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Construction of Laurent, regular, and formal (exponential–logarithmic) solutions of full-rank linear ordi-
nary differential systems is discussed. The systems may have an arbitrary order, and their coefficients are for-
mal power series given algorithmically. It has been established earlier that the first two problems are algorith-
mically decidable and the third problem is not decidable. A restricted variant of the third problem was sug-
gested for which the desired algorithm exists. In the paper, a brief survey of algorithms for the above-
mentioned decidable problems is given. Implementations of these algorithms in the form of Maple proce-
dures with a uniform interface and data representation are suggested.
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1. INTRODUCTION

Systems of linear ordinary differential equations
arise in many fields of mathematics. Infinite power
series are used for representing both solutions of the
systems and the systems themselves. The problem of
representation of infinite series is important for com-
puter algebra. In this paper, like in the previous works
[1–5], we use an algorithmic representation: for each
series, an algorithm is specified that, given an integer
, finds the coefficient of . Any deterministic algo-

rithms are allowed. Of course, for such a series repre-
sentation, algorithmically undecidable problems inev-
itably arise; for example, it is impossible to verify algo-
rithmically the equality of a series to zero (this follows
from classical Turing’s results [6]).

However, if it is known that a system of  equations
with the same number of unknowns has a full rank
(which, in the general case, cannot be verified algo-
rithmically), then algorithms can be proposed for
finding solutions of various kinds. It should be empha-
sized that we mean local solutions, i.e., solutions of
the system at some point, say, the origin. These solu-
tions have a form of series in or contain such series as
components. All series are assumed to be formal, and
their convergence is not considered. Earlier, algo-
rithms for constructing all Laurent and regular solu-
tions were proposed in [2, 7]. As for formal exponen-
tial–logarithmic solutions (further, following the
established tradition, we will call them simply formal
solutions), the situation is more complicated. Such
solutions are remarkable by virtue of the fact that a
first-order normal system , where  is an

-matrix with entries given by formal infinite
Laurent series and  is a vector of  unknown func-
tions, has an -dimensional space of formal solutions
[8]. However, it may happen that a system of any order
has no formal (or even any) solutions and it is impos-
sible to verify algorithmically whether or not this is
true.

The problem of determining the dimension of the
space of formal solutions remains undecidable even in
the case where it is known in advance that this dimen-
sion is not equal to zero, i.e., the system has nonzero
formal solutions [3, 4]. At the same time, it was shown
that, if the system is known to have at least  linearly
independent formal solutions, then these  solutions
can be constructed algorithmically [5]. The rest of the
paper is as follows. Some preliminary results are given
in Section 2. A brief survey of algorithms for solving
the above-mentioned decidable problems is presented
in Section 3. An implementation of the algorithms in
the form of a Maple package is considered in Section 4.

To our best knowledge, the proposed package is the
first complete implementation of algorithms for con-
structing solutions of systems with the coefficients
given by infinite, rather than truncated, series. There
are known algorithms that, under certain restrictions,
can work with such systems. For example, the algo-
rithm from [9] is capable of finding regular solutions of
systems satisfying certain conditions. However, it is
additionally assumed that we can determine whether
any series involved is zero. The problem of representa-
tion of infinite series is not considered. As for the
implementations of the proposed algorithms, they
were based on the assumption that the coefficients of
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the system are polynomials or rational functions rather
than infinite series. Our algorithms were earlier pub-
lished in [2, 5, 7], which also presented prototype ver-
sions of the procedures and results of first experiments
with them. By now, the procedures have been
improved, with the interface and data representation
being uniform for all procedures.

The procedures are freely available at the address
http://www.ccas.ru/ca/doku.php/eg .

2. PRELIMINARIES

2.1. Systems and Operators

Let  be a number field. The ring of polynomials
and the field of rational functions of  over  are con-
ventionally denoted as  and , respectively.
The ring of formal power series of  over  is denoted
as , and the field of formal Laurent series, as

. For a nonzero element  from
 its valuation  is defined as  =

, with . Valuation of a vector or
matrix with series entries is assumed to be equal to the
minimum of valuations of the components.

