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1. INTRODUCTION

Let K be a field of characteristic 0. The ring of poly�
nomials and the field of rational functions of x are con�
ventionally denoted as K[x] and K(x), respectively. The
ring of formal Laurent series is denoted as K((x)). If R is
a ring (in particular, field), then Matm(R) denotes the
ring of square matrices of order m with entries from R.

We consider systems of the form

(1)

ξ ∈ , where E is the shift operator: Ey(x) =

y(x + 1). Square matrices Ai(x), i = 0, 1, …, r, are of
order m with entries from K[x], with Ar(x) and A0(x)
being nonzero leading and trailing matrices, and y(x) =
(y1(x), y2(x), …, ym(x))T is a column of unknown func�
tions (T denotes transposition). The number r is called
the order of the system. The system under study is
assumed to have full rank; i.e., the equations of the sys�
tem are independent over the ring of operators K(x)[ξ].
System (1) can be written in the form L(y) = 0, where L
is the operator

(2)

Solution y(x) = (y1(x), y2(x), …, ym(x))T ∈ K(x)m of
system (1) is called a rational solution. If y(x) ∈ K[x]m,
it is called a polynomial solution (a particular case of
the rational solution).

Algorithms for searching all rational solutions to
normal first�order systems of the form

(3)

Ar x( )ξry x( ) … A1 x( )ξy x( ) A0 x( )y x( )+ + + 0,=

d
dx
���� E,

⎩ ⎭
⎨ ⎬
⎧ ⎫

Ar x( )ξr … A1 x( )ξ A0 x( ).+ + +

ξy x( ) A x( )y x( ),=

where A(x) ∈ Matm(K(x)) is assumed to be invertible in
the difference case, are well known (see, e.g., [1–5]).
Algorithms from [1, 2, 4, 5] are based on finding a uni�
versal denominator of rational solutions to the original
system (for brevity, we call it the universal denomina�
tor for the original system), i.e., a polynomial U(x) ∈
K[x] such that, if the system has a rational solution

y(x) ∈ K(x)m, then it can be represented as ,

where z(x) ∈ K[x]m. If a universal denominator is
known, we can make the substitution

(4)

where z(x) = (z1, …, zm)T is the vector of new
unknowns, and, then, apply one of the algorithms for
searching polynomial solutions (see, e.g., [1, 2, 6]).

The problem of searching rational solutions for
full�rank systems (1) in the case where matrices A0(x)
and Ar(x) (one of them or both) may be singular were
considered much less frequently. Nevertheless, appro�
priate algorithms were suggested in [7] (the differential
case) and [8] (the difference case). These algorithms
are also based on finding a universal denominator U(x)
that is used on the next stage for the substitution (4),
which is followed by searching polynomial solutions to
the new system obtained.

Below, we consider a different approach. It is based
on expanding a general solution to the original system
(1) into a series whose coefficients linearly depend on
arbitrary constants. After multiplication by a universal
denominator U(x) found, the series corresponding to
rational solutions turn to polynomials. To implement
this general scheme in an algorithmic form, we con�
sider formal series in terms of decreasing powers (this

1
U x( )
���������z x( )

y x( ) 1
U x( )
���������z x( ),=
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can also be viewed as expansion at point ∞). Each
series of this kind contains only a finite number of
powers of x with nonnegative exponents and, possibly,
an infinite number of powers with negative ones. The
greatest exponent of x with a nonzero coefficient (i.e.,
a coefficient given by a nonzero column) occurring in
a series y(x) is called the degree degy(x) of the series
y(x). If y(x) is a zero series, then we set degy(x) = –∞.

In the case of a differential system

(5)

the series under consideration belong to Km((x–1)). In
the case of a difference system

(6)

series in terms of powers xn (see, e.g., [9, Ch. 10]) are
used:

(7)

We will use double�sided sequences of rational func�
tions

as bases for expanding solutions of systems in the dif�
ferential and difference cases, respectively. Let coeffi�
cients of the expansion of a solution in the corre�
sponding basis be v(n) = (v1(n), …, vm(n))T. Then, the
sequence v(n) satisfies the induced recurrence system

(8)

where l and t are integers such that l ≥ t and Bt(n), …,
Bl(n) ∈ Matm(K[n]) [10].

We use the term “induced recurrence system,”
rather than the “induced difference system,” in order
to emphasize the special role of the induced systems.
For brevity, we will refer to them as simply induced
systems. The construction of these systems is dis�
cussed in Section 22. The number l – t is called the
order of system (8).

