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Abstract—The matrices considered in this paper belong to , i.e., to the ring of -matrices
whose entries are scalar difference operators with the coefficients from the difference field  of characteristic
0 with automorphism (“shift”) . A family of algorithms is discussed that allow one to check whether there
exists an inverse matrix for a given matrix from  in this ring and, if exists, to construct it.
These algorithms are made to correspond to complexities in terms of the number of arithmetic operations and
the number of shifts (i.e., applications of σ and ) in the field . The algorithms are implemented in the
form of Maple-procedures. This makes it possible to experimentally compare them in terms of time spent.
The selection of the best algorithm based on these experiments does not always coincide with the complexity-
based selection. An attempt is made to find out why this happens. A package of procedures for solving the
considered problems is suggested, where the main procedure includes a parameter that specifies which algo-
rithm is to be applied. If this parameter is lacking, than an a priori specified algorithm is selected that is rela-
tively good both from the complexity and experimental standpoint compared to the others.
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1. INTRODUCTION
Matrices with entries belonging to different rings

and fields are used in all areas of mathematics and in
applications. In this paper, the case in point is matrices
whose entries belong to the ring of linear difference
scalar operators over a difference field  with an auto-
morphism (shift) . The field  is assumed to have
characteristic 0. The main problems discussed are
those of checking whether a matrix of the type dis-
cussed is invertible and finding the inverse matrix if it
exists. We give a brief survey of known algorithms
based on regularization, i.e., on finding leading and
trailing matrices associated with the given operator
matrix whose entries belong to . In some algorithms,
frontal and rear matrices, rather than the leading and
trailing ones, are regularized (the entries of these
matrices also belong to ; in [1], for both types of
matrices, the common term “revealing matrices” was
used).

Thus, several algorithms have already been sug-
gested for the matrices discussed, which are listed in
Sections 3 and 4. Complexities of these algorithms
have been studied. In these studies, complexities of
two types were considered: (1) arithmetic complexity,
i.e., complexity in the worst case in terms of the num-

ber of arithmetic operations in the field , and (2)
shift complexity (also in the worst case) in terms of the
number of applications of σ and .

Some algorithms from this set have already been
implemented as Maple procedures. We present lack-
ing implementations of those algorithms that have rel-
atively low complexity and results of experimental
comparison of these algorithms in terms of their run
times. Interestingly, algorithms with low complexity
are not always the fastest ones, which is not surprising,
of course, since complexity (does not matter whether
arithmetic or shift complexity or even complexity in
terms of the total number of both operations in the
worst case) does not characterize all cost associated
with the algorithm execution. Moreover, comparison
of cost in the worst case does not cover all possible
cases; the “worst case” seldom happens, and the cases
included in the test set may not be the worst ones. It is
worth noting that, when we compare complexities
based on asymptotic estimates, we do not always get
adequate understanding of values of one or another
complexity for moderate-amount (not astronomical)
data.

In the selection of the most convenient, for exam-
ple, the fastest, algorithm from a set, complexity char-
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PACKAGE OF PROCEDURES FOR INVERTING MATRICES WHOSE ENTRIES 289
acteristics of the algorithms from this set play very
important role, of course. However, if complexities of
the algorithms are close to one another and we have
only asymptotic estimates, these estimates are helpful
only on the stage of a preliminary selection. It is very
desirable to carry out subsequent experimental com-
parison (testing), especially when sizes of the test tasks
are “typical” of the situations for which the algorithms
have been designed.

In the paper, we present some complexity estimates
for the algorithms from the considered set, as well as
results of experimental comparison of these algo-
rithms.

Note that, in [2], we gave a reference to the website
containing implementation of the algorithm with the
least (in the asymptotic sense) arithmetic and shift
complexities and noted that the implementation of the
algorithm differs from the algorithm itself in what con-
cerns regularization of the leading and trailing matri-
ces by means of a certain special variant of the EG
algorithm ([3, 4]). The selection of the appropriate
variant of this regularization, however, was not con-
sidered in [2]. In this paper, special attention was paid
to the comparison of algorithms at the implementa-
tion level.

