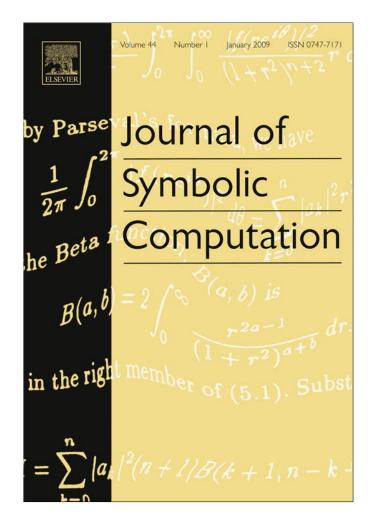
Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Journal of Symbolic Computation 44 (2009) 48-59

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

D'Alembertian series solutions at ordinary points of LODE with polynomial coefficients

S.A. Abramov^a, M.A. Barkatou^{b,1}

^a Dorodnicyn Computing Centre of the Russian Academy of Sciences, Vavilova, 40, Moscow 119991, GSP-1, Russia ^b Institut XLIM, Université de Limoges-CNRS, 123, Av. A. Thomas 87060 Limoges cedex, France

ARTICLE INFO

Article history: Received 12 September 2007 Accepted 22 April 2008 Available online 13 June 2008

Keywords: Linear differential equations Linear recurrence equations Closed form solutions D'Alembertian series Hypergeometric series

ABSTRACT

By definition, the coefficient sequence $\mathbf{c} = (c_n)$ of a d'Alembertian series – Taylor's or Laurent's – satisfies a linear recurrence equation with coefficients in $\mathbb{C}(n)$ and the corresponding recurrence operator can be factored into first-order factors over $\mathbb{C}(n)$ (if this operator is of order 1, then the series is hypergeometric). Let *L* be a linear differential operator with polynomial coefficients. We prove that if the expansion of an analytic solution u(z) of the equation L(y) = 0 at an ordinary (i.e., non-singular) point $z_0 \in \mathbb{C}$ of *L* is a d'Alembertian series, then the expansion of u(z) is of the same type at *any* ordinary point. All such solutions are of a simple form. However the situation can be different at singular points.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

If one finds a finite number of coefficients of a power series solution of a differential equation at a fixed point, then this gives an approximate (or asymptotic) representation of this solution. If one finds a dependence of coefficients on values of the index *n*, and if this dependence can be described by some simple tools, e.g. as a function of *n* in a closed form, then one receives a full representation of the solution by an infinite series, though it may be that the solution itself as an analytic function has no closed-form representation via elementary functions and quadratures. The opportunity of using such a series for representing differential equation solutions extends the notion of closed-form solutions. A typical example is given by hypergeometric series. In this paper we consider a more general type of d'Alembertian series which will be defined below.

E-mail addresses: sabramov@ccas.ru (S.A. Abramov), moulay.barkatou@unilim.fr (M.A. Barkatou).

¹ Tel.: +33 5 55 45 73 83; fax: +33 5 55 45 72 22.

^{0747-7171/\$ –} see front matter $\mbox{\sc c}$ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.jsc.2008.04.004

Let *E* be the shift operator acting on sequences of complex numbers $\mathbf{c} = (c_n)$ as $E(\mathbf{c}) = \mathbf{b}$, where the sequence $\mathbf{b} = (b_n)$ is defined by the equality $b_n = c_{n+1}$.

Definition 1. The sequence **c** is *d'Alembertian* if for large enough values of the index *n* the elements c_n of the sequence satisfy a linear recurrence equation $M(\mathbf{c}) = 0$, where

$$M = (E - r_1(n)) \circ (E - r_2(n)) \circ \dots \circ (E - r_m(n)),$$
(1)

 $r_1(n), r_2(n), \ldots, r_m(n) \in \mathbb{C}(n)$. Any operator of the form (1) will be called *completely factorable*.

Notice that any sequence with finite support (i.e., a sequence which has only finite set of non-zero elements) is d'Alembertian: we can take any completely factorable *M* in this case.