Considering initial terms whose coefficients satisfy
the induced system (by convention, coefficients of suf�
ficiently large powers are zero column vectors), we do
not know for sure whether there exists a continuation
of the given initial fragment to a formal series that is a
solution to the original system or such a continuation
is not possible. In what follows, we will carefully use
the term formal sum, meaning the formal sum

 in the differential case and ,

g(n) ∈ Km, in the difference case. Note that, for each
particular formal sum, g(n) = 0 for sufficiently large n.
Hence, each formal sum contains a finite number of

Ar x( )y r( ) x( ) … A1 x( )y ' x( ) A0 x( )y x( )+ + + 0,=

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) 0,=

x
n

x x 1–( )… x n– 1+( ), if n 0,>

1, if n 0,=

1
x 1+( ) x 2+( )… x n+( )

�������������������������������������������������, if n 0.<⎩
⎪
⎨
⎪
⎧

=

xn( )n �∈ , x
n( )n �∈

Bl n( )v n 1+( ) Bl 1– n( )v n l 1–+( ) …+ +

+ Bt n( )v n t+( ) 0,=

g n( )xn

n N=
∞

∑ g n( )x
n

n N=
∞

∑

nonzero terms. If f(x) is a formal sum of the above�
specified type and g(n) is a sequence of its coefficients,
then N is referred to as the stopping point of this
sequence, which is denoted as stpg(n). The greatest n
such that g(n) ≠ 0 in a formal sum f(x) is called the
degree of f(x), which is denoted as deg f(x). If a formal
sum f(x) contains only zero terms, then deg f(x) = –∞.

If a sequence g(n) of coefficients of a formal sum
satisfies the induced system, the sum is said to be sub�
ordinate to the original system.

The new algorithm constructs subordinate formal
sums whose stopping points are selected in a special
way. Generally, we cannot determine without consid�
erable effort whether one or another formal sum can
be continued to a formal series that is a solution to the
original system. However, the “useful” formal sums
selected by the algorithm admit such continuation.
This is proved in Section 4.3.

The new algorithm does without substitutions of
form (4). The induced system used by the algorithm in
a quite general situation has typically a lesser order.
Other things being equal, this is an undoubted advan�
tage of the new algorithm. There may be a problem
with the number of elements of the sequence to be
found by means of the recurrence systems: the stan�
dard algorithm can sometimes do with a lesser number
of elements.

In Section 6, a combined (in a sense, heuristic)
algorithm is described. To reduce the amount of com�
putation, this algorithm, based on analysis of interme�
diate results, makes a decision whether to apply the
new algorithm or take advantage of the standard one,
which is based on the use of a universal denominator
for changing variables in the system and subsequent
searching for polynomial solutions.

If the original system is not homogeneous and its
right�hand side belongs to K[x]m, then addition of the
(m + 1)�th component ym + 1(x) identically equal to
one to y(x) transforms the original system to a homo�
geneous one (transformed matrices A0(x), A1(x), …,
Ar(x) will belong to Matm + 1(K[x])). In what follows,
we consider only homogeneous systems.

2. PRELIMINARIES

2.1. Embracing Systems

The leading matrix may be not invertible (singular)
in Matm(K(x)), which generates certain difficulties for
finding solutions. Algorithms EGδ and EGσ make it
possible to avoid difficulties of this kind. For any system
S of form (1), algorithms EGδ (in the differential case)
and EGσ (in the difference case) construct an l�embrac�

ing system  with a nonsingular leading matrix .

In this case, the set of solutions of system  contains
all solutions of system S.

S Ar x( )

S
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In the difference case, algorithm EGσ can con�
struct for system S, in addition to the l�embracing sys�

tem, also a t�embracing system  of the form (1) with

a nonsingular trailing matrix , with the set of

solutions of system  containing all solutions of sys�
tem S.

Besides, algorithm EGσ finds a finite set � of linear
constraints, i.e., linear relations with constant coeffi�
cients for a finite set of values yi(η + j), i = 1, …, m, j =
0, 1, …, r. Each linear constraint is obtained from one
of the equations of the system at some stage of its
transformation by substituting a particular value of the
variable into this equation. We will use linear con�
straints when considering solutions in the form of
sequences with elements from Km. To this end, we may
confine ourselves to linear constraints such that h ∈ �.