A package of procedures for solving the considered
problems is suggested, where the main procedure
includes a parameter that specifies which algorithm is
to be applied. If this parameter is lacking, than an a
priori specified algorithm is selected that is good both
from the complexity and experimental standpoint
compared to the others.

This introduction is concluded by several com-
ments and agreements.

When the case in point is operator matrices, the
term unimodular matrix rather than the inverse matrix
is conventionally used. We will also use this term.

Algorithms for checking unimodularity and con-
structing inverse matrices for the differential case,
when  is a differential field of characteristic 0 with
the differentiation operation  and matrix entries
are scalar linear differential operators over , were
considered in [5]. For a given operator matrix , both
differential algorithms and difference algorithms (to
be discussed below) calculate dimension of the solu-
tion space  of the corresponding system .
This is done under the assumption that components of
the solutions belong to an adequate (see Section 2)
extension of field  associated with L. As established
earlier (see [6]), an operator matrix L of full rank (rows
of L are independent over the ring of scalar linear
operators) is unimodular if and only if ,
i.e., if the space  itself is zero.

In the sequel, we use the following notation. The
ring of  matrices (  is a positive integer) with
entries from a ring or field  is denoted as .
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If M is an  matrix, then , , denotes
the  matrix equal to the ith row of M. The diagonal

 matrix with entries  on the diagonal is
denoted as , and the identity  matrix,
as .

2. PRELIMINARIES
Recall that a difference ring is a commutative ring 

with unity and automorphism  (which will also be
referred to as shift). If  is a field, then it is called a dif-
ference field. In what follows, the difference fields are
assumed to be fields of characteristic 0.

A ring of constants of a difference field  is
 = c}. If  is a difference field,

 is a subfield of the field  (the field of con-
stants of the field ).

Let  be a difference field with automorphism 
and a ring  be a difference extension of field  (the
corresponding automorphism of  coincides with 
on , so that we use the same notation  for it).

Definition 1. A ring  that is a difference extension
of field  is an adequate difference extension of field

 if  is a field also for an arbitrary system

with a matrix , the dimension of the space
of solutions belonging to  that is linear over the field

 is equal to n.
The existence of an adequate difference extension

 for an arbitrary difference field is easily proved (see
[7, Sect. 5.1]). For an arbitrary adequate extension, the
equality  is not guaranteed; in the
general case,  is a proper subfield of .

Remark 1. The so-called q-difference case ([8, 9])
is included into the general difference case.

A scalar difference operator is an element of the
ring .

Definition 2. For a nonzero scalar operator f =
, its leading and trailing orders are defined as

follows:

and its order is defined as  It is
assumed that , , and .

For a finite set F of scalar operators (a vector, a
matrix, a matrix row, etc.), the leading order  is
defined to be the greatest leading order of its elements,
the trailing order , as the least trailing order of its
elements, and .
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290 ABRAMOV, KHMELNOV
A difference operator matrix is a matrix from
, σ–1]). In what follows, we associate such an

operator matrix, with matrices from . For
brevity, an operator matrix is further referred to as sim-
ply operator.

An operator is said to have a full rank (or is an oper-
ator of full rank) if its rows are linearly independent
over .

If

and , then L can be written in an extended
form as

where , with matrices 
(the leading and trailing matrices of the original oper-
ator) being nonzero.

Definition 3. Let the leading orders of rows of an
operator L be  and the trailing orders be

. The frontal matrix of the operator L is the
leading matrix of the operator PL, where

Accordingly, the rear matrix of the operator  is the
trailing matrix of the operator QL, where

The operator L is said to be strictly reduced if both
the frontal and rear matrices of this operator are
nonsingular.

Definition 4. An operator  is
called unimodular or invertible if there exists an inverse
operator : . The
set of unimodular  operators is denoted as . Two
operators  are said to be equiv-
alent if  for some .

