinant, respectively (it may happen
that e* = e∗). Let NZ be the set of all integer values

from N. Then, the desired value to be determined in
the PL problem may be taken equal to

(15)

If
(16)

then solution of the PL problem for the original homo�
geneous system S coincides with the solution for the

truncated system . The details can be found in [4].

3. SEARCH FOR REGULAR SOLUTIONS 
BASED ON THE HEFFTER APPROACH: 

GENERAL SCHEME

In what follows, we write system (2) in the form
L(y) = 0, where L is the differential operator

(17)

For any integer i ≥ 0, the result of application of L to
g(x)lni(x)/i! has the form

where Li0, Li1, …, Lii ∈ Matm(K[[x]])[θ], L00 = L, and
Li + j, j = Li0 for all i, j ≥ 0 [17; 18, Section 3.2.1]. We will
use the notation Li = Li0 (= Li + j, j for all j ≥ 0).

Proposition 1. For all i ≥ 0, the following equality
holds:

(18)

where  are binomial coefficients.

Proof. The proposition follows from the Leibniz
formula for the differentiation of the product of two
functions and from the equality

�
From formula (18), it follows that Li = 0 for all i > r.
The general scheme of finding regular solutions of

the systems under consideration is similar to the
scheme [9] used in the algorithm for finding all regular
solutions of a full�rank linear differential system of an
arbitrary order with polynomial coefficients (see also

l0 max NZ e*{ }∪( ).=

l1 l0 d ξ e*,–+ +=

S
l1〈 〉

L Ar x( )θr Ar 1– x( )θr 1– … A0 x( ).+ + +=

Lii g( ) xln
i

i!
������� … Li1 g( ) xln

1!
������ Li0 g( ),+ + +

Li Ak x( ) k

i⎝ ⎠
⎜ ⎟
⎛ ⎞

θk i–
,

k i=

r

∑=

k

i⎝ ⎠
⎜ ⎟
⎛ ⎞

θk xln
i

i!
�������

xln
i k–

i k–( )!
�������������� if k i,≤

0 if k i.>⎩
⎪
⎨
⎪
⎧

=

[1, Section 7.4]). This scheme itself is a generalization
of the Heffter algorithm [17] and is based on the con�
sideration of the sequence of systems

(19)

where Sk is the system

(20)

(for i = 0 in (20), we have L0(g0) = 0). For a particular
i, the system

will also be referred to as the subsystem . Thus, the
system Sk from sequence (19) consists of the subsystems

and search for a solution to system Sk + 1 reduces to

searching for a solution to subsystem  with regard
to the earlier found solution (g0(x)T, …, gk(x)T)T of sys�
tem Sk. The following theorem is an analogue of the
assertion proved by Heffter for the scalar case.

Theorem 1 ([9, 10]). The set of nonnegative integer k
for which system Sk has a Laurent solution

is finite. If it is empty, then the equation L(y) = 0 has no
nonzero solutions in K((x))m[lnx]. If this set is not empty

and  is its maximal element, then any solution of system
L(y) = 0 belonging to K((x))m[lnx] has the form

(21)

where

(22)

is a Laurent solution of system . At the same time, any

Laurent solution of system  of form (22) generates

solution (21) to system L(y) = 0.
In [9, 10], this theorem was proved for the case of

systems with polynomial coefficients. Since the proof
did not rely on the form of the coefficients, the same
proof is applicable to the case of the series coefficients.

If the value of λ is known, substitution (4) reduces
search for a regular solution to searching for solution
w(x) ∈ K((x))m[lnx]. For the candidates on the role of
λ, roots of the determinant of the nonsingular leading
matrix of the induced recurrence system are used
(after the application of the transformation described
in Section 2.3 if the leading matrix of the induced
recurrence system was originally singular).

Thus, we arrive at the following scheme.