It is known that the elements (with large enough values of the index) of a d'Alembertian sequence can be explicitly represented by a function of the index *n* using only rational functions, the gamma function and finite sums (Abramov and Petkovšek, 2004), e.g. if $M = (E + \frac{1}{2(n+2)}) \circ (E - \frac{1}{2})$ then the equation M(y) = 0 is satisfied when $n \ge 0$ by two linearly independent sequences

$$2^{-n}$$
 and $2^{-n} \sum_{k=0}^{n} \frac{(-1)^k}{\Gamma(k+1)}$.

Definition 2. A power series $\sum_{n} c_n (z-z_0)^n$ is d'Alembertian if the sequence (c_n) is d'Alembertian (this notion generalizes the notion of hypergeometric series, where the order *m* of the operator (1) is 1).

Let

 \mathbf{x}

$$L = \sum_{k=0}^{d} a_k(z) D^k \in \mathbb{C}[z, D],$$
(2)

 $D = \frac{d}{dz} = '$. Assume that the leading coefficient $a_d(z)$ is a non-zero polynomial (so ord L = d), and that $a_0(z), \ldots, a_d(z)$ do not have a non-constant common factor. Recall that $z_0 \in \mathbb{C}$ is an *ordinary* point of L if $a_d(z_0) \neq 0$, otherwise z_0 is *singular*; this definition can be reformulated so that it will make sense when the coefficients of L are rational functions: z_0 is ordinary if the rational functions

$$\frac{a_0(z)}{a_d(z)}, \frac{a_1(z)}{a_d(z)}, \dots, \frac{a_{d-1}(z)}{a_d(z)}$$

have no pole at z_0 , otherwise z_0 is singular. If z_0 is an ordinary point of L then any formal power series $y = \sum_n c_n (z - z_0)^n$ satisfying L(y) = 0 is a convergent Taylor series, and the dimension of the \mathbb{C} -space of solutions of this type is $d = \operatorname{ord} L$.

It has been shown in Abramov and Petkovšek (1996) that if at an ordinary point of *L* the expansion of a solution u(z) of *L* is a hypergeometric series, then u(z) has one of the three possible forms:

c ()

$$f(z) + p(z)e^{vz}$$
, $f(z) + p(z)(z-c)^w$, $\frac{f(z)}{(z-c)^l} + p(z)\log(z-c)$,

where $f(z), p(z) \in \mathbb{C}[z], v, w, c \in \mathbb{C}, l \in \mathbb{N}$. Furthermore any such solution can be expanded into a hypergeometric series at any ordinary point of *L*.

In the present paper we generalize this result proving that if the expansion of an analytic solution of the equation L(y) = 0 at an ordinary point z_0 is a d'Alembertian series, then the expansion of this analytic solution is of the same type at any other ordinary point. As a consequence, the dimension of the space of d'Alembertian series solutions of L(y) = 0 is the same for all ordinary points of the operator *L*. We also prove that if L(y) = 0 has a d'Alembertian series solution at an ordinary point z_0 then it also has a solution of the form

$$\frac{\sum_{n=0}^{\infty} c_n (z - z_0)^n}{f(z)},$$
(3)

where the numerator is a hypergeometric series and the denominator f(z) is a polynomial (however a hypergeometric series solution does not exist in general; it might be that this looks quite surprising

because it is well known that if a linear recurrence equation with polynomial coefficients has a d'Alembertian sequence solution, then it has a hypergeometric sequence solution as well). In addition, if z_0 is an ordinary point of L then all d'Alembertian series solutions at z_0 represent some analytic solutions which are of the form

$$g_1(z)\int g_2(z)\int\ldots\int g_m(z) dz\ldots dz dz$$

with m < ord L, and $g_i(z)$ is either of the form $r(z)e^{vz}$ or of the form $r(z)(z-c)^w$, with $r(z) \in \mathbb{C}(z) \setminus \{0\}$, $v, w, c \in \mathbb{C}$ (here r(z), v, w, c depend on $i, i = 1, 2, \ldots, m$).

It follows from the results of the present paper that solutions in the form of d'Alembertian series at ordinary points are of limited interest, since they represent quite simple functions, and, additionally, at each ordinary point we get d'Alembertian series expansion of the same solutions. So going from an ordinary point to another we get nothing new in this respect. As a contrast, the singular points of L can be of particular interest. However there is only a finite number of singular points, and one can check them using a step-by-step examination.