Further, a fixed adequate difference extension of
the original difference field  with automorphism 
will be denoted as . The space of solutions of system

 belonging to  will be denoted as . For
shortness, we will sometimes speak of  as the space
of solutions of the operator .

Theorem 1. ([10]) Let  have full
rank. Then,

(i) if  is strictly reduced, then dimVL =

(ii) .
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3. REGULARIZATION:
FAMILIES OF ALGORITHMS EG AND RR

3.1. Algorithms  and 

For a full-rank operator L, algorithm  (see
[3, 4, 11]) constructs an equivalent difference operator

, σ–1]) such that  = ,  ≥
, and  has a nonsingular leading matrix. If  is

not of full rank, the algorithm informs about this.
We present the basic idea of this algorithm without

going into detail. Algorithm  constructs  by
modifying L; i.e., L is changed step by step turning
gradually into . On each step of the algorithm, it is
checked whether rows of the leading matrix are linearly
dependent over ; if they are, then, among the rows
that have nonzero coefficients in the linear dependency,
the row that has the greatest order is selected (if the
number of such rows is greater than one, any one of
them is taken). Next, the row selected is reduced by
means of the other rows of the operator. If the resulting
row is zero, then the rank of the original operator is not
full. Otherwise, with the help of , the reduced row is
shifted such that its leading order becomes equal to the
leading orders of other rows of the operator.

It was shown that, after several steps, the algorithm
terminates: either we get a zero row in the operator or
get an operator with a nonsingular leading matrix.

Similarly, algorithm  constructs an equivalent
difference operator  with a nonsingular trailing matrix.

The extended algorithm  (we call it )
allows us, in addition to , to find a unimodular oper-
ator  such that . In a similar way, algo-
rithm  can be defined.

Proposition 1 ([2, 10]). The estimate of arithmetic
complexity of algorithms  and  is given by1

where  is the exponent of the matrix multiplication,
. The estimate of the shift complexity is given by

The estimates of the arithmetic and shift complexities
of the algorithms  and  are given by

1 When finding asymptotic complexity estimates as functions of
variables n and d (assuming that ), we use not only the
O-notation but also the -notation (see [12] and [13, Sect. 2]);
the relation  is equivalent to the conjunction

 In other words, f(n,
d) and  are quantities of the same order. The relation

 is stronger than the relation f(n, d) =
.
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3.2. Algorithms  and 

For a full-rank operator , algorithm  (see [14,
15]) constructs an equivalent operator ,
σ–1]) such that , , and 
has a nonsingular frontal matrix. If  is not of full
rank, the algorithm informs about this.

Algorithm  is also based on the idea of search-
ing linear dependence of matrix (frontal, rather than
leading) rows and performing shifts.

The extended algorithm Ext  allows us, in
addition to , to find a unimodular operator 
such that .

Similarly, algorithm  constructs an equivalent
difference operator  with a nonsingular rare matrix.

The extended variant of algorithm  is called
.

Proposition 2 ([10]). The estimate of arithmetic com-
plexity of algorithms  and  is given by

The estimate of the shift complexity is

(1)

if results of all shifts of the rows are not stored. If all shift
results are stored, then (1) is replaced with .

The estimates of the arithmetic and shift complexities
of the algorithms  and  are given by

if results of all shifts of the rows are not stored. If all shift
results are stored, then the complexities are estimated as

3.3. Algorithms , 
Definition 5. Let the ith row of the leading matrix of

an operator L have the form

, . Then, the number k is called indent
of the ith row of L. If the th row of L is zero, then its
indent is equal to .

If the rows of L have pairwise different positive
indents, then the leading matrix is nonsingular: up to

Θ , Θ .4 2 4 2( ) ( )n d n d
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the order of the rows, it is a triangular matrix with non-
zero diagonal elements. Let us assume that the rows

 and  have identical positive indents k

and . Having performed one
arithmetic operation in , one can find  such
that the row

(2)

either has an indent that is greater than k, or its order
is less than d, or both. One of the two rows  that
has smaller trailing order is replaced in L by row (2); if
the orders of both rows are equal, either of them is
replaced. If L has a full rank, then, after not more than

 such unimodular transformations (each of them
is equivalent to the multiplication by a unimodular
operator from the left), the leading matrix will become
triangular. This technique can be used instead of
searching linear dependence of rows of the leading
matrix.