S0 S1 …,, ,

L0 gi( ) Lj gi j–( ), i
j 1=

i

∑– 0 1 … k, , ,= =

L0 gi( ) Lj gi j–( )
j 1=

i

∑–=

Ŝi

Ŝ0 Ŝ1 … Ŝk,, , ,

Ŝk 1+

g0 x( )T g1 x( )T … gk x( )T, , ,( )
T

, g0 x( ) 0,≠

k̃

g
k̃ s– x( ) xln

s

s!
�������,

s 0=

k̃

∑

g0 x( )T g1 x( )T … g
k̃

x( )T, , ,( )
T

, g0 x( ) 0,≠

S
k̃

S
k̃



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 40  No. 2  2014

REGULAR SOLUTIONS OF LINEAR DIFFERENTIAL SYSTEMS 103

1. For a given system S of form (2) with operator
(17), construct the induced recurrence system and, by
means of the EG algorithm described in Section 2.3,
transform it to an equivalent system with a nonsingular

leading matrix (n). Calculate all roots of the equa�

tion det (n) = 0. Assuming that two roots λ and λ'
are equivalent if λ – λ' ∈ �, construct set Λ containing
one representative from each equivalence class.

2. For every λ ∈ Λ, find regular solutions admitting
the factor xλ:

(a) Construct system S(λ) by means of substitution
(4) and subsequent multiplication by x–λ.

(b) Construct Laurent solutions for the systems
from (19) until the first system that has no Laurent
solutions is met. This yields regular solutions y(x) in
form (21) for system S(λ).

4. DETAILING THE HEFFTER SCHEME

For a fixed λ, the scheme from Section 3 reduces
the problem of finding regular solutions to that of find�
ing the Laurent solutions, for which the algorithm of
its solution is known. The goal of this section is to
elaborate details and to study possibilities of coordi�
nated consideration of all values of λ belonging to Λ.
This coordination improves efficiency of the algo�
rithm.

4.1. Substitutions Performed

The left�hand sides of the inhomogeneous systems
solved on step 2(b) of the scheme coincide with each
other and are equal to the left�hand side of system S(λ)
obtained on step 2(a) from the original system S by
means of substitution (4) and subsequent multiplica�
tion by x–λ. Let the induced system R for the original
system S transformed by the EG algorithm from Sec�
tion 2.3 have the form

(23)
and let N be the set of indices n0 of the arising linear
constraints. It is not difficult to see that the induced
system R(λ) for the system S(λ) can be converted by
the same transformations to the recurrence system

(24)

The corresponding linear constraints and the set of
indices N(λ) for (24) can be obtained by considering
linear constraints arising upon transformation of sys�
tem R.

Let Λ be the set determined on step 1 of the scheme
from Section 3. For any λ ∈ Λ, the maximal and min�
imal integer roots of the equation

(25)
are denoted as e*(λ) and e∗(λ), respectively. If this

equation has no integer roots, then the original differ�

B̃0

B̃0

B̃0 n( )z n( ) B̃1 n( )z n 1–( ) …+ + r̃ n( ),=

B̃0 n λ+( )z n( ) B̃1 n λ+( )z n 1–( ) …+ +

=  r̃ n λ+( ).

detB̃0 n λ+( ) 0=

ential system has no regular solutions admitting factor
xλ for the considered value of λ. In this case, the set Λ
is modified by eliminating this value from the set (fur�
ther, we assume that, for any λ ∈ Λ, equations (25)
have integer roots). For λ ∈ Λ, we set

where NZ(λ) contains all integer indices from N(λ).

Proposition 2. Let Λ be the set determined on step 1
of the Heffter scheme. Let Λ ≠ ∅ and, for any λ ∈ Λ,
equation (25) have integer roots. Then, the desired value
to be determined in the PR problem can be taken as

(26)

Proof. According to (15), for a fixed λ for system
S(λ), we may take l0 presenting in the statement of prob�

lem PL equal to l0(λ). In this case, all subsystems (λ)
have left�hand sides coinciding with the left�hand side
of the system S(λ). �

4.2. Inhomogeneous Systems

Solution g0(x) of the subsystem , i.e., subsystem
L0(g0) = 0, contains arbitrary constants. We use g0(z)
for the calculation of the right�hand side of the sub�

system , i.e., the subsystem L0(g1) = –L1(g0); the
above�mentioned arbitrary constants occur in the
right�hand side linearly. Applying the same technique,
as in the case of the scalar equation with a parameter�
ized right�hand side (see, for example, [8]), we find,
along with g1(x), linear relations for the constants
occurring in g0(x) and g1(x). Continuing this process,

on each step for the current subsystem, we obtain ,
g0(x), …, gi – 1(x), which contain unknown constants,
and a linear algebraic system for these constants. In
accordance with Theorem 1, condition g0(x) ≠ 0 guar�
antees that this process terminates.

