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Abstract—Linear ordinary differential equations whose coefficients are infinite (formal) power series given in
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1. INTRODUCTION
In [1, 2], algorithms were suggested for searching

for the so-called Laurent and regular solutions (their
definitions can be found in Section 2.2) of linear ordi-
nary differential equations with infinite formal power
series in the role of the coefficients. The question of
how to represent infinite series is very important in
computer algebra. In the given case, the series are
specified in the truncated form, which means that the
complete information about the equation is not avail-
able. Based on this incomplete information, the algo-
rithms give maximum possible number of series terms
occurring in the solutions. Results of experiments with
preliminary (test) versions of procedures implementing
these algorithms were reported in [1, 2]. By now, the
procedures have been improved, and the interface and
data representation have been unified. The improved
procedures are discussed in this paper. These proce-
dures can be accessed at

http://www.ccas.ru/ca/TruncatedSeries.

2. PRELIMINARIES
2.1. Equations, Operators, and Truncated Series
Let  be an algebraically closed number field. For

the ring of polynomials in  over K, we use the stan-
dard notation . The ring of formal power series of

 over K is denoted as , and the field of formal
Laurent series, as . For a nonzero element a(x) =

 from , its valuation  is defined

by the equality , with valx0 = .

Let , the t-truncation  is obtained
by discarding all terms in  with the degree greater
than t; if , then . The number  is
referred to as the truncation degree.

In this paper, differential equations are written by

means of the operation  rather than the con-

ventional differentiation operation  (the transition

from one form of notation to another is easily per-
formed). We consider equations of the form

(1)

where y is an unknown function of x. As for the coeffi-
cients of the equation , we assume
that , , with the leading coef-
ficient  being not equal to zero. We also assume
that valuation of at least one of the coefficients a0(x),

 is equal to zero.

Equation (1) can be written as  = 0, where
operator  has the form

(2)

with r being the order of the operator .
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In what follows, it is assumed that L is a differential
operator with polynomial coefficients,

(3)

and that there given nonnegative integers 
such that , . It is also assumed
that  and that valuation of at least one of the
polynomials  is equal to zero:

(4)
Definition 1. The prolongation of operator L is any

operator of the form

such that ; i.e.,  –
ai(x)) > ti, .

To the truncated differential equation

(5)

, , we make to correspond
operator (3) and a set of numbers . The pro-
longation of operator (3) in this case is also referred to
as the prolongation of equation (5).

If  (or ) is a differential operator, by a solution of
operator  (or ), we mean a solution of the equation

 ( ).
If  is a truncated variant of operator , then L

and  are truncations of the operator  and
equation , respectively.

2.2. Laurent and Regular Solutions of Equations
A solution of a differential equation that is a formal

Laurent series, is called a Laurent solution.
A regular solution has the form

(6)
where , . Every solution of
this form can be written as

(7)

where  and , . In this
case, we say that  is a power factor of the solution .
The set

(8)
is referred to as a complete set of power factors of regu-
lar solutions of equation  if,
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– among the exponents of the elements in set (8),
there are no those that differ from one another by an
integer;

– each element  of set (8) is a power factor for
some nonzero regular solution of equation ;

– for each nonzero regular solution of equation
, set (8) contains a power factor for this solu-

tion.
Remark 1. According to the definition accepted in

computer algebra (see, e.g., [3]), any linear combina-
tion over K of solutions of form (6) is also called a reg-
ular solution.

3. ALGORITHMS FOR CONSTRUCTING 
SOLUTIONS

3.1. Laurent Solutions

Let a differential equation  have nonzero

Laurent solutions and  be a general
Laurent solution, with the coefficients cn containing arbi-
trary constants. The algorithm suggested in [4, Sect.6]
constructs truncation of the general Laurent solution of

any given degree  for : .
It was shown in [1] that, for equation (5) with trun-

cated coefficients, one can find truncations of maxi-
mally high degrees for Laurent solutions that are
invariant with respect to all possible prolongations of
the equation. An algorithm was suggested that receives
an operator  and nonnegative integers

, which have the same meaning as those in
(3), at its input and constructs a finite set of expres-
sions W of the form

(9)

where , that have the
following properties (by solutions, we mean solutions
belonging to K((x))):

• if (9) is an element of the set W, then, for any pro-
longation  of the operator , there is a solution 
for which there exist  such that

• if  is a solution for some prolongation  of the
operator  and there exists an element (9) of the set W
such that

(10)

then there exist  such that

• values m are the greatest possible values related to
each element of the set W in the specified way.
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The set W includes all expressions of form (9) that
possess these properties.