Remark 2. Under the assumption that  is a field of
rational functions of  with automorphism ,
this technique was used in [3] in the first version of
algorithm EG (see. also [16]).

The use of this technique results in algorithms 
and  for finding an equivalent operator with a
nonsingular leading or trailing, respectively, matrix.

Remark 3. If one of the algorithms  or 
is applied to an operator with a nonsingular rear
matrix, we get an operator that, along with a nonsin-
gular leading matrix, has a nonsingular rear matrix.
This follows from the replacement rule used: “One of
the two rows  that has lesser trailing order is
replaced in L by row (2); if the orders of both rows are
equal, either of them is replaced”.

Proposition 3 ([2]). The arithmetic complexity of 
algorithms is estimated as

(3)

The estimate of the shift complexity is

(4)

The estimates both of the arithmetic and shift complexi-
ties of the algorithms  and  are given
by

Remark 4. In the differential case, the EG-elimi-
nations result, generally, in an operator that is not
equivalent to the original one. The operator obtained
has all solutions of the original operator and, possibly,
some additional solutions. It is because of this reason
that, in the differential case, the algorithm for check-
ing unimodularity, as well as the algorithm for con-
structing the inverse operator, is based on  [5].
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292 ABRAMOV, KHMELNOV
The structure of the first difference algorithm ([10])
was similar to that of the differential algorithm. It is
the subsequent use of the  and  algorithms
as the basis of the algorithms for checking unimodu-
larity and constructing the inverse operator that made
it possible to reduce shift complexity in the difference
case.

4. CHECKING UNIMODULARITY, 
OPERATOR INVERSION

The existing algorithms for checking unimodular-
ity of an operator L and for constructing the inverse
operator , if exists, are based on the calculation of

. This calculation, in turn, relies on the regular-
ization algorithms (see Sect. 3 and Remark 3).

By virtue of Remark 3, the operators

(5)

equivalent to the operator L are strictly reduced. By
Theorem 1, we can calculate  and establish
whether L is unimodular. If , then, by virtue
of Theorem 1(i), the corresponding operator from (5)
belongs to  and  is easily calculated.

The algorithms from [10] are developed similar to
the algorithms for the differential case [5] with the
help of RR, whereas the algorithm from [2] is based on

, which made it possible to reduce the shift com-
plexity (see Remark 4). In [2], algorithms Unimodu-
larity Testing and Inverse Operator are proposed, the
arithmetic and shift complexities of which coincide
with (3) and (4) and are, respectively

The inverse operator is constructed by extended ver-
sions of the basic algorithms, whereas, for checking
unimodularity, basic versions are sufficient.

As shown in [10], the algorithms based on RR have
complexities  and  (if results of all shifts
are stored; otherwise, the shift complexity is .
For the algorithms based on EG, the complexities are

 and ).

5. IMPLEMENTATION,
EXPERIMENTAL COMPARISON

The considered algorithms were implemented2 in
Maple [17] (a preliminary version was presented in
[2]). The implementations rely on the implementa-
tions of algorithms EG, ΔEG, and RR for the differ-
ential case described in [1]. для дифференциального

2 The codes are available at http://www.ccas.ru/ca/egrrext
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случая. The procedures were modified for using in the
difference case and supplemented by implementations
of the extended versions of the algorithms. The algo-
rithm for checking unimodularity and constructing
the inverse operator that uses one of the algorithms
EG, ΔEG, or RR (at user’s option) as the base one is
also implemented. In this implementation, the shift is
defined to be , and a special choice of
the equation to be replaced is required when perform-
ing the elimination step in algorithms EG and ΔEG to
guarantee the termination of the algorithm operation.
There exists a version of these algorithms that does not
require such a special choice of the equation replaced.
In this version, the оператор σ – 1 is used for the shift
step (a similar variant of the EG algorithm for the q-
difference case was used [18, Rem.3]). However, when
the EG and ΔEG algorithms are used for the imple-
mentation of the algorithm for checking unimodular-
ity and searching the inverse operator, the version with
the control of the order of eliminations is applied (see
Remark 3).