All these subsystems for the given λ have one and
the same left�hand side. Therefore, their induced
recurrence systems have the same left�hand sides, but
their right�hand sides are different. In order to trans�
form the induced system only once, these transforma�
tions are applied to the induced system with the
generic right�hand side, as described in Section 2.3.

Theorem 2. Let ξ be the greatest number of shifts of
one equation in the course of application of the EG algo�
rithm to the induced recurrence system, d ∈ �, and let l0

and e∗(λ) be defined like in Proposition 2. Then, to find

(l0 + d)�truncations of the Laurent solution of the sub�

system , it is sufficient to calculate all solutions gj(x) of

the preceding subsystems , j = 0, …, k – 1, as tkj�trun�
cations with

(27)

l0 λ( ) max NZ λ( ) e* λ( ){ }∪( ),=

l0 l0 λ( ).
λ Λ∈
max=

Ŝi

Ŝ0

Ŝ1

Ŝi

Ŝk

Ŝj

tkj l0 d k j–( )ξ.+ +=
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In this case, the left�hand side of the subsystem (λ)
can be taken in the form of the l1�truncation with

(28)

and the left�hand side of the preceding subsystems ,
j = 0, …, k – 1, as the l1kj�truncation with

(29)

Proof. According to (16), if l1(λ) = l0(λ) + d + ξ –
e∗(λ), then solution of the PL problem for the original

homogeneous system S(λ) coincides with the solution for

the truncated system . The desired (l0 + d)�
truncation of the corresponding Laurent solution is
constructed by means of the transformed induced
recurrence system, and, to this end, its equations for
the values of n from e∗(λ) to l0 + d are used. Accord�

ingly, in the case of the subsystem (λ), for construc�
tion of the (l0 + d)�truncation of the corresponding
Laurent solution, coefficients of the right�hand side of
the transformed induced recurrence system up to the
degree l0 + d are required. Components of the right�
hand side can contain up to ξ results of shifts of the
components of the right�hand side of the original sys�
tem. Accordingly, the truncated right�hand side of the
original subsystem can be considered up to the degree
l0 + d + ξ. Then, it follows that the solution gk – 1(x) of

the previous subsystem (λ) may be calculated up
to the degree l0 + d + ξ. Increasing d by ξ and repeating
the reasoning, we find that the solution gk – 2(x) of the

subsystem (λ) may be calculated up to the degree
l0 + d + 2ξ. Continuing the process, we find that it is suf�

ficient to find solution gj(x) of the subsystem (λ) in the
form of the tkj�truncation, where tkj = l0 + d + (k – j)ξ.
Note that, for any λ ∈ Λ, in the search for the (l0 + d)�

truncation of the solution of (λ), one can use an l1�

truncation (λ) with l1 = l1(λ). Accordingly,
when searching for tkj�truncations of the solutions of the

preceding subsystems , j = 0, …, k – 1, one can use

the l1kj�truncation (λ) with l1kj = l1 + (k – j)ξ. �

4.3. Algorithm

Having found the set Λ by means of the EG algo�
rithm and the values e∗(λ), e*(λ), l0(λ) for each λ ∈ Λ,

we can determine l0 by formula (26). Note that the ele�
ments of the set Λ are roots of algebraic equations, and
it is assumed that the exact representations for these
roots are available (in Maple, with the help of
RootOf). In the course of application of the EG algo�
rithm, the value of ξ is also computed: for each equa�
tion, the number of its shifts is counted, and, then, the
maximal value among them is taken. These calcula�

Ŝk

l1 l0 d ξ e* λ( )–+ +( ),
λ Λ∈
max=

Ŝj

l1kj l1 k j–( )ξ.+=

S λ( )
l1 λ( )〈 〉

Ŝk

Ŝk 1–

Ŝk 2–

Ŝj

Ŝk

Ŝk maxλ Λ∈

Ŝj

Ŝj

tions correspond to step 1 of the Heffter scheme.
It should be emphasized that, on this step, the EG
algorithm is applied to the induced recurrence system
with the right�hand side of the generic form, as dis�
cussed in Section 2.3.