We also consider the point at infinity and, as is usually done in the theory of linear ordinary differential equations, distinguish the cases of ordinary and singular point of L at infinity. It turns out that if the point at infinity is ordinary, then it is not improbable that there exists an analytic solution which has d'Alembertian series expansion at infinity while its Taylor expansion at any finite ordinary point is not a d'Alembertian series. Notice that up to Section 5 we consider only finite (i.e., belonging to \mathbb{C}) points.

In the rest of this paper L will always denote operator (2). For short, we will say about solutions of L instead of solutions of the equation L(y) = 0 and will use the same style in the recurrence operator case.

2. Preliminaries

We denote by $\mathbb{C}[z, z^{-1}, D]$ the non-commutative ring of polynomials in z, z^{-1} and D. The multiplication corresponds to the composition of operators and it is characterized by the following rules:

- $D \circ z = zD + 1$ $D \circ z^{-1} = z^{-1}D z^{-2}$
- the rings $\mathbb{C}[z, z^{-1}]$ and $\mathbb{C}[D]$ are commutative.

We denote by $\mathbb{C}[n, E, E^{-1}]$ the non-commutative ring of polynomials in *n*, *E* and E^{-1} . The multiplication corresponds to the composition of operators and it is characterized by the following rules:

- $E \circ n = (n+1)E$
- $E^{-1} \circ n = (n-1)E^{-1}$
- the ring $\mathbb{C}[n]$ and $\mathbb{C}[E, E^{-1}]$ are commutative.

The correspondence $z \mapsto E^{-1}$, $D \mapsto (n + 1)E$, $z^{-1} \mapsto E$ defines an isomorphism \mathcal{R} from $\mathbb{C}[z, z^{-1}, D]$ onto $\mathbb{C}[n, E, E^{-1}]$.

We will also consider the field

$$\mathbb{C}((z)) = \mathbb{C}[[z]][z^{-1}]$$
(4)

of power series of the form

 ∞

$$\sum_{n=m}^{\infty} c_n z^n, \quad m \in \mathbb{Z}, c_i \in \mathbb{C}.$$
(5)

The *coefficient sequence* of (5) is the double-sided sequence

$$\ldots, 0, 0, c_m, c_{m+1}, \ldots$$
 (6)

(so we set $c_k = 0$ for all k < m).

It is well known that the application of L to (5) gives a series, whose coefficient sequence is the result of the application to (6) of the recurrence operator

$$R = \sum_{k=t}^{l} q_k(n) E^k \in \mathbb{C}[n, E, E^{-1}]$$

$$\tag{7}$$

which is the \mathcal{R} -image of L (see, e.g., Abramov et al. (2000)). We suppose that $q_l(n), q_t(n) \neq 0$ in (7) (note that it is possible that t < 0 and even l < 0).

For *R* of the form (7) we set ord R = l - t.

In the following we will use some facts proven in Abramov and Petkovšek (1996) and Abramov et al. (2000). The main points of those facts can be formulated as in the following theorem.

Theorem 1. Let 0 be an ordinary point of L and $R = \mathcal{R}L$. Suppose that R has no non-zero solution with finite support. If R is right divisible in $\mathbb{C}(n)[E, E^{-1}]$ by a first-order monic operator E - r(n), $r(n) \in \mathbb{C}(n) \setminus \{0\}$ then

(i) the operator E - r(n) has one of the forms:

$$(8)$$

$$E - \frac{v}{n+1} \frac{C(n+1)}{C(n)},$$
 (9)

$$E - \frac{v}{n+1} \frac{C(n+1)}{C(n)} (n-w),$$
(10)

where $v \in \mathbb{C} \setminus \{0\}, w \in \mathbb{C} \setminus \mathbb{N}, C(n) \in \mathbb{C}[n] \setminus \{0\};$

(ii) according to the cases (8), (9) and (10) the operator L either can be represented in the form $L' \circ (z^{-1} - v), L' \in \mathbb{C}[z, z^{-1}, D]$, or is right divisible in $\mathbb{C}(z)[D]$ by a monic first-order operator of one of the two forms:

$$D - \left(\frac{p'(z)}{p(z)} + v\right),\tag{11}$$

$$D - \left(\frac{p(z)}{p(z)} - \frac{vw}{1 - vz}\right),\tag{12}$$

where $p(z) \in \mathbb{C}[z] \setminus \{0\}$ and, as in (i), $v \in \mathbb{C} \setminus \{0\}$, $w \in \mathbb{C} \setminus \mathbb{N}$.