The application of EGσ results in a pair ( , �) that has
the same set of solutions as S has, with the leading and

trailing matrices of system  being nonsingular.
Algorithm EGσ can be applied to both original dif�

ference system and the system that is induced for the
original differential or difference system. A variant of
algorithm EGδ, which is more economical than that in
[7] in terms of the number of operations, was proposed
in [11, Section 4.2].

Remark 1. Let a system  with a set � of linear
constraints be given. If all its solutions belonging to the
class of sequences of form v(n) = (v1(n), …, vm(n))T

with values in Km determined for N ≤ n < ∞ (N is fixed)
are considered, then all linear constraints belonging to
� containing some vi(η) (η < �) with nonzero coeffi�
cients must be ignored.

2.2. Induced Recurrence Systems

In addition to what was said about induced systems
in the Introduction, we note that the induced recur�
rence system is constructed from the original one by
the transformations

x  ,   (n + 1)En, (9)

and

x  n + , E  1 + (n + 1)En. (10)

in the differential and difference cases, respectively
[12–14]. These transformations are convenient to
apply if operator (2) is written in the form of the oper�
ator matrix

(11)

S

A0 x( )

S

S̃

S̃

S̃

En
1– d

dx
����

En
1–

L11 … L1m

… … …
Lm1 … Lmm⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

where Lij ∈ K[x, ξ], i, j = 1, …, m. Explicit formulas for
transformations (9) and (10) applied to Lij are given in
[12, Sections 4.1 and 4.2].

If the original system is associated with an operator
L of form (2) and system (8) is associated with the
induced operator

(12)

(En denotes the shift by n: Env(n) = v(n + 1)), then the
equality degL(y) = n0 holds for some integer n0 if and
only if the sequence v(n) of the coefficients of series
y(x) satisfies system R(v) = 0 for all n ≥ t + n0 (here, t
is the same as in (12)).

Let f(x) be a series or a formal sum and g(n) be the
corresponding sequence of the coefficients. Let N0 ∈ �
and, if f(x) is a formal sum, N0 ≥ stpg(n). Let 

be a formal sum consisting of all terms occurring in
f(x) the power of x in which is not less than N0.

The following proposition is easily derived from the
above discussion.

Proposition 1. Let L be an operator of form (2), R
be its induced operator (12), and integer t be the same
as in operator R. Let f(x) be a formal sum and g(n) be
its sequence of the coefficients. Then,

(i) if N ≥ stpg(n), then degL( f(x)) ≤ degL(⎣ f(x)⎦N);
(ii) the formal sum f(x) is subordinate to system

L(y) = 0 if and only if L( f(x)) < –t + stpg(n).

2.3. Indicial Equations

Recall that, for a nonzero element a(x) = 

from K((x)), its valuation valxa(x) is defined as

(13)

with valx0 = ∞. In the scalar case, to obtain estimates
of valuations of analytical solutions at singular points
and bounds for degrees of polynomial solutions, the
so�called indicial algebraic equations are used (see,
e.g., [15, Ch. IV]). To determine similar bounds for the
systems under consideration, some variants of the
indicial equations are required. The induced recur�
rence systems introduced in Section 2.2 allow us to
construct such equations.

If the leading matrix Bl(n) of system (8) is singular,
then one can construct the l�embracing system

(14)

for (8) by the EGσ algorithm. In a similar way, one can
construct the t�embracing system

(15)

The bounds of interest can be found from certain
algebraic equations:

R Bl n( )En
l Bl 1– n( )En

l 1– … Bt n( )En
t+ + +=

f x( ) N0

aix
i

∑

valxa x( ) min i : ai 0≠{ },=

Bl n( )v n l+( ) Bl 1– n( )v n l 1–+( ) …+ +

+ Bt n( )v n t+( ) 0=

Bl n( )v n l+( ) Bl 1– n( )v n l 1–+( ) …+ +

+ Bt n( )v n t+( ) 0.=
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(i) Let y(x) ∈ K((x))m be a solution of the differen�
tial system for which (8) is an induced recurrence sys�
tem. Then, ν = valxy(x) satisfies the equation

(16)

(ii) Let y(x) ∈ K[x]m be a solution of the differential
or difference system for which (8) is an induced recur�
rence system. Then, ν = degy(x) satisfies the equation

(17)

(here, degy(x) =  for y(x) = (y1(x), …,

ym(x))T ∈ K[x]m).
Using system (14) when n increases from –∞, we

can obtain a nonzero element from zero elements of
the sequence only if the leading matrix of system (14)
is singular, which yields (i). Assertion (ii) is proved
similarly.