The algorithms are implemented as procedures of
the new package EGRRext. The package supplies the
following procedures:

• EG, implements the EG algorithm and its
extended version ExtEG;

• RR, implements the RR algorithm and its
extended version ExtRR;

• TriangleEG implements the ΔEG algorithm
and its extended version ExtΔEG;

• IsUnimodular, implements the Unimodular-
ity Testing and Inverse Operator algorithms.

An operator  in the
input parameters of the procedures is presented as a list

where A is the explicit matrix

of size . The explicit matrix A is pre-
sented in the form of a standard Maple object
Matrix. The entries of this explicit matrix are ratio-
nal functions of one variable, which, in turn, are pre-
sented in a standard way. If t = 0, then the operator can
also be presented by means of only one explicit matrix A.

The IsUnimodular procedure returns true or
false as the result of checking of whether the input
operator is unimodular. If the optional input parame-
ter—variable name—is specified, then the corre-
sponding inverse operator is also calculated (if exists)
and assigned to this variable. The inverse operator is
also represented as a list consisting of its explicit
matrix and its leading and trailing orders. If the
optional variable name is not specified, then the pro-
cedure employs the Unimodularity Testing algorithm,

σ = −( ) ( 1)y x y x

−
−= σ + σ + + σ�

1
1

l l t
l l tL A A A

, , ,[ ]A l t

−= 1( | | | )l l tA A A … A

× − +( 1)n n l t
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PACKAGE OF PROCEDURES FOR INVERTING MATRICES WHOSE ENTRIES 293
otherwise, the Inverse Operator algorithm (see Sec-
tion 4). The procedure has one more optional param-
eter method, which may take values EG, TEG, or RR
specifying which of the algorithms EG, ΔEG, or RR is
used as the base one (if this parameter is not specified,
then the EG algorithm is used). In the first implemen-
tation presented in [2], only the EG algorithm was
used as the base one.

Example 1. Consider the application of the IsUn-
imodular algorithm to the operator

The explicit matrix is given by

with  and t = 0. The procedure is called twice for
each method: first, to check unimodularity; then, to
construct the inverse operator. Additionally, the com-
putation time is output:

> L := Matrix([[0, –1/x, 1, 0],
[0, –x/2, x^2/2, 1]]);

> st:=time():
IsUnimodular(L, x, ’method’=’EG’);
time()-st;

> st:=time():
IsUnimodular(L, x, ’InvL_EG',

’method’=’EG’);
time()-st;

> InvL_EG;

> st:=time():
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IsUnimodular(L, x, ’method’=’TEG’);

time()-st;

> st:=time():

IsUnimodular(L, x, ’InvL_TEG',

’method’=’TEG’);

time()-st;

> InvL_TEG,

> st:=time():

IsUnimodular(L, x, ’method’=’RR’);

time()-st;

> st:=time():

IsUnimodular(L, x, ’InvL_RR',

’method’=’RR’);

time()-st;

> InvL_RR,

Thus,

□
Example 2. The operator

true
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Table 1. Results of experiments (in seconds)

d = 3 d = 7 d = 11 d = 15

k = 6 EG 0.172 0.297 0.500 0.672

TEG 0.125 0.375 1.032 2.563

RR 0.937 3.844 5.844 11.500

k = 9 EG 0.610 2.562 6.813 21.422

TEG 0.985 4.594 11.859 26.469

RR 4.625 82.953 >5100 >6000

k = 12 EG 1.125 5.319 31.953 17.422

TEG 3.219 15.735 36.312 59.312

RR 18.250 170.078 >8300 >19100

k = 15 EG 3.657 49.219 215.329 908.984

TEG 8.047 41.516 90.531 213.032

RR 1031.422 >20200 >6100 >21100
where 0n is the zero matrix of size  and M1,

 are arbitrary operators, is uni-
modular for any  and . The inverse operator is
given by