3.2. Regular Solutions

Let a differential equation  have nonzero
solutions of form (7). The algorithms for constructing
such solutions are discussed in [5–13]. By means of
these algorithms, one can construct a truncation of a
general regular solution for any given truncation
degree m. That is, for all series occurring in the solu-
tion, the coefficients up to the degree m are calculated,
which can contain arbitrary constants.

For equation (5) with truncated coefficients, the
algorithm suggested in [2] constructs regular solutions
with the maximally large truncations of the series
occurring in them such that these solutions are invariant
with respect to various possible prolongations of the
equation. The input of the algorithm is the operator

 and nonnegative integers . As a
result of the algorithm application, the complete set
(8) of the power factors of regular solutions becomes
known, which is the same for all possible prolonga-
tions of the operator . For each admissible factor ,
a finite set W(λ) of expressions of the form

(11)

is constructed, where gs(x, C1, ..., Cr) ∈ K[C1, ...,
Cr]((x)) for , that possess the following
properties:

• if (11) is an element of the set , then, for any
prolongation  of the operator , there exists its solu-

tion  for which there exist

 such that

for ;

• if  is a solution of

some prolongation  of the operator  and there exists
an element (11) of the set  such that

(12)

for , then there exist  such that

for ;
• for each element of the set , 

are the greatest possible values that are related to  in
the specified way.
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The set  includes all expressions of form (11)
that possess these properties; i.e., W(λ) contains the
complete list of formulas of form (11) that are invariant
with respect to the prolongations of the operator .

4. LITERALS
Let an operator  with polynomial coefficients of

form (3) and a set of numbers  be given, and
let the coefficients of  have the form

(if , then  for j = di + 1, di + 2,
). We say that coefficients  are not specified if
 for .

In addition to constructing truncations of (Laurent
and regular) solutions that are invariant with respect to
all prolongations of the equation , the algo-
rithm allows one to estimate the effect of unspecified
coefficients on the subsequent terms of the series
occurring in the solutions. For unspecified coeffi-
cients, the algorithm uses symbolic notation; they are
further referred to as literals.

When considering a prolongation  of an operator
, it may occur that  has a Laurent solution such

that  does not contain expression (9) for which the
equality of valuations (10) holds. The algorithm can
determine what conditions on the unspecified coeffi-
cients are to be fulfilled in order that such an expres-
sion appears.

When considering a prolongation  of an operator
, it may occur that  has solution  =

 such that  does not contain

expression (11) for which the equality of valuations
(12) holds. The algorithm can determine what condi-
tions on the unspecified coefficients are to be fulfilled
in order that such an expression appears.

For a truncated equation, the complete set of
power factors is the same for all prolongations of the
equation if free terms of all coefficients are known and
at least one of them is not equal to zero. However, the
maximal values of  in (7) can be different for different
prolongations. The algorithm can determine what
conditions on the unspecified coefficients are to be
fulfilled in order that maximal values of  become
invariant with respect to possible prolongations of the
equation.

5. PROCEDURES FOR CONSTRUCTING 
SOLUTIONS

The algorithms for constructing solutions under
consideration are implemented in the computer alge-
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bra system Maple ([14]) in the form of procedures of
the TruncatedSeries1 package. The package pro-
vides the user with two basic procedures:

• LaurentSolution – construction of Laurent
solutions;

• RegularSolution – construction of regular
solutions.

Preliminary implementations of these procedures
were presented in [1, 2]. They are partially based on
the implementations of the algorithms in the EG
package [13].

