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1. Introduction

The present paper studies equations whose coefficients and solutions of interest are two-sided 
infinite sequences. Infinite sequences are used in many areas of mathematics. When working with 
these sequences the way they are represented plays an important role. In this article, an algorithmic 
approach is used: the sequence is defined by an algorithm (each sequence has its own) for calculating 
the value of an element by the index of this element. More formally, we will call a two-sided sequence 
of rational numbers {v(n)}n∈Z computable if it is given by an algorithm computing the value of v(n)

for any given n ∈ Z. Other approaches are also possible, for example, if coefficient sequences satisfy 
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linear recurrences with constant coefficients, we naturally come to the concept of C2-finite sequences 
considered, for example, by Jiménez-Pastor et al. (2023).

Throughout the paper, R stands for the ring of two-sided sequences having rational number terms 
with respect to termwise addition and multiplication. For a linear difference equation

ar(n)y(n + r) + · · · + a1(n)y(n + 1) + a0(n)y(n) = 0 (1)

with computable ar(n), . . . , a0(n) ∈ R as coefficients, we consider the Q-vector space of solutions 
in R . In the sequel, “equation” is always understood as an equation of the form (1), and “solution” is 
a solution belonging to R .

In this paper, we establish algorithmic undecidability of the problem of computing the dimension 
of the solution space of an equation of the form (1) and the problem of testing whether an equation 
has nonzero solutions at all (Section 3). Furthermore, it is proven that even when a finite set of 
possible values of the dimension of the solution space is known in advance, if this set contains more 
than one element, then in the general case the dimension cannot be found algorithmically (Section 4). 
On the other hand, we note the existence of naturally arising problems admitting an algorithmic 
solution (Section 5). Our proofs are in general based on a consequence of classical A. Turing’s result 
on undecidability of the well-known halting problem (Turing, 1936) which can be stated as follows.

Theorem (Turing (1936)). Let M be a set with 1 < |M| < ∞. Then there is no algorithm which, for a given 
computable c(0), c(1), . . . taking values in M and any a ∈ M, determines whether the sequence contains an 
element equal to a.

This article is a continuation of the thematic line of publications (Abramov et al., 2021; Abramov 
and Pogudin, 2023a; Ovchinnikov et al., 2020; Petkovšek, 2006; Pogudin et al., 2020; Wibmer, 2021) 
on difference equations with general infinite sequences as coefficients and/or solutions. Among these 
publications, the article by Petkovšek (2006) belongs to those works that provided a general basis for 
computer-algebraic studies of infinite sequences.

An abridged preliminary version of this paper appeared as a proceedings paper (Abramov and 
Pogudin, 2023b).

2. Possible value of dimension

Before passing to the main topic of the paper, algorithmic questions related to computing the 
dimension of the solution space of (1), we will show that in the case when the coefficients are com-
putable sequences, there is no a priori relation between the order of the equations and the dimension 
of the solution space (in contrast to, say, the constant coefficient case).

Proposition 1. For every r ∈ Z�0 and d ∈ (Z�0 ∪ {∞}), there exists an equation of the form (1) of order r
with both a0(n) and ar(n) not identical to zero which has d-dimensional solution space.

Before proceeding to the proof of the proposition, we introduce one useful construction: for dif-
ference equations (1), we define interlacing as follows. Consider two such equations and assume that 
they both have order r, since this can be achieved by adding several zero coefficients. Denote their 
coefficients by a0(n), . . . , ar(n) and b0(n), . . . , br(n), respectively. We define sequences c0(n), . . . , cr(n)

as follows

ci(n) :=
{

ai(n/2), if n is even,

bi((n − 1)/2), if n is odd.

Now we define the interlacing of the original equations (we will denote it by the direct sum sign ⊕) 
as the following equation of order 2r:

cr(n)y(n + 2r) + cr−1(n)y(n + 2r − 2) + . . . + c1(n)y(n + 2) + c0(n)y(n) = 0. (2)
2
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By construction, the solutions of the equations (2) are exactly sequences of y(n) for which y(2n) is a 
solution to the first equation and y(2n + 1) is a solution to the second.

In particular, the dimension of the solution space of the constructed equation is the sum of the 
dimensions of the solution spaces of the original equations. Interlacing of more than two terms is 
defined analogously.

Proof of Proposition 1. For d ∈ (Z�0 ∪ {∞}), we define a sequence wd(n) such that wd(n) = 0 for 
0 � n < d and wd(n) = 1 otherwise. We denote by Ed the equation wd(n)y(n) = 0. We note that the 
dimension of the solution space of Ed is equal to d. Equations Ed prove the lemma for the case r = 0, 
so we will further focus on the case r > 0.