If  is a ring (in particular, field), then 
denotes the ring of square matrices of order  with
entries from .  denotes the identity matrix of order

,  denotes a transposed matrix , and ,
, denotes the ( )-matrix coinciding with

the th row of the -matrix .
This paper deals with local problems, i.e., with

searching for solutions at some point. Without loss of
generality, this point may be assumed to be 0. It is con-
venient to write differential systems in terms of the

operation  rather than the conventional dif-

ferentiation operation  (the transition from one
notation to the other presents no difficulties). We con-
sider systems of the form

 (1)

where  is a vector of unknown
functions of . As for the coefficients

 (2)

we assume that , ,
with  (the leading matrix of the system) being
nonzero.

Entries of matrices  are called coefficients of
the system. These are algorithmically specified formal

power series: for any element  =  of a
matrix from (2), there is an algorithm  that calcu-
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lates  for . Such series are called con-
structive formal power series.

System (1) can be written as , where oper-
ator  has the form

 (3)

 is the order of  (notation ). Operator (3)
can be represented by a single operator matrix belong-
ing to :

 (4)

, , with .

Thus, the system can be represented in an operator
form by using one of the two operator representation.
In what follows, the form of the representation will be
selected from convenience considerations.

We say that the rows of operator (4) with numbers
, , are linearly independent over 

if, from the fact that the linear combination of the rows
with the left multipliers  is equal
to zero, i.e., , it follows that

.

The matrix  is the leading matrix of the system
 and the operator  independent of the form

of the representation of the system and operator.
If all rows of operator (4) are linearly independent

over , then we say that the equations of the
corresponding system are independent over .
In this case, the operator , as well
as the system , has the full rank. We will also
call them the operator and system of full rank. It is
these operators and systems that are considered in this
paper.

2.2. Local Solutions

A solution of a differential system the components
of which are formal Laurent series is called Laurent
solution.

A regular solution has the form

 (5)

where , . Each solution of
this kind can be written as

 (6)
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where  and , .
In this case, we say that  admits factor  or that

 is an admissible factor of the solution . The set

 (7)

is called a complete set of admissible factors of regular
solutions of system , if (i) no exponents of the ele-
ments of set (7) differ by an integer; (ii) each element

 of set (7) is an admissible factor for some nonzero
regular solution of system ; (iii) for every nonzero
regular solution of system , set (7) contains an
admissible factor for this solution.

All regular solutions of a given system that admit
one and the same factor form a linear space over .

A formal solution can be represented in the para-
metric form as

 (8)

The expression , where  is a polynomial over ,
is called an exponential part of the formal solution, 
is the ramification index of the solution. The term  is
called a regular part: , . The
exponential part can also be written in terms of the
parameterizing variable , like in (8).

If  and , the solution is regular (see
above); in all other cases, it is irregular.

2.3. Systems with Polynomial Coefficients, Induced 
Recurrence Systems, EG-Algorithms

A particular case of a power series is a polynomial.
Consider systems of form (1) with polynomial coeffi-
cients. Let the expansion of a Laurent solution in
terms of powers of  has coefficients , ,
where . Then, the sequence

 satisfies the induced recurrence system

 (9)
where  is a nonpositive integer, Bt(n), ...,

. This system is constructed by
the application of the transformation

 (10)

to the original differential system [10], where 
denotes the shift operator: ,

.
One can consider the recurrence operator

 corresponding to system (9).
An operator  is called an l-embracing operator for the
operator  if its leading matrix (i.e., the matrix coeffi-
cient of the greatest degree of , or, which is the same,
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the least degree of , in the expansion of the opera-
tor ) is nonsingular and  for some

. Accordingly, system  is
called an l-embracing system for the system  if

 is an l-embracing operator for . The prefix “l”
indicates that the leading matrix is nonsingular. It may
happen that the l-embracing system has more solu-
tions than the original system of form (9).