5.1. Arguments and Result of Procedure Operation
Both procedures have the same arguments. The

main arguments are as follows:
• The first argument is a differential equation of

form (5), where , . The appli-
cation of  to an unknown function  is written as
theta(y(x),x,k). Instead of the operator , one
can also use an ordinary differentiation (operator

); the application of the operator  to an

unknown function  is specified in the standard
(for Maple) form as diff(y(x),x$k). The trun-
cated coefficients of the equation are specified in the
form of expressions , where  is a
polynomial of degree ti or less over the field of alge-
braic numbers, i.e., in the form similar to mathemati-
cal notation. Irrational algebraic numbers are repre-
sented in Maple as expressions RootOf(p(_Z),
index = k), where p(_Z) is an irreducible poly-
nomial whose kth root is just the given algebraic num-
ber. For instance,  = .

• The second argument is an unknown function,
e.g., y(x).

The result of operation of the LaurentSolu-
tion procedure is the list of truncated Laurent solu-
tions from the set W described in Section 3.1. Each
element of the list has the form

(13)

where  is a valuation for which there exists a Laurent
solution for any prolongation of the given equation, 
has the same meaning as that in Section 3.1, cn are cal-
culated coefficients of the Laurent solution that are
linear combinations of arbitrary constants of the form

, 
The result of operation of the RegularSolu-

tion procedure is the list of truncated regular solu-
tions invariant with respect to prolongations of the

1 The package and the Maple session with examples of use of the
procedures described are available at the address http://www.
ccas.ru/ca/TruncatedSeries
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coefficients of the given equation. The truncations
contain arbitrary constants of the form , 

The following optional parameters can also be
specified:

• ’output’=’literal’ provides obtaining the
result in the form of one truncation with literals rather
than as a list of invariant truncations. All truncated
series in the output have the form

(14)

where , , and coefficients cn
contain literals; the literals are represented in the form

, which corresponds to an unspecified coefficient

of xj in the coefficient of  in the original equation;
• ’degree’=n, where n is an integer, provides

obtaining truncations of the given degree. In this case,
the coefficients of the truncations will possibly be
expressed in terms of literals. The degrees of the con-
structed truncations may be greater than the given n:
the number of the calculated coefficients should be at
least sufficient for determining all possible valuations
of the Laurent series occurring in the solution.

5.2. Examples of Construction of Laurent Solutions
1. Each of the following equations

(15)

(16)
can be represented in the form

(17)
Let us apply the procedure to (17).

> eq1 := (x+O(x^2))*(theta(y(x),x,1))+
(-x+O(x^2))*y(x);

> LaurentSolution(eq1, y(x));

Thus, there is only one invariant truncation of the
solution with the valuation  and the truncation
degree m = 1.

2. Let us apply the procedure to (17) once more
having specified the desired truncation degree 2 by
means of the option ’degree’=2:
> LaurentSolution(eq1, y(x), ’degree’=2);

As can be seen, the coefficient of the term of degree
2 depends on the literals; i.e., different prolongations
of equation  may have different coefficients of this
term so that the invariant solution found earlier is the
greatest possible one.
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3. Let us add some terms corresponding to the
coefficients of (15) to the coefficients of equation .
We will obtain a truncation of the solution up to the
degree x2, which corresponds to the expansion of
function , which is a solution of (15), into the
power series:

> eq2 := (x+O(x^3))*(theta(y(x),x,1))+
(-x+x^3/2+O(x^4))*y(x);

> LaurentSolution(eq2, y(x));

We, again, have  = 1, but m = 2. It is easy to check
that the solution truncation found is a prolongation of
the invariant truncation of the solution to equation
eq1. It can be seen that the substitution of 
and , which correspond to the coefficients
added, into the above-found solution of equation 
truncated up to the degree m = 2 yields a truncated
solution of equation .

4. Now, let us add several terms corresponding to
the coefficients of (16) to the coefficients of equation

. We will obtain a solution truncated up to degree
x2, which corresponds to the expansion of function

, which is a solution of (16), into a power series.
> eq3 :=

(x+x^2/2+O(x^3))*theta(y(x),x,1)+
(-x-x^2-x^3/2+O(x^4))*y(x);

> LaurentSolution(eq3, y(x));

Hence,  = 1 and m = 2. Like in the previous case, it is
easy to check that the truncated solution found is a
prolongation of the truncated solution of equation
eq1. It can be seen that, if we substitute  and

, which correspond to the coefficients added,

into the solution of equation  truncated up to
degree 2, we will obtain a truncation of equation .