Remark 1. If *L* is right divisible in $\mathbb{C}(z)[D]$ by (11) or by (12), then *L* has a solution

$$p(z)e^{vz},\tag{13}$$

or, resp.,

$$p(z)(1-vz)^w. (14)$$

Solution (14) can be rewritten in the form

 $q(z)(z-c)^w,$

 $q(z) \in \mathbb{C}[z], c \in \mathbb{C} \setminus \{0\}.$

Remark 2. Let 0 be an ordinary point of *L* and $R = \Re L$. If *R* has a non-zero solution with finite support then *L* has a non-zero polynomial solution p(z) and therefore is right divisible in $\mathbb{C}(z)[D]$ by

$$D - \frac{p'(z)}{p(z)}.$$
(15)

We will use also a well-known elementary fact on first-order linear differential operators. Let $F \in \mathbb{C}[z, D]$, ord F = 1. If u(z) is a non-zero analytic solution of F then

$$\frac{u'(z)}{u(z)} \in \mathbb{C}(z),$$

and the general solution of an equation F(y) = v(z) with analytic v(z) is

$$u(z) \int \frac{v(z)}{u(z)} \mathrm{d}z \tag{16}$$

(the integration constant can be taken to be arbitrary). If $L = \overline{L} \circ F$, $\overline{L} \in \mathbb{C}(z)[D]$, and u_1, u_2, \ldots, u_d are linearly independent solutions (analytic functions or formal Laurent's series from $\mathbb{C}((z))$ of L such that $F(u_1) = 0$, then

$$u_1\left(\frac{u_2}{u_1}\right)', u_1\left(\frac{u_3}{u_1}\right)', \dots, u_1\left(\frac{u_d}{u_1}\right)'$$
(17)

are linearly independent solutions of \overline{L} .

3. Simple points

The statements of this paper are easier to prove, if we formulate them for a more general case than the case of an ordinary point.

Definition 3. We call $z_0 \in \mathbb{C}$ a *simple* point of *L*, if there exists $l \in \mathbb{N}$ such that the function $(z-z_0)^l u(z)$ is holomorphic at z_0 (i.e. without singularities in a neighborhood of z_0) for any solution u(z) of *L*. The minimal *l* with such a property will be called the *exponent* of *L* at z_0 (if the point z_0 is ordinary then z_0 is evidently a simple point, and the exponent of *L* at z_0 is 0).

If 0 is a simple point of *L* then the exponent of *L* at 0 will be referred to as the exponent of *L* for short.

Remark 3. Notice that if 0 is a simple point of *L* and the exponent of *L* is equal to *l* then, generally speaking, 0 is not an ordinary point of the operator $L \circ z^{-l}$. However if 0 is a singular point of $L \circ z^{-l}$, then 0 is an apparent singularity, and there exists an operator, which, first, is right divisible in $\mathbb{C}(z)[D]$ by $L \circ z^{-l}$, and, second, has 0 as an ordinary point (Tsai, 2000; Abramov et al., 2006). We will denote by L^{\sim} an arbitrary operator having such properties. If 0 is an ordinary point of $L \circ z^{-l}$, then we can set $L^{\sim} = L \circ z^{-l}$.

We will denote the set of d'Alembertian series of the form $\sum_{n=0}^{\infty} c_n z^n$ by Ser_A. The notation Ser_A(*L*) will be used for the set of solutions of *L* belonging to Ser_A. The sets Ser_A, Ser_A(*L*) are \mathbb{C} -linear spaces (Abramov and Petkovšek, 2004). We can extend the notions of hypergeometric and, resp., d'Alembertian series, considering in addition Laurent's series with hypergeometric and d'Alembertian coefficient sequences. The corresponding \mathbb{C} -linear space of d'Alembertian Laurent series will be denoted by Ser_A⁻. One has Ser_A \subset Ser_A⁻. We will also consider the corresponding solution space Ser_A⁻(*L*).