The algorithm EG  [11–13] transforms system
 into the l-embracing system . When

we consider solutions in the form of sequences, in
other words, sequential solutions of system (9), the
algorithm EG  allows us to get rid of all unnecessary
solutions. To this end, a finite set of linear constraints
is additionally constructed. System  is trans-
formed into an l-embracing system  by per-
forming a sequence of one-type steps, on each of
which one operation is not safe in the sense that it can
result in appearance of extra solutions. For example,
the th equation of the system ( ) can be
replaced by a linear combination of all equations of the
system, and this linear combination has polynomial
coefficients . If  is an integer
root , then, by virtue of (9), for any solution

, , of the original system,
the following linear constraint must hold

 (11)

In Section 3, we apply a special variant of the EG
algorithm that makes it possible to work with infinite
induced recurrence systems, which come to existence
when considering differential systems with the coeffi-
cients in the form of series.

Remark 1. A differential variant of the EG algo-
rithm is the algorithm EG , which, given a differential
system of full rank with polynomial coefficients, con-
structs the l-embracing system, i.e., the system with a
nonsingular leading matrix, with the set of solutions of
the constructed system containing all solutions of the
original system [3, 13, 14].

3. ALGORITHMS FOR CONSTRUCTING 
LOCAL SOLUTIONS

Let us outline key ideas of algorithms for searching
for local solutions of the three types indicated in Sec-
tion 2.2. The basic attention will be paid to the discus-
sion of how to overcome difficulties arising from the
fact that the coefficients are infinite series.
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3.1. Laurent Solutions: Lower Bounds of Valuations 
and Sequences of Coefficients

For the original differential system , the
induced recurrence system is  with ,
where transformation  is given by (10). We have

and the induced system has the form

 (12)
where

•  is a column vector of
unknown sequences such that  for all negative

 with sufficiently large , ;
• ;
•  is a nonzero leading matrix of the operator

 and system (12).
It is shown in [2] that the induced system 

has a full rank; i.e., the equations of the system
 are independent over  if and only

if the original differential system  is of full
rank. The system  in this case has a Laurent
solution  +  if and only
if the two-sided sequence

 (13)

of column vectors of the coefficients of  satisfies
the induced recurrence system

,

,

,
…

If the matrix  is nonsingular, then the equa-
tion  may be viewed as an indicial equa-
tion of the original differential system: the set of inte-
ger roots of this algebraic equation includes the set of
all possible valuations of the Laurent solutions of the
system . This makes it possible to find the
lower bound of valuations of all Laurent solutions of
the system.

However, in many cases, the matrix  is singu-
lar even if the leading matrix  of the system

 is nonsingular. The following theorem states
that this is not a deadlock situation.

Theorem 1 ([2]). Let , where  is an operator
of full rank belonging to . Let all coef-
ficients of the operator  be constructive power series.
Then, there exists an operator  such
that the leading matrix  of the operator 
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is nonsingular, and this operator can be constructed
algorithmically. In addition, a finite set of linear con-
straints (see Section 2.3) can be constructed to remove
redundant solutions arising when going from system

 to .
The operator  the existence of which is stated in

Theorem 1 has, like the operator , polynomial coef-
ficients. Note that  has a finite order.

The special variant of algorithm EG  based on this
theorem, which will be referred to as EG , allows one
to construct any number of first terms of the sum
(operator)

 (14)
In this sense, we can construct this sum.

The system  with a nonsingular leading
matrix and the set of linear constraints mentioned in
the theorem allow one to find all Laurent solutions of
the original differential system  of full rank.
Here, it is important that the set of linear constraints is
finite and that each of these constraints contains only
a finite number of nonzero terms (because we are
interested only in solutions  for which  for
all negative  smaller than the lower bound of valua-
tions of the Laurent solutions of the original differen-
tial system).

Now, we introduce a concept to be used in what
follows. Let  be a formal
power series and  be a nonnegative integer. Then, the
polynomial  +  is
called a -truncation of the series  (or truncation to
the power ). In this case,  is called the truncation
power.