Equation (17) may be viewed as the indicial equa�
tion for the original system at point ∞, and the greatest
nonnegative integer root of this equation yields the
upper bound for exponents of the polynomial solu�
tions. If equation (17) has no nonnegative integer
roots, then the original system has no polynomial
solutions. Similarly, in the differential case, equation
(16) can be used for finding lower bounds of solution
valuations at point 0. (Substitution of x + α for x into
the original system transforms point α to point 0.)

As applied to (16) and (17), the term “indicial equa�
tion” is used in a conventional sense because, for exam�
ple, the equations obtained in this way are not unique
and depend on the constructed l� and t�embracing sys�
tems.

3. UNIVERSAL DENOMINATOR

The set of monic irreducible polynomials from K[x]
will be denoted as Irr(K[x]).

3.1. Differential Case

For a differential system S of the considered form,

one can find an l�embracing system . If solution of
system S has singularity at point α, then α is a root of

the determinant of the leading matrix of system .
The ability to find a lower bound eα of valuation of any
solution of system S at a point α by means of the cor�
responding indicial equation makes it possible to con�
struct a universal denominator. If the indicial equation
corresponding to some α has no integer roots, then S
has no rational solutions. Note that the bounds ei are
the same for all roots αi of each factor of the left�hand
side of the indicial equation, and the calculations rely
on this [16]. Let polynomials p1(x), …, ps(x) ∈
Irr(K[x]) are made to correspond to nonnegative integers
e1, …, es. Then, for the universal denominator, we can
take the polynomial

detBl ν l–( ) 0.=

detBt ν t–( ) 0=

maxi 1=
m

degyi x( )

S

S

(18)

In what follows, we will also need the polynomial

(19)

and the number

(20)

3.2. Difference Case

If p(x) ∈ Irr(K[x]), f(x) ∈ K[x], then valp(x) f(x) is
defined as the greatest n ∈ � such that pn(x)| f(x)
(valp(x)0 = ∞) and valp(x)F(x) = valp(x) f(x) – valp(x)g(x)

for F(x) = , f(x), g(x) ∈ K[x]. This definition

agrees well with (13).
For p(x) ∈ Irr(K[x]), f(x) ∈ K[x]\{0}, we define the

finite set

for  = ∅, we set  = –∞ and

 = +∞.

The denominator denF(x) of a rational function F(x)
is a polynomial of the least possible degree with the lead�

ing coefficient equal to one such that F(x) =  for

some polynomial f(x). The denominator denA(x) of a
matrix A(x) ∈ Matm(K(x)) is the least common multi�
ple of the denominators of entries of matrix A(x). Let

 be a leading matrix of the l�embracing system

and  be a trailing matrix of the t�embracing sys�
tem for (6). We set

(21)

One of the algorithms for constructing a universal
denominator consists of two steps. On the first step, it
constructs the set Q = {q1(), …, qs(x)}, s ≥ 1, of all ele�
ments from Irr(K[x]) such that

t = 1, …, s. For each qt(x) ∈ Q, the quantity

is determined. The set of all p(x) for which p(x) =
qt(x + i) for some t, i, 1 ≤ t ≤ s, 0 ≤ i ≤ dt, is denoted by M.

On the second step, the universal denominator

(22)

where

U x( ) pi

ei–
x( ).

i 1=

s

∏=

Ũ x( ) pi

ei r+–
x( ),

i 1=

s

∏=

ρ r degpi x( ).

i 1=

s

∑=

f x( )
g x( )
��������

�p x( ) f x( )( ) z � : p x k+( ) f x( )∈{ };=

�p x( ) f x( )( ) �p x( ) f x( )( )

�p x( ) f x( )( )

f x( )
denF x( )
����������������

Ar x( )

A0 x( )

V x( ) denAr
1–

x r–( ), W x( ) denA0
1–

x( ).= =

min�qt
V x( )( ) 0, max�qt

W x( )( ) 0,≥=

dt max�qt
W x( )( ).=

p
γp x( ) x( ),

p x( ) M∈

∏
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(23)

is calculated. If we take into account that some (some�
times, many) γp(x) for different p(x) differing from one
another by a shift by an integer coincide, the compu�
tation can considerably be sped up [4, 5, 8, 17].