Thus, different prolongations  and  of equa-
tion  yield different invariant truncations of solu-
tions. Note that, as expected, no new solutions
appeared. The invariant truncations of solutions to
equations  and  are prolongations of the invari-
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ant truncation of the solution to  and correspond to
its prolongation up to degree 2, which depends on lit-
erals, upon substitution of the appropriate coefficients
of equations  and  for the literals.

5. For each of the equations , , and ,
there exists only one value of the valuation for which
Laurent solutions exist for any prolongation of the
equation. Let us apply the procedure to the following
equation:

> eq4 := 
(-1+x+O(x^2))*theta(y(x),x,2)+
(-2+O(x^2))*theta(y(x),x,1)+
(x+O(x^2))*y(x);

> LaurentSolution(eq4, y(x));

The answer obtained means that there exists only
one invariant truncation of the solution with the valu-
ation  and the truncation degree m = 1.

6. Let us apply the procedure to  once more
having specified the truncation degree of the solution
equal to 3 by means of the option ’degree’=3:
> LaurentSolution(eq4, y(x), ’degree’=3);

7. Let us add several coefficients to those of equa-
tion  and apply the procedure.

> eq5 := 
(-1+x+x^2+O(x^3))*theta(y(x),x,2)+
(-2+O(x^3))*theta(y(x),x,1)+
(x+6*x^2+O(x^4))*y(x);

> LaurentSolution(eq5, y(x));
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The answer obtained means that there exist two
invariant solution truncations: one with the valuation

 and the truncation degree , which is a
prolongation of the earlier found truncation of the
solution of equation , and the other with the valu-
ation  and the truncation degree , which
is a new one.

8. Let us add several coefficients to those of equa-
tion  in a different way and apply the procedure.

> eq6 := (-
1+x+x^2+O(x^3))*theta(y(x),x,2)+

(-2+x^2+O(x^3))*theta(y(x),x,1)+

(x+6*x^2+O(x^4))*y(x);

> LaurentSolution(eq6, y(x));

The answer obtained means that there again exists
only one invariant truncation of the solution with the
valuation  and the truncation degree m = 3,
which is a prolongation of the earlier found truncation
of the solution of equation .

It can be seen that different prolongations  and
 of equation  yield different invariant trunca-

tions. Note that there appeared a new invariant solu-
tion of equation  with a different valuation. Note
also that the second invariant truncation of equation

 and the invariant truncation of solution to  are
prolongations of the invariant truncation of solution to

 corresponding to its prolongation up to degree 3 in
literals, with the substitution of the appropriate coeffi-
cients from equations  and  for the literals.

9. Let us verify whether it makes sense to consider
the case of different  in (5) or we can confine
ourselves to the case where these numbers are equal to
each other. In other words, we are going to check
whether the replacement of each ti by  in (5)
can reduce accuracy of the result of the algorithm oper-
ation.

For the next equation, we obtain five initial terms
of the solution:

> eq7 := (1+O(x))*(theta(y(x),x,1))+

(x^4+O(x^5))*y(x);

> LaurentSolution(eq7, y(x));
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PROGRAMMING A
If we take , then we obtain only one ini-
tial term of the solution:
> eq8 := (1+O(x))*(theta(y(x),x,1))+

O(x)*y(x);

> LaurentSolution(eq8, y(x));

This shows that the replacement of each ti with

 reduces accuracy of the algorithm opera-
tion. Hence, the efforts related to rejection of a priori
assumption on equality of all ti are not spent for nothing.

10. There are equations that have no nontrivial
Laurent solutions for any prolongations:
> eq9 := (2+O(x))*(theta(y(x),x,1))+

(1+O(x))*y(x);

> LaurentSolution(eq9, y(x));

The answer—an empty list—means that there are
no solutions for all prolongations of equation .

11. The procedure can be applied to equations

specified in terms of the differentiation operator .