Let  be a linear differential system of arbitrary
order with the coefficients in the form of formal power
series. Then, the -truncation  of system  is a sys-
tem whose coefficients are -truncations of the corre-
sponding coefficients of system . In the same sense,
we can consider -truncations of the operators.

Remark 2. If system  of form (1) is of full rank,
then the least integer  such that  has a full rank
for any  is called width of . There exist systems

 of full rank and nonnegative integers  such that 
has a full rank, whereas  has a smaller rank. How-
ever, it is proved in [2] that the width is determined for
any system of full rank. Under our assumptions about
the system, its width can be found algorithmically.

Let  denote the space of Laurent solutions of sys-
tem  and , , the space the elements of
which are -truncations of the corresponding ele-
ments of the space . We consider algorithmic search
of Laurent solutions of differential systems with the
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coefficients in the form of series as a solution of prob-
lem P . It is assumed that a full-rank system  of form
(1) and  are given.

P : Find  such that  for
all  and a basis of the space , where

.
An algorithm for solving problem P  is based on

considering the induced recurrence system and reduc-
ing it to a “convenient form” by the above-discussed
EG  algorithm. System (12) is infinite, and the algo-
rithm cannot work with all matrices , ,
simultaneously. To overcome this, lazy calculations
and storage of the information about all already per-
formed reductions and shifts are used. This makes it
possible to involve into the computational process
matrices  with the increasing values of , without
need to carry out anew already performed work on
matrices with lesser .

A more detailed description of the algorithm for
constructing Laurent solutions is given in [2].

3.2. Regular Solutions:
Generalized Approach by Heffter

For a differential system  and any integer
, the result of application of  to  is

where  ∈  and ,
 for all  [16, 17]. Let us denote

. Then,  for all .
The general scheme of searching regular solutions

of the systems under consideration is similar to that
proposed in [15] for an arbitrary-order full-rank linear
differential systems with polynomial coefficients (see
also [13]). The scheme itself is a generalization of the
Heffter algorithm [16] and is based on the consider-
ation of a sequence of systems

 (15)

where  is the system

 (16)

(when  in (16), we have ). The follow-
ing theorem is a generalization of the assertion proved
by Heffter for the scalar case.

Theorem 2 ([7, 15, 18]). The set of nonnegative
integers  for which system  has a Laurent solution

L S
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is finite; if it is empty, then  has no nonzero
solutions in . If this set is nonempty and

 is its greatest element, then any solution of system
 belonging to  can be written as

 (17)

where

 (18)

is a Laurent solution of system . At the same time,
any Laurent solution of system  of form (18) gener-
ates solution (17) to system .

This brings us to the following scheme of construc-
tion of regular solutions.

1. For a given differential system , consider the
induced recurrence system and, by means of the EG
algorithm discussed in Section 3.1, turn to the recur-
rence system with the nonsingular leading matrix .
Calculate all roots of the equation . Con-
sidering two roots  and  equivalent if ,
construct set  containing one representative of each
equivalence class.

2. For each , find regular solutions admitting
the factor . To this end, consider system , the
result of substitution of (5) into  and subsequent
multiplication by . Using the operators 
corresponding to the system , find Laurent solu-
tions of the systems in (15) (until the first system that
has no Laurent solutions). This yields regular solutions

 in form (17) for the system .
Construction of regular solutions by this scheme is

reduced to construction of Laurent solutions of non-
homogeneous differential systems with Laurent right-
hand sides. It does not significantly differ from the
construction described in Section 3.1. The recurrence
system for such a nonhomogeneous differential system
is also nonhomogeneous, and its right-hand side is a
sequence of the coefficients of the right-hand side of
the differential system: each component of this vector
sequence is an algorithmically specified sequence of
elements of the field . The EG  algorithm can also
be extended to such nonhomogeneous recurrence sys-
tems. As a result of application of this algorithm, we
obtain a nonhomogeneous recurrence system with the
left-hand side given by operator (14) and the right-
hand side in the form of a sequence of column vectors.
The arising linear constraints are nonhomogeneous,
and the number of them is finite. The set containing
all integer roots of the algebraic equation

 and the valuation of the right-hand side
of the recurrence system obtained (if  the val-
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uation of a sequence of form (13) is the number ; if all
elements of the sequence are zeros, then the valuation
is equal ) includes valuations of all possible Laurent
solutions of the original differential system. This solves
problem P  modified for the nonhomogeneous case.