In what follows, we will need the polynomial

(24)

where lcm stands for the least common multiple.
Proposition 2. Let

(25)

t = 1, …, s, and

(26)

Then, the equality

(27)
holds for all j = 0, 1, …, r.

Proof. Structure of the universal denominator U(x)
obtained by the above�mentioned algorithm is such

that, for  = , we have

t = 1, …, s. Therefore,

and, since degU(x) = degU(x + j) for any j, we have

 – degU(x + j) = . Thus,

equality (27) holds. �
Remark 2. Quantities μ1, …, μs and ρ can be found

when constructing U(x) without additional computa�
tions.

Both in the differential and difference cases, we
have

(28)

4. SEARCH FOR NUMERATORS FOR KNOWN 
UNIVERSAL DENOMINATORS

4.1. Polynomial Solutions

First, we consider the well�known problem of
searching polynomial solutions.

γp x( ) min valp x n+( )V x( ),

n �∈

∑
⎩
⎨
⎧

=

valp x n–( )W x( )

n �∈

∑
⎭
⎬
⎫

.

Ũ x( ) lcmi 0=
r U x i+( ),=

μt valqt x i+( )U x( ),
i 0=

max=
dt

ρ r μtdegqt x( ).

t 1=

s

∑=

degŨ x( ) degU x j+( ) ρ+=

Ũ x( ) lcmj 0=
r U x j+( )

valqt x i+( )Ũ x( )
i 0=

di r+

∑ valqt x i+( )U x( ) rμt,+
i 0=

di

∑=

degŨ x( ) degU x( ) r μtdegqt x( ),

t 1=

s

∑+=

degŨ x( ) r μtdegqt x( )
t 1=

s

∑

degŨ x( ) degU x( )– ρ.=

After the induced system is constructed and, if nec�
essary, the corresponding t�embracing system for it is
found, we determine the upper bound N of the expo�
nents of all polynomial solutions as the greatest non�
negative integer root of equation (17). If there are no
such roots, we conclude that the original system has no
polynomial solutions. In some cases, the set of linear
constraints obtained together with the t�embracing
system gives us an opportunity to improve the estimate
of bound N [7, Section 3], but we will not discuss this
here. The polynomial solutions themselves can be
found by the method of undetermined coefficients.
However, currently, coefficients of the polynomial
solutions can be found more efficiently by means of
the recurrence system obtained (see, e.g., [6]).

Let us rewrite (15) as

(29)

Taking into account that v(n) = 0 for n > N, we will
successively find

To do this, we consider (29) for a fixed n as a system of
linear algebraic equations in v(n + 1). For n = N – t, N –
t – 1, …, solutions of such systems will contain con�
stants the set of which will change when turning to the
next n as long as the matrix on the left�hand side of the
current system (29) is singular. On the one hand, the
system must be compatible, which will give relations
(linear algebraic equations) for earlier introduced
constants; on the other hand, new constants come to
existence, the number of which is equal to the differ�
ence of m and the rank of the matrix of the left�hand
side. To the algebraic equations obtained, we add
equations

(30)
in the constants and the linear constraints with zeros
substituted for the unknowns vi(η) for η < 0 and η > N.

The resulting set of expressions  + v(N –
1)xN – 1 + … + v(0) is the set of all polynomial solu�
tions of the original system (the constants occur lin�
early in v(N ), v(N – 1), …, v(0)).

4.2. Change of Unknowns and the Order 
of the Induced System

We further assume that, for the original system L(y) =
0, the universal denominator U(x) is constructed by
formulas (18) and (22). We also assume that, in accor�

dance with (19), (20), (24), and (26),  and ρ are
found. Substitution of (4) into the original system L(y) =
0 and subsequent transition to the system with polyno�
mial coefficients are achieved by going from the oper�
ator L to the operator

(31)

B̃t n( )v n t+( ) B̃t 1+ n( )v n t 1+ +( ) …––=

– B̃l 1– n( )v n l 1–+( ) B̃l n( )v n 1+( ),–

v N( ) v N 1–( ) … v 0( ) v 1–( ) … v l t+–( )., , , , , ,

v 1–( ) 0, v 2–( ) 0, …, v l t+–( ) 0= = =

v N( )xN

Ũ x( )

L1 Ũ x( )L 1
U x( )
���������.=
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The induced recurrence operators for L and L1 are
denoted by R and R1, respectively. The numbers t and
l are determined based on the operator R (see (12)).
Similar quantities related to R1 are denoted as l1 and t1.
The valuation of a matrix is assumed to be the least val�
uation of its entries; accordingly, the degree of a matrix
is the greatest degree of its entries.