The subsequent application of this scheme (steps 2(a)
and 2(b)) is based on searching for truncated Laurent
solutions for the truncated systems by means of the
transformed inhomogeneous induced recurrence sys�
tems (an analogue of the algorithm from [4]). Formula
(24) allows us not to perform all steps of the EG algo�
rithm repeatedly for each system. On step 2(b), solu�
tion of the current system Sk reduces to searching the
(l0 + d)�truncation of the Laurent solution of the addi�

tional subsystem , which, in turn, requires calculation
of the tkj�truncations of the Laurent solutions of the pre�

ceding subsystems , j = 1, …, k – 1. The earlier found
tk – 1, j�truncations can be prolonged since tk – 1, j < tkj.
This, in turn, requires prolongation of the truncations of
the corresponding subsystems. In order that the coeffi�
cients of the truncated systems contain the desired num�
ber of terms, it will suffice to follow formulas (27)–(29).

5. IMPLEMENTATION

The algorithm is implemented in the computer
algebra system Maple in the framework of package EG
[1]. The implementation is partially based on the
implementation of the algorithm for finding regular
solutions of a full�rank linear differential system with
polynomial coefficients [9] and on the implementa�
tion of the algorithms for solving the PL problem.

For a given differential system of full rank with the
coefficients in the form of the Laurent series, procedure
RegularSolution finds solution to the PR [4] prob�
lem.

The system L(y) = 0 is specified by the operator L
represented in the matrix form as

(30)

with the operators Lij being considered as power series
in x with the coefficients from K[θ]. The order of such
a coefficient does not exceed the order of the system
L(y) = 0. For fixed values of indices i and j, the opera�
tor Lij is given by a function of an integer argument, for
example, k, which computes the coefficient of xk in
this operator as a polynomial of θ. For all pairs of indi�
ces i, j, these functions can be defined by procedures.
In simple cases, functions if and piecewise are used
(see the example below). Besides the system given in
this way, the procedures have three additional param�

eters: θ is the name of the operator , x is the name

Ŝk

Ŝj

L11 … L1m

… … …
Lm1 … Lmm⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

x d
dx
����
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of variable, and d is the value specified in the PR prob�
lem. The result is (l0 + d)�truncations of regular solu�
tions of the system.

Example. Let m = 3 and matrix (30) be given as the
sum of two matrices:

In Maple, this sum can be written by means of
piecewise:

L:=Matrix([[k->piecewise(k=0,0,k=1,

-1,k=3,theta,theta^2-1),

k->piecewise(k=0,theta^3-2*theta,

k=3,-1,theta^2-1),

k->piecewise(k=0,-1,k=1,-1,k=2,

-1,k=3,-1,0)],

[k->piecewise(k=3,-1,0),

k->piecewise(k=0,theta^3-2*theta,

theta^2-1),

k->piecewise(k=0,-1,k=3,-1,0)],

[k->piecewise(k=3,-2,0),

k->piecewise(k=0,theta^3-2*theta,

k=1,theta^2,theta^2-1),

k->piecewise(k=0,theta-2,k=3,

theta^2-2,theta^2-1)]]):

Let us find a regular solution of the corresponding
system for d = 0 (for clearness, algebraic numbers are
converted to radicals):

>convert(RegularSolution

(L,theta,x,0),radical);

 

 

 

x– 1 θ θ2–+( )x3+ θ3 2θ– θ2x3– 1– x– x2– x3–

x3– θ3 2θ– 1– x3–

2x3– θ3 2θ– θ2x+ θ 2– x3–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

θ2 1–( )xk

k 2=

∞

∑ θ2 1–( )xk

k 1=

∞

∑ 0

0 θ2 1–( )xk

k 1=

∞

∑ 0

0 θ2 1–( )xk

k 2=

∞

∑ θ2 1–( )xk

k 1=

∞

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

x 2 1
2
��x 2c3 O x2( )+⎝ ⎠

⎛ ⎞ x( ) xc1 2x2c1 O x3( )+ +( )ln+

+ xc2 O x2( ),+

x 2 1
14
���� 2c3

2
7
��c3–⎝ ⎠

⎛ ⎞ x c3 O x2( )+ +⎝ ⎠
⎛ ⎞

+ x( ) xc1
1
4
��x2c1– O x3( )+⎝ ⎠

⎛ ⎞ln c1 xc2 O x2( ),+ + +

x 2 1
2
��x 2c3– O x2( )+⎝ ⎠

⎛ ⎞ x( ) xc1– x2c1– O x3( )+( )ln+

In the given case, l0 = 1, Λ = {0, }. The same sys�
tem can be solved, for example, for d = 2:

>convert(RegularSolution

(L,theta,x,2),radical);
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