Let us give more detail about the representation of
regular solutions output by the algorithm. Let 
denote the space of regular solutions of system  that
admit the factor  and  denote the space
obtained from  by the replacement of each ele-
ment of form (6) with

By virtue of finite dimension of the space , it is
clear that the valuations of the series  and 
are bounded from above. In addition, for all suffi-
ciently large , the equality  = 
holds. We consider algorithmic search of regular solu-
tions of differential equations with the coefficients in
the form of series as solution of problem P . Let a full-
rank system  of form (1) and  be given.

P : Find a complete set of admissible factors of
nonzero solutions of system . Determine a 
such that, for any  from this set,  =

 for all  and find a basis of the space
, where .

The induced systems arising when applying the
above-described scheme and their solutions are
infinite. Like in the case of Laurent solutions, the
algorithm uses lazy calculations. When searching for
solutions of a current system from sequence (15), solu-
tions of the previous systems found earlier are
extended if necessary to ensure adequate truncation of
the right-hand side of the current system of the
sequence. Construction of system  is, in fact, not
required, since its induced recurrence system can be
obtained from the induced recurrence system for  by
replacing  with .

A detailed description of the algorithm for con-
structing regular solutions is given in [7].

Remark 3. According to the traditional definition,
a regular solution is a linear combination of solutions
of form (5) that may include terms with the values of 
differing by a noninteger number. Our algorithm con-
structs a basis for each subspace consisting of solutions
of form (5) for which the values of  differ by an inte-
ger. The union of all such bases is a basis for the space

 of regular solutions meant in the traditional sense.
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3.3. Formal Solutions: 
Decidable Variant of the Search Problem

As has already been mentioned in Section 1, the
problem of calculation of dimension of the space of all
formal solutions of a full-rank system is algorithmi-
cally undecidable. The problems of existence testing of
irregular solutions and construction of a basis of all
formal solutions are also algorithmically undecidable
[3, 4].

It is possible to suggest a decidable variant of the
problem of searching formal solutions: if it is known in
advance that the system has at least  linearly inde-
pendent formal solutions, then these  solutions can
be constructed algorithmically [5]. Further, we con-
sider just this variant of the problem.

The following theorem is valid.
Theorem 3 ([5]). Let a system  have an irregular

solution . Then, for all sufficiently large nonneg-
ative integers , the system  has an irregular solu-
tion with the same exponential part as that in .

Applying one of the algorithms suggested in [5, 19,
20] to a -truncation of the original system  (as well
as the EG  algorithm if needed (see Remark 1); if a
transformation from a system with polynomial coeffi-
cients to a scalar equation is performed, then algo-
rithms from [21, 22] may be useful for searching expo-
nential parts), we obtain a set of candidates for the role
of the exponential part of a solution of . For each

such a candidate , we perform in the system 
the substitution

where  is a new independent variable and  is a
vector of new unknown functions. Multiplying the
results by , we obtain a system whose coeffi-
cients are Laurent series for which the lower bound of
the valuation is known. By multiplying this system by

 to the required integer power, we obtain system 
whose coefficients are constructive power series. To
the system , we apply the algorithm for construct-
ing the space  of all regular solutions. Then, the
dimension of the space of formal solutions of system 

with the exponential part  is .
Thus, if we know in advance that the dimension of

the space of all formal solutions of the original system
is not less than , we can construct a subspace of for-
mal solutions of the dimension not less than  by the

-truncations , by way of increasing  from a cer-
tain  until the subspace of solutions of the
desired dimension is constructed. For , we can take,
for example, the system width (see Remark 2). It is
possible to take  as well; however, in this case, it is

N
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required to check whether the rank of the truncated
system is full for each value  under study.