A series of experiments have been executed. For
each of them, a pair of -sparse operators  and

 with entries given by random polynomials of the
degree not greater than two was generated. The opera-
tors  and  had equal numbers of rows, the order
of the operator  was 2, and the order of the operator
took values  (and this was the order of
the operator M). The number of rows in  and 
was equal to  (accordingly, the number of
rows in M was ). In each experiment, the
inverse operator M was calculated by means of all three
methods. The results obtained are presented in Table 1.
In a number of experiments, the method based on RR
failed: the calculations were stopped when the amount
of memory on the computer was insufficient. In the
table, this is marked by the sign >, with the stop time
being shown. □

6. DISCREPANCY ANALYSIS
From Table 1, it can be seen that, on the whole, the

results of the experiments agree well with the theoret-
ical complexity estimates. However, the growth of the
computation time with the growth of the number of
rows and the order of the operator is much greater than
it could be expected based on the theoretical esti-
mates. To understand the cause of these differences,
we implemented a mode of operation of the IsUni-
modular procedure in which characteristic parame-
ters of intermediate computation results are addition-
ally output. These parameters are output after a zero
row appears in the revealing matrix (either after per-
forming a reduction in the EG and RR algorithms or
after performing one or several replacements of rows in
the ΔEG algorithm). For such parameters, we use
parameters of the operator row in which the zero row
appeared in the revealing matrix, namely, the amount
of data in the representation of this row: the standard
Maple function length and the maximum of sums
of powers of the numerator and denominator in this
operator row are used. This additional data showed
that, in the course of intermediate calculations, the
coefficients of the operator grow significantly. Even
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PROGRAMMING A
though the sums of powers of the numerator and
denominator in the original operator M and its inverse
do not exceed 2 and 4, respectively, in the intermediate
calculations, this number grew up to hundreds and
even thousands. The amount of data grew up in a sim-
ilar way.

Cumulated data on the same experiments are pre-
sented in Table 2. For each experiment, the following
five parameters are presented:

• maximum amount of data used among all inter-
mediate rows,

• maximum value of the maximum sum of powers
of the numerator and denominator among all interme-
diate rows,

• the number of the intermediate rows,
• average amount of data used over all intermedi-

ate rows,
• average value of the maximum sum of powers of

the numerator and denominator over all intermediate
rows.

For the experiments that were forced to terminate,
parameters calculated for the intermediate results
obtained before the calculations were stopped are
shown.

The significant growth of the computation time in
the experiments with the growth of the number of rows
and the operator order shown in Table 1 agrees well
with the growth of the coefficients in the intermediate
calculations presented in Table 2 by characteristic
parameters. As a result of this growth, actual compu-
tational cost required for the calculation of one arith-
metic operation, as well as for the shift operation, start
to grow significantly, and the latter growth turns out to
be more considerable compared to the growth of the
ND COMPUTER SOFTWARE  Vol. 45  No. 5  2019
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Table 2. Characteristic parameters of intermediate calculations in the experiments