> eq10 := (-x+x^2+x^3+O(x^4))*
(diff(y(x),x,x))+

(-3+x+O(x^2))*(diff(y(x),x))+
O(x^3)*y(x);

> LaurentSolution(eq10, y(x));

If condition (4) is not fulfilled, invariant trunca-
tions of the Laurent solutions do not exist. In this case,
the procedure returns FAIL. For the following equa-

tion given in terms of , the procedure constructs an

equivalent equation in terms of  and determines that
condition (4) is not fulfilled; hence, invariant trun-
cated solutions do not exist:

> eq11 := (x^2+O(x^3))*diff(y(x),x,x)+

O(x)*diff(y(x),x)+(1+O(x))*y(x);

 − + 
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> LaurentSolution(eq11, y(x)).

FAIL
5.3. Examples of Constructing Regular Solutions

1. Apply the procedure for searching regular solu-
tions:

> eq12 :=
(-1+x+x^2+O(x^3))*theta(y(x),x,2)+
(-2+O(x^2))*theta(y(x),x,1)+
(O(x^4))*y(x);

> RegularSolution(eq12, y(x));

2. Add one additional coefficient  to equa-
tion  and apply the procedure once more:

> eq13 :=
(-1+x+x^2+O(x^3))*theta(y(x),x,2)+

(-2+x^2+O(x^3))*theta(y(x),x,1)+
O(x^4)*y(x);

> RegularSolution(eq13, y(x));

It can be seen that, in this case, there appears the
second truncation of the regular solution that contains
logarithm.

3. Apply the procedure to the same equation with
the option of the representation of the result in terms
of literals:

> RegularSolution(eq13, y(x),
’output’=’literal’);

 := + + 
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4. Apply the procedure to the same equation with
the option of specifying the truncation degree:

> RegularSolution(eq13, y(x), ’degree’=2);

The answer shows that, in order to obtain the 2-trun-
cation as a prolongation of the invariant truncation, it is
required to specify U[0, 4], U[1, 3], U[1, 4], U[2, 3], , i.e.,

the equation coefficients of x4, x3θ, , x3θ2, x4θ2.
5. Apply the procedure to the same equation with

both the option of representation of the result in terms
of literals and the option specifying the truncation
degree (the options can be used together):

> RegularSolution(eq13, y(x),
’output’=’literal’, ’degree’=2);
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6. Add one coefficient to equation  in a differ-
ent way: .

> eq14 := 
(-1+x+x^2+O(x^3))*theta(y(x),x,2)+
(-2+O(x^3))*theta(y(x),x,1)+
O(x^4)*y(x);

> RegularSolution(eq14, y(x));

We see that, in this case, a new invariant regular
solution—Laurent solution with valuation 
appears.

7. Apply the procedure to the equation:
> eq15 := (1+x^2+O(x^3))*theta(y(x),x,3)+

(4-x+(1/2)*x^2+O(x^3))*
theta(y(x),x,2)+
(4-2*x+x^2+O(x^3))*
theta(y(x),x,1)+
O(x^3)*y(x);

> RegularSolution(eq15, y(x));

In this case, there are three different invariant trun-
cations of regular solutions with different truncation
degrees (the degree of logarithm is k = 2).

8. Equation
> eq16 := (-1+x+O(x^3))*theta(y(x),x,2)+

(-1-x-(3/2)*x^2+O(x^3))*

12eq
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theta(y(x),x,1)+(3/4+(1/4)*x+
(3/4)*x^2+O(x^3))*y(x);

> RegularSolution(eq16, y(x));

In this case, we obtain the regular solution with a
noninteger  in the factor xλ.

9. One more equation:
> eq17 := (1+O(x^2))*theta(y(x),x,3)+

(1+2*x+O(x^2))*theta(y(x),x,2)+
(2+x+O(x^2))*theta(y(x),x,1)+
(2-x+O(x^2))*y(x);

> RegularSolution(eq17, y(x));

In this case, all prolongations of the equation have
three nonequivalent power factors with the exponents
–1, , , where ,  are represented by
constructs , index = 1) and

 + 2, index = 2).
10. The equation in terms of the differentiation

operator :

> eq18 := (-x+x^2+x^3+O(x^4))*
(diff(y(x), x, x))+
(-3+x+2*x^2+O(x^3))*
(diff(y(x), x))+
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O(x^3)*y(x)

> RegularSolution(eq18, y(x));

Having transformed the equation to that written in
terms of , the procedure gets equation . There-
fore, the computation results coincide.
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