Proposition 3. The following relations hold:
(i) ordR1 – ordR ≤ ρ;
(ii) ordR ≤ ordL – t and ordR1 ≤ ordL – t1.
Proof. It will suffice to prove for scalar operators,

i.e., for m = 1. In the general case, L can be repre�
sented as the operator matrix (11). Similar situation
holds for R.

(i) One can check that, in the transition from L to
L1, each term of the operator L is transformed such
that the order of the corresponding induced operator
increases by not more than ρ.

(ii) We have ordR = ord  l – t and ordR = ord l1 – t1,
with l, l1 ≥ ordR. �

4.3. Multiplication by the Universal Denominator

The assertion of the following theorem is a key one
for justification of the new algorithm for searching
rational solutions.

Theorem 1. Let f(x) be a formal sum that is subor�
dinate to the system L(y) = 0, v(n) be a sequence of its
coefficients, and

(32)
Let, in the product U(x) f(x) written in terms of powers

of x in the differential case and in terms of powers 
in the difference case, all powers of x with the expo�
nents –1, …, –ordR – ρ have zero coefficients. Then,
the original system L(y) = 0 has rational solution

.

Proof. Note that L1(U(x) f(x)) = .
Since the formal sum f(x) is subordinate to the original
system, by Proposition 1(ii) and equality (32), we have
L( f(x)) < –ordL – ρ – degU(x). Taking into account
(28), we obtain

By virtue of Proposition 3(ii), we have –ordL ≤ –t1 –
ordR1 and

(33)

For the sequence g(n) of the coefficients of the product
U(x) f(x), we have stpg(n) = stpv(n) + valxU(x). Let us
show that –ordR1 ≥ stpg(n). To do this, it will suffice
to prove that –ordR1 ≥ stpv(n) + degU(x). The latter
inequality follows from (32) and Proposition 3. From
Proposition 1(i), it follows that

stpv n( ) ordL t ρ– degU x( ).–+–=

x
n

1
U x( )
��������� U x( )f x( ) 0

Ũ x( )L f x( )( )

degL1 U x( )f x( )( ) degU x( ) ρ L f x( )( )+ +=

< degU x( ) ρ ordL– ρ– degU x( )–+ ordL.–=

degL1 U x( )f x( )( ) t1 ordR1.––<

By virtue of Proposition 1(ii), the coefficients of the
formal sum  satisfy the recurrence

system with the operator R1. However, the last ordR1

coefficients of this formal sum are zeros, since the
powers of x with the exponents –1, …, –ordR – ρ have
zero coefficients in U(x) f(x) by assumption. By virtue
of Proposition 3(ii), ordR1 ≤ ordR + ρ. Hence, if we
supplement  up to an infinite series by
terms with zero coefficients, the entire sequence of
coefficients of this series will satisfy the system with
the operator R1. Then, it follows that 

is a polynomial solution of the system F1(y) = 0. �

Remark 3. Construction of the set of all sequences
with stopping point (32) satisfying the system R(v) = 0
requires less expenditures if the trailing matrix of the
system is nonsingular. In the case of its singularity, if
there arises a finite set � of linear constraints when

transiting to the t�embracing system (v) = 0, then,
in accordance with Remark 1, certain elements of this
set are deleted from it, with (32) playing role of N in
Remark 1.

4.4. Termination of Search of Rational Solutions

Theorem 1 and Remark 3 show that, to find the
numerators corresponding to the universal denomina�
tor U(x), up to a certain moment, we can follow the
same scheme as in the case of searching polynomial
solution, which was discussed in Section 4.1. However,
system (15) will now be the induced system for the
original one: substitution (4) is not used. As before,
system (29) is the t�embracing system for (15) written
in the way convenient for our purposes. As before, we
consider (29) as a system of linear algebraic equations
in v(n + t). Now, these systems are solved successively
for n = e*, e* – 1, …, –ordL + t – ρ – degU(x). Again,
there will appear constants the set of which will change
when the matrix on the left�hand side of a current sys�
tem (29) is singular (there arise linear algebraic equa�
tions for the earlier introduced constants and new
constants). The formal sum with the coefficients
found is multiplied by U(x). The coefficients of powers
of x with the exponents –1, –2, …, –ordR – ρ in the
product obtained are set equal to zero. To the linear
algebraic equations obtained, linear constraints (with
zeros substituted for the unknowns vi(η) for η < 0 and
η > e* + degU(x)) that were not deleted in accordance
with Remark 3 are added. Having solved the system of
linear algebraic equations obtained, we finally find a
set of constants that can take arbitrary values. The
terms in which the exponents of x lie in the range from
0 to e* + degU(x) transformed in accordance with the
solutions of this system give us the desired numerators
of the rational solutions.