We consider search of formal solutions of differen-
tial equations with the coefficients in the form of series
as solution of problem P . It is assumed that a full-
rank system  of form (1) and  are given.

P : Find set , , of exponential
parts of formal solutions of system  such that, for

, , the inequality  +
 +  holds. For each of

the systems  and number , find solution
of problem P .

If  is greater than the dimension of the space of
formal solutions of , then the algorithm for construc-
tion formal solutions does not terminate. A detailed
description of the algorithm can be found in [5].

3.4. On Representation of Series in Solutions

All Laurent series in the solutions are constructed
in a truncated form with the number of terms not less
than the number requested upon launching the algo-
rithm (sometimes, the number of terms is even greater
if this is required to ensure the desired dimension of
the solution space). This representation is similar to
that in the differential systems themselves, where a
series is given by the algorithm for determining the
coefficient by its index. Small distinction is related
with the fact that our algorithms calculate all coeffi-
cients sequentially and, when calculating the coeffi-
cient with index , all nonzero coefficients of the series
with indices lesser than  (sometimes, as mentioned

≥ 0p
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kk Sq W N

, , ,1 kS S … S 0d
R
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S

i
i

above, even with greater indices) will be calculated.
Therefore, we use the representation that includes all
calculated coefficients of the series contained in the
solutions.

4. PROCEDURES FOR CONSTRUCTING 
LOCAL SOLUTIONS

Algorithms for construction local solutions under
consideration are implemented in the computer alge-
bra system Maple [23] as procedures of package EG1

[7, 13]).

4.1. System Representation

For a differential system  with the infinite
series in the role of the coefficients, representation (1)
is used, where

• matrix coefficients , ,  are
represented by means of standard objects Matrix of
the Maple system;

• elements of a matrix coefficient are generally
represented as a sum of a polynomial (initial terms of
the series) and an infinite power sum specified by
means of the standard object Sum of system Maple
with an initial value  of the summation index;
the coefficients of  in such a sum can be given by an
arbitrary function of index ; both the polynomial
part and the part in the form Sum may be lacking;

1 The package and a session of Maple with examples of using the
procedures described are available at the address http://www.
ccas.ru/ca/doku.php/eg

=( ) 0L y

0( )A x ,1( )A x … ( )rA x

≥0 0k
kx
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Fig. 1.

> sys:= Matrix([[x +Sum(x^k,k = 3..infinity),0,0],
[0,Sum(x^k,k = 1..infinity),0],
[0,0,Sum(x^k,k = 1..infinity)]]).theta(y(x),x,2)+,

Matrix([[x^2,0,0],[0,1,0],[0,0,1]]).theta(y(x),x,1)+
Matrix([[-1-x + x^2-Sum(x^k,
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• the multiplier  is given as
;

• the product of a matrix coefficient and a vector
function is denoted by means of the symbol “.” of the
standard operation of matrix multiplication used in
Maple.

Example 1. Let  and the system be given in
form (1) as

In Maple, this system in the given representation
can be as in Fig. 1. This representation is very similar
to the original mathematical notation.

In our earlier implementations [2, 7], we repre-
sented the differential system  by the operator
matrix (4). The operators  were considered as power
series in  with the coefficients from . Recall that
the order of each such a coefficient does not exceed
the order of the system . If indices  are
fixed, the operator  is given by a function of an inte-
ger argument, for example, , which calculates the
coefficient (as a polynomial in ) of  in this opera-
tor. For all pairs of indices , these functions can be
defined by procedures. In simple cases, functions if
or piecewise are used. This representation is com-
pact: it is required to specify  functions indepen-
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dent of the order of the system. However, this repre-
sentation has its disadvantages as well: it is not quite
visual and the order of the system cannot be seen.
When searching Laurent and regular solutions, the
order is not required. However, it is explicitly used by
the algorithm for searching formal solutions. There-
fore, for the sake of unification of the system specifi-
cation by all three algorithms discussed, we turn to the
representation described above.