For r > 0, we define an equation E◦
r by (1 − w1(n))y(n) + y(n + r) = 0. For every n �= 0, it implies 

that y(n + r) = 0, so y(n) = 0 for every n �= r. Furthermore, by taking n = 0, we obtain y(0) + y(r)
which, together with y(0) = 0 established earlier, implies y(r) = 0. Thus, the only solution of E◦

r is 
the zero solution. Now we consider an equation Ed ⊕ E◦

r . It has order r with the leading and trailing 
coefficients being not identically zero, and it has d-dimensional solution space. �
3. Existence of nonzero solutions

Proposition 2. Let

v(0), v(1), . . . (3)

be a computable sequence. Then a first-order difference equation (which will be called signal) can be presented, 
the dimension of the solution space of which is equal to 1 if (3) is identically zero, and is equal to 0 (i.e., the 
equation has no nonzero solutions) otherwise.

Proof. Based on the computable sequence v(n), we define a computable two-sided sequence w(n):

w(n) :=

⎧⎪⎨⎪⎩
1, if n < 0,

1, if n � 0 and v(k) = 0 for all k = 0,1, . . . ,n,

0, if n � 0 and v(k) �= 1 for some k such that 0 � k � n.

By construction the sequence w(n) consists of only ones if and only if the sequence v(n) consists 
of only zeros. If the sequence v(n) contains at least nonzero element, then there is n0 such that 
w(n) = 1 for n � n0 and w(n) = 0 for n > n0. In the first case, the equation y(n + 1) − w(−n)y(n) = 0
has a solution space of dimension 1 (all constant sequences and only them will be the solutions), in 
the second case, the solution space has dimension 0 (the equation has no nonzero solutions). �

The following theorem is a direct consequence of Proposition 2.

Theorem 1. (i) There is no algorithm that tests the existence of a nonzero solution to a given equation.
(ii) There is no algorithm that computes the dimension of the solutions space of a given equation.

Proof. An algorithm that tests for the presence of nonzero solutions to a given equation would 
make it possible to check for the presence of nonzero elements in a given computable sequence 
v(0), v(1), . . . , which contradicts Turing’s result (Turing, 1936). �
4. Computing dimension with a priori knowledge

In this section, we prove that even with some a priori restrictions on the dimension of the solution 
space, the problem of determining the exact dimension is still undecidable.

Theorem 2. For any subset S ⊆ (Z�0 ∪{∞}) with |S| > 1, there is no algorithm that computes the dimension 
of the solution space d for a given equation of the form (1), for which it is known in advance that d ∈ S .
3
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Proof. Consider two distinct elements a and b from S . For an arbitrary computable sequence 
v(0), v(1), . . . we will construct an equation with the dimension of the solution space being b if 
v(n) is identically zero and being a otherwise. Then the undecidability of the problem of determining 
the dimension from the set {a, b} ⊆ S will follow from Turing’s result (Turing, 1936).

Consider the case a, b �= ∞, and let b > a. Then we consider the equation E0 having an a-
dimensional space of solutions (for example, any equation of order a with constant nonzero co-
efficients) and the equation E1 constructed from v(n) in Proposition 2. Consider the equation 
E0 ⊕ E1 ⊕ . . . ⊕ E1︸ ︷︷ ︸

b−a times

(recall that ⊕ stands for interlacing). The dimension of its solution space is equal 

to b if v(n) is identically zero and a otherwise. Which is what we aimed at.
Consider now the case when one of a and b is equal to infinity, let it be a. We construct a sequence 

w(n) such that w(n) = 1 for n < 0, w(n) = 1 for n � 0 if all v(0), . . . , v(n) are zeros and w(n) = 0
otherwise. We define the equation E2 as w(n)y(n) = 0. If all elements of v(n) are zeros, then w(n) ≡
1, and hence the only solution is zero. If a nonzero element occurs in v(n), then there are infinitely 
many zeros in w(n), and hence the dimension of the space of solutions will be infinite-dimensional. 
Let the equation E3 be any equation that has an b-dimensional space of solutions. Then E2 ⊕ E3 will 
be the desired equation. �
Corollary 1. For any non-negative integer k, there is no algorithm that would check if the solution space of the 
equation (1) has dimension k.

Proof. If such an algorithm existed, then it could be used to calculate the dimension of the solution 
space in the case when it is known that the solution space is contained in the set S = {k, k + 1}. This 
would contradict Theorem 2. �
5. A case of decidability

Consider the case when the sequences a0(n), . . . , ar(n) are in fact periodic. We will show that 
in this case, the dimension of the solution space can be computed using some standard tools from 
computer algebra, and the rest of the section will be devoted to proving the following proposition.

Proposition 3. There is an algorithm which takes as input periodic sequences a0(n), . . . , ar(n) and computes 
the dimension of the solution space of the equation

ar(n)y(n + r) + . . . + a1(n)y(n + 1) + a0(n)y(n) = 0

in the ring of two-sided sequences.