degL1 U x( )f x( ) ordR1–( ) t1 ordR1.––<

U x( )f x( ) ordR1–

U x( )f x( ) 0

U x( )f x( ) ordR1–

R
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4.5. The Use of Recurrence Operator Instead 
of Multiplication by a Polynomial

Upon multiplication of a series or a formal sum f(x)
by a polynomial U(x), the sequence of coefficients of
f(x) is transformed by applying a recurrence operator
SU(x), which can be constructed based on the polyno�
mial U(x) by means of (9) in the differential case and
(10) in the difference case.

In the approach to searching the numerators sug�
gested in Section 4.4, the direct multiplication of the
formal sum can be replaced by the application of a cer�
tain scalar recurrence operator to a finite sequence of
coefficients of this sum (the operator is applied inde�
pendently to all components of the vector). As will be
shown in Section 6.1, this circumstance makes it pos�
sible to demonstrate advantages of the new algorithm
compared to the standard one in certain cases.

5. STANDARD AND NEW ALGORITHMS 
FOR SEARCHING RATIONAL SOLUTIONS

For the sake of comparison of the standard and new
algorithms, which will be performed in Section 6.1, we
number steps of the new algorithm by numbers 1, 2, 3,
…, and those of the standard algorithm, by 1°, 2°, 3°, ….
If the differential and difference cases are considered
separately in the description of a certain step, they are
denoted by the symbols d/dx and E, respectively.

5.1. Standard Algorithm

1°. (d/dx) By means of the EGδ algorithm (Section
2.1), construct the l�embracing system for the original
one and find potential singular “points” (irreducible
polynomials) (see Section 3.1). For each of these
“points,” find (using shift, construction of the induced
recurrence system with the help of EGσ) the least inte�
ger root of the indicial polynomial corresponding to it.
If one of these polynomials has no integer roots, then
STOP. Otherwise, let p1(x), …, ps(x) be candidates for
singular “points corresponding to the least integer
roots e1, …, es with negative values. Get the universal

denominator by setting U(x) = .

(E) Apply EGσ (Section 2.1) to the original system,
find l� and t�embracing systems. Construct polynomials
V(x) and W(x) and, based on them, a universal denomi�
nator U(x) by means of one of the known algorithms, say,
the algorithm from [5] (see Section 3.2).

2°. Perform substitution (4) into the original sys�
tem L(y) = 0 and clear denominators turning to the
system L1(y) = 0 of form (31) with polynomial coeffi�
cients.

3°. For the system L1(y) = 0 obtained, construct
the induced system R1(v) = 0, apply EGσ to it, and get

the recurrence system  = 0 with a nonsingular
trailing matrix. (This will possibly result in a finite set

p1

e1–
x( )…ps

es–
x( )

R̃1 v( )

� of linear constraints.) If the determinant of this
matrix has no nonnegative integer roots, then STOP.
Otherwise, set  equal to the greatest of these roots.

4°. Find polynomial solutions of the system L1(y) = 0
using  as the upper bound for the powers of these
solutions (Section 4.1). This will yield numerators
corresponding to the universal denominator U(x).

5.2. New Algorithm

In addition to the differences of the new algorithm
from the standard one that were mentioned in the
Introduction, the former differs from the latter by a
strategy of checking the absence of rational solutions it
uses on the earlier stages of the computation [18, 19].
This check does not increase computational complex�
ity of the algorithm.

1. (d/dx) The same constructions as on step 1°
(d/dx) of the standard algorithm plus addition calcula�
tion of ρ (see (20)).

(E) Applying EGσ to the original system, find l�
and t�embracing systems. Construct polynomials V(x)
and W(x) and, based on them, the universal denomi�
nator U(x) by means of the algorithm from [5] (see
Section 3.2) and, at the same time, get the value of ρ
(see (26)).

2. For the original system, construct the induced
recurrence system R(v) = 0. By means of EGσ, find

the t�embracing system  = 0 for it with a nons�
ingular trailing matrix, having additionally obtained a
finite set � of linear constraints. Find the indicial
equation. If it has no nonnegative integer roots, then
STOP. Otherwise, calculate the greatest integer root
e*. If e* + degU(x) < 0, then STOP.