Remark 4. Suppose that 0 is a simple point of *L* and let $\varphi(z) \in \mathbb{C}((z))$ be a formal solution of *L*. Then $\varphi(z)$ is a convergent series (in a punctured neighborhood of 0) and its sum $\Phi(z)$ is an analytic solution of *L*. This follows directly from Definition 3.

Lemma 1. Let $f(z) \in \mathbb{C}[z] \setminus \{0\}$ be an arbitrary non-zero polynomial. Then

(i) if 0 is a simple point of L then it is a simple point of $L \circ f(z)$ and $L \circ [f(z)]^{-1}$;

(ii) dim Ser_A⁻(L) = dim Ser_A⁻(L \circ f(z)) = dim Ser_A⁻(L \circ [f(z)]⁻¹).

52

Proof. We note first that it suffices to prove the lemma for f(z) = z - c, with $c \in \mathbb{C}$.

(i) If $c \neq 0$ then the exponent of $L \circ (z - c)$ does not exceed the exponent l of L. The exponent of $L \circ z$ does not exceed l + 1. The exponent of $L \circ (z - c)^{-1}$ does not exceed l.

(ii) Let $\varphi(z) \in \text{Ser}_A^-$, then the coefficient sequence of the series $(z - c)\varphi(z)$ is the result of action of the linear difference operator $P = E^{-1} - c$ on the d'Alembertian coefficient sequence of $\varphi(z)$. The result is a d'Alembertian sequence (Abramov and Petkovšek, 2004). If the coefficient sequence of $\varphi(z)$ is a solution of a completely factorable difference operator M, then the coefficient sequence of $\varphi(z)/(z-c)$ is a solution of the operator $M \circ P$. This implies that the coefficient sequence of $\varphi(z)/(z-c)$ is a solution of a completely factorable operator and therefore is d'Alembertian. So the multiplication by (z - c) and the multiplication by $(z - c)^{-1}$ can be viewed as linear maps from Ser_A^- into itself. The kernel of each of these linear maps is zero. Therefore, the image of a finite-dimensional subspace of Ser_A^- (e.g., the space $\text{Ser}_A^-(L)$) by each of this transformations, is a subspace of the same dimension. \Box

The following proposition is a consequence of Lemma 1.

Proposition 1. Let 0 be a simple point of *L* and $r(z) \in \mathbb{C}(z) \setminus \{0\}$. In this case:

- (i) 0 is a simple point of $L \circ r(z)$,
- (ii) the multiplication by r(z) is a linear transformation of Ser_A^- onto Ser_A^- with zero kernel,
- (iii) dim Ser_A⁻(L) = dim Ser_A⁻(L \circ r(z)).

If *W* is a subset of $\mathbb{C}((z))$ consisting of convergent Laurent series (see Remark 4), then we will denote by $\langle W \rangle$ the set of all analytic functions with a Laurent series expansion (at 0) belonging to *W*.

Lemma 2. Let 0 be a simple point of L and suppose that $L = L' \circ G$, where $L' \in \mathbb{C}(z)[D]$ and G is a first-order operator of the form (11), (12) or (15) with p(z) = 1. In this case:

- (i) 0 is a simple point of L';
- (ii) $\operatorname{Ser}_{A}^{-}(L) \neq 0$, and $\operatorname{dim} \operatorname{Ser}_{A}^{-}(L) = \operatorname{dim} \operatorname{Ser}_{A}^{-}(L') + 1$;
- (iii) if $\Phi(z)$ is a non-zero analytic solution of G, then the set of analytic functions representable by series belonging to $\operatorname{Ser}_{A}^{-}(L)$ is

$$\langle \operatorname{Ser}_{A}^{-}(L) \rangle = \Phi(z) \int \frac{\langle \operatorname{Ser}_{A}