Consider a positive integer H > r such that the lengths of the periods of a0(n), . . . , ar(n) divide H
(such H can always be taken to be a large enough common multiple of the period lengths). We will 
“decompose” y(n) into H sequences y0(n) := y(Hn), y1(n) := y(Hn + 1), . . . , yH−1(n) := y(Hn +
H − 1). Then the original equation (1) translates into the following H linear difference equations with 
constant coefficients:

1. a0(i)yi(n) + . . . + ar(i)yi+r(n) = 0 for 0 � i < H − r;
2. a0(i)yi(n) + . . . + aH−1−i(i)yH−1(n) + aH−i(i)y0(n + 1) + . . . + ar(i)yi+r−H (n + 1) = 0 for H − r �

i < H .

This way we have reduced the problem of computing the dimension of the solution space of (1) to 
the problem of computing the dimension of the solution space of the system above. We will state and 
solve this problem in a slightly more general form: for given � × H matrices A0 and A1, determine 
the dimension of the solution space of the system

A0 · (y0(n), . . . , yH−1(n))T + A1 · (y0(n + 1), . . . , yH−1(n + 1))T = 0. (4)
4
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In order to do this, we consider a free module F over the ring of Laurent polynomials Q[t, t−1] with 
H generators e0, . . . , eH−1. Let M be a submodule of F generated by the entries of

(A0 + t A1) · (e0, . . . , eH−1)
T . (5)

Lemma 1. The dimension of the solution space of (4) is equal to the dimension of the quotient module F/M
over Q.

Proof. Let S := F/M . We will define a linear bijective map between the solutions of (4) and linear 
functionals S → Q. For a functional ϕ : S →Q, we define yi(n) = ϕ(tnei). Then the generators of M
and their translations by integer powers of t will imply the equalities (4).

In the other direction, assume that we are given a solution of (4). We define ϕ̃ : F → Q by 
ϕ̃(tnei) = yi(n). Since the sequences y0(n), . . . , yH−1(n) satisfy (4), we have that ϕ̃(M) = 0. Thus, 
ϕ̃ induces a well-defined linear functional on the quotient module F/M . �

Thanks to Lemma 1, the question of determining the dimension of the solution space of an equa-
tion (1) with periodic coefficients reduces to computing the dimension of the corresponding finitely 
presented module over the ring of Laurent polynomials. The latter problem can be solved using Gröb-
ner basis or using the Hermite normal form over the Laurent polynomial ring.1 In order to keep 
this note self-contained, we will present one way of computing this dimension based on a standard 
construction reducing the study of a module to the study of an ideal in a polynomial ring.

Lemma 2. In the notation of this section, we consider a polynomial ring R =Q[t1, t−1, x0, . . . , xH−1] and an 
ideal

I := 〈t1t−1 − 1, (A0 + t1 A1) · (x0, . . . , xH−1)
T , {xi x j|0 � i, j < H}〉.

Then the Q-dimension of the quotient module F/M is equal to the Q-dimension of the ideal generated by the 
images of x0, . . . , xH−1 in R/I .

Proof. Let J be the ideal in R generated by I and x0, . . . , xH−1. We will denote its image in R/I by 
J̃ which can be also viewed as an R/I-module. Furthermore, since the multiplication by x0, . . . , xH−1
induces zero operator on J̃ , J̃ is in fact a module over R/ J ∼= Q[t1, t−1]/〈t1t−1 − 1〉. This ring is 
isomorphic to the ring of Laurent polynomials Q[t, t−1] with the isomorphism given by t1 → t, t−1 →
t−1. We define a homomorphism of modules over the Laurent polynomial ring ϕ : F → J̃ by ϕ(ei) =
xi for every 0 � i < H . We observe that Ker(ϕ) ⊃ M , so this homomorphism induces a surjective 
homomorphism ϕ̃ : F/M → J̃ . Moreover, since I contains all the degree two monomials in x’s, and 
linear relations on x’s are exactly (5), ϕ̃ is an isomorphism. The existence of such an isomorphism 
implies the equality of dimensions. �

Using Lemma 2, the dimension of F/M can be determined by computing a Gröbner basis of I
and counting the monomials divisible by at least one of x0, . . . , xH−1 but not divisible by any of the 
leading monomials of the basis. This completes the proof of Proposition 3.

Finally, we would like to point out that every periodic sequence satisfies a linear recurrence with 
constant coefficients (in other words, belongs to the class of C-finite sequences), so the class of 
sequences considered in this section is closely related with C2-finite sequences studied in Jiménez-
Pastor et al. (2023). More precisely, C2-finite sequence is a solution of (1) with the coefficients being 
C-finite such that the leading coefficient ar(n) does not contain zeros. The latter condition consider-
ably simplifies the problem of computing the dimension of the solution space (in particular, implies 
that this dimension is always finite). A natural generalization of the problem studied in this section 

1 We would like to thank Manuel Kauers for suggesting the approach via HNF.
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would be a problem of computing the dimension of the solution space of (1) with all coefficients be-
ing C-finite (that is, without requiring the absence of zeros in ar(n)). We do not know if this problem 
is algorithmically decidable.
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