d = 3 d = 7 d = 11 d = 15

k = 6 EG 88 151 227 294
2 2 2 2

11 17 25 30
63 105 154 201

1 1 1 2
TEG 138 1169 11188 52729

3 10 28 51
8 14 23 31

85 333 1870 11334
2 4 9 18

RR 843 10 488 18719 42013
17 39 46 58
9 17 23 31

281 2162 2757 9759
6 15 12 22

k = 9 EG 1779 36697 174632 556987
20 145 82 122
21 33 45 57

291 6134 32615 116131
4 26 28 46

TEG 3411 29855 161977 411703
31 54 94 129
15 27 39 51

1132 11140 51255 114004
13 30 46 68

RR 3702 363550 >80150107 >186956920
27 245 >2532 >2870
15 27 >19 >14

1379 119 074 12653623 28598185
16 119 601 693

k = 12 EG 1460 64793 458748 332049
8 56 113 88

27 43 59 74
261 11011 84783 50312

2 15 38 24
TEG 9414 63490 202193 340 476

54 96 96 117
20 36 52 67

2872 27979 88520 121198
19 44 64 69

RR 26360 460957 >190 475287 >168181419
58 190 >2902 >2303
20 36 >20 >33

6169 95011 23245248 24965627
29 74 611 539
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number of such operations, which was taken into
account in the algorithm complexity. For different
methods, this growth has different rate. In our experi-
ments, the worst algorithm from this point of view was
the RR algorithm. This agrees well with the results of
comparison of similar algorithms in the differential
case, which were presented in [1]. Note also that,
when the growth in different algorithms has similar
characteristics (i.e., when the cost required for per-
forming one operation in each algorithm are compara-
ble), the number of such operations plays the most
important role, and the relative computation time
agrees with the theoretical complexity estimates.

One more specific feature of the EG and RR algo-
rithms should also be noted. To perform reductions in
these algorithms, linear dependencies in the revealing
matrices are sought. To this end, in the implementa-
tion, procedure NullSpace of the LinearAlgebra
PROGRAMMING A

Table 3. Results of experiments with a different selection of
the linear dependence (in seconds)

d = 3 d = 7

k = 6 EG 0.187 0.359

RR 0.500 2.406

k = 9 EG 0.829 20.062

RR 4.047 29.688

k = 15 EG 19.906 16645.953

RR 29.547 14979.109
package of Maple is used. This procedure is capable
of finding more than one linear dependence, which
results in different continuations of the computation
depending on what linear dependence found was
excluded. In our implementation, the first linear
dependence found was selected after they have been
sorted out by means of the ComplexitySort proce-
dure from package SolveTools. Tables 3 and 4 present
results of computations for some of the test systems pre-
sented in Tables 1 and 2 that are based on the selection of
the last, rather than first, linear dependence after sorting
them. The results presented demonstrate that the order of
the eliminations also affects the growth of coefficients in
the intermediate calculations and, hence, the total com-
putation time. This factor is also not taken into account in
the complexity estimates. However, in practice, its
effect may be significant.

Relying on the results of the reported experiments,
as well as the of earlier conducted experiments for the
differential case ([1]), we may conclude that, from the
practical point of view, it is reasonable to use the ver-
sions of the Unimodularity Testing and Inverse Oper-
ator algorithms that are based on the EG algorithm.
It is this version of the implementation that was pre-
sented in [2] and is used by default (if the parameter
method is not specified) in the implementation
reported in this work. These experiments also showed
that, from the practical point of view, it is useful to
have implementations of different algorithms. It may
occur that an algorithm that is worse than others in
terms of complexity or computation time is the most
efficient one for a particular problem. Therefore, in
our implementation, the user has an opportunity to
select other algorithms as well.
k = 15 EG 24060 346779 1383502 3938486
39 110 170 236
34 54 74 94

3023 58838 259553 831962
10 35 62 93

TEG 58343 131895 400249 20 66923
110 114 112 222
24 44 64 84

11782 60119 115177 600333
37 66 74 119

RR 981268 >87692555 >307185043 >472458234
692 >2130 >2944 >2800

24 >16 >11 >15
137728 17253891 39 424269 59156 406

157 643 599 595

d = 3 d = 7 d = 11 d = 15

Table 2. (Contd.)
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Table 4. Characteristic parameters of intermediate calcula-
tions in the experiments with a different selection of the lin-
ear dependence

d = 3 d = 7

k = 6 EG 2 4
11 19
63 155

1 2
RR 87 438

2 4
6 14

65 172
1 2

k = 9 EG 4178 186239
23 174
21 28

570 19817
5 39

RR 3717 165811
23 174
15 20

695 24107
7 54

k = 12 EG 186239 18578353
174 1096
28 44

19817 2422729
39 233

RR 165811 15621336
174 1096
20 36

24107 2512118
54 284
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