4. Find numerators corresponding to the universal
denominator U(x) following the procedure specified
in Sections 4.4 and 4.5.

6. COMBINED ALGORITHM

6.1. Comparison of Computational Costs

To calculate the universal denominator U(x), the
standard and new algorithms perform the same actions
(steps 1° and 1).

The standard algorithm performs substitution (4)
into the system L(y) = 0 and clears denominators in
the system obtained (step 2°). Then, it constructs the
induced system R1(v) = 0, applies EGσ to it, and gets

system  = 0 with a nonsingular trailing matrix
(step 3°). By means of this system, on step 4°, coeffi�
cients of those terms of the formal sum are constructed
in which the exponents belong to the set

(34)
The new algorithm constructs on step 2 the recur�

rence system  = 0 and, with the help of this sys�

e

e

R̃1 v( )

R̃1 v( )

e e 1– … ordR1–, , ,{ }.

R̃1 v( )
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tem, on step 3, determines for the original system
those terms of the corresponding formal sum in which
the exponents belong to the set

(35)

The standard algorithm uses  as an upper bound
of the degrees of the polynomials that are numerators
corresponding to the universal denominator U(x).
The new algorithm uses e* + degU(x) for this purpose.
The equality

(36)

holds, in particular, if e* and  are exact upper bounds
of the exponents of x in the solutions to the systems
L(y) = 0 and L1(y) = 0, respectively, in the form of
series in terms of decreasing powers of x. Either of the
numbers e* and  may be greater than the correspond�
ing upper bound, and we cannot calculate the devia�
tions in advance. Much depends on the way the EGσ

algorithm was applied to the induced systems (this
algorithm is based on eliminations similar to the Gauss
ones, and, in certain situations, different choices of
equations to perform eliminations are possible).
Therefore, the assumption that equality (36) holds is
quite reasonable when comparing expenditures of the
standard and new algorithms (actually, both e* ≥  and
e* ≤  is possible). According to Proposition 3, the
number of elements of set (34) does not exceed the
number of elements of set (35). However, when l =
ordL and ordR1 = ordR + ρ, these sets contain the
same number of elements. These two equalities are
often satisfied.

According to the new algorithm, the formal sum
obtained should be multiplied by U(x) on step 3. Sup�
pose that

(37)

As shown in Section 4.5, the multiplication of the for�
mal sum by U(x) is equivalent to the application of the
recurrence operator of the order equal to degU(x) to
the sequence of coefficients of this formal sum. Each
term of the formal sum has a coefficient in the form of
a vector of m components from the field K. The recur�
rence operator corresponding to the multiplication by
U(x) is written as a scalar operator. The cost of the
construction of the recurrence system R1(v) = 0 is not
less than the total cost of the construction of the sys�
tem R(v) = 0 and operator SU(x). The multiplication of
a coefficient of such an operator by a vector from Km

requires m multiplications in the field K, and the mul�
tiplication of a matrix coefficient of the operator
requires m2 such multiplications and m(m – 1) addi�
tions. The use of the new algorithm for the calculation
of each term of the formal sum yields saving with the
asymptotic estimate Ω(mu), where u = degU(x).

The new algorithm does without substitution (4);
the order of the induced system used by the algorithm
is generally smaller. Other things being equal, this is an

e* e* 1– … ordL t ρ– degU x( )–+–, , ,{ }.

e

e e* degU x( ),+=

e

e

e
e

ρ degU x( ).≥

advantage of the new algorithm. A problem may arise
with the number of elements of the sequence to be cal�
culated by means of the recurrence system. The next
subsection describes combination of the standard and
new algorithm.

6.2. Condition Checked

As can be seen from the previous discussion, if con�
dition (37) is fulfilled, we may without much risk to
expect that step 3 will require less computation than
step 4°. Step 2 seems to require less expenditures than
the successive steps 2° and 3°. The following, partly
heuristic, variant of the algorithm is suggested:

(1) Step 1.
(2) If (37) holds, then steps 2 and 3.
(3) Otherwise, steps 2°, 3°, and 4°.
In the search of the numerators corresponding to

the universal denominator found, this combined algo�
rithm chooses between the standard and new algo�
rithms. One can try to replace the condition on which
the choice depends by another one, which may result
in a more efficient combination of the algorithms.
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