4.2. Laurent Solutions
The algorithm for searching Laurent solutions is

implemented as procedure EG[LaurentSolu-
tion]. In addition to the system, which is given as
described in Section 4.1, the procedure has the follow-
ing three additional arguments:

 is the name of the operator ,

 is the desired vector function ,
 is the least necessary degree of truncation of

series in the solution.
Applying the procedure, we obtain a solution of

problem P  in accordance with its statement in Sec-
tion 3.1.

Example 2. Let us apply the procedure to the sys-
tem from Example 1 (see Fig. 2). It can be seen that, in
the given case, the degree of the truncation is greater
than the requested one (1 rather than 0), since, other-
wise, the basis of the solutions could not be deter-
mined in accordance with problem P .

4.3. Regular Solutions
The algorithm for searching regular solutions is

implemented as procedure EG[RegularSolu-
tion]. In addition to the system, which is given as
described in Section 4.1, the procedure has the same
three additional arguments as those in EG[Lau-
rentSolution].

Applying the procedure, we obtain a solution of
problem P  in accordance with its statement in Sec-
tion 3.2.

Example 3. Let us apply the procedure to the sys-
tem from Example 1 (see Fig. 3). Like in Example 2,
the degree of the truncation is greater than the
requested one (1 rather than 0), since, otherwise, the
basis of the solutions could not be determined in
accordance with problem P . The Laurent solutions

θ dx
dx

var ( )y x

0d

L

L

R

R

Fig. 2.

⎡
⎢ ⎡ ⎤⎣ ⎣ ⎦

> EG:-LaurentSolution(sys,theta,y(x),0);
+ ( ) + ( ) + ( )2 2 2

1 1 1x_c O x ,-x_c O x ,-x_c O x
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found in Example 2 are contained in the regular solu-
tions found for .

4.4. Formal Solutions
The algorithm for searching formal solutions is

implemented as procedure EG[FormalSolu-
tion]. The first three arguments of the procedure are
the same as in procedures EG[LaurentSolution]
and EG[RegularSolution], and the fourth argu-
ment is

, name of variable that parameterizes formal solu-
tions (8).

There are also two optional arguments. The order
of the optional arguments is not fixed. They are spec-
ified by equalities with a key word: ’truncate_so-
lution’ =  specifies the minimal necessary degree
of series truncation in the solution (by default,

); ’solution_dimension’ =  deter-
mines the lower bound for the dimension of the space
of formal solutions (by default, ).

Applying the procedure, we obtain a solution of
problem P  in accordance with its statement in Sec-
tion 3.3.

Example 4. Let us apply the procedure to the sys-
tem from Example 1 (see Fig. 4). This will result in a
list of three elements. The first element of the list Res
[1] is the space of regular solutions of the system,

=1 0_c

τ

0d

=0 0d N

= 1N

F

which coincides with that found in Example 3. The
dimension of this space is two, the number of arbitrary
constants . The second element is the space of
formal solutions with the exponential part ; its
dimension is also two. The third element is two spaces

of formal solutions with the exponential parts 

and , with the dimension of each space being
equal to one. The overall dimension of the space of
formal solutions found is equal to six, as was requested
by means of the argument ’solution_dimen-
sion’.

In Section 3, it was shown how the search of regular
solutions is used in the construction of formal solu-
tions and how the search of Laurent solutions is used
in the construction of regular solutions. Note that the
procedure of construction of all formal solutions con-
structs also all regular, in particular, Laurent solutions.
Actually, one procedure EG[FormalSolution] is
sufficient in order to obtain solutions of all three types.
However, if it is required to construct, say, only Lau-
rent solutions, then it is advantageous to use procedure
EG[LaurentSolution], because it will construct
them considerably faster, even if the original system
has no formal solutions but the Laurent ones. For this
reason, we propose three procedures for searching
solutions of various types.

,1 2_c _c
/1 xe

− /2 xe
/2 xe

Fig. 3.

⎡
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> EG:-RegularSolution(sys,theta,y(x),0);
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> Res:= EG:-FormalSolution(sys,theta,y(x),t,'solution_dimension'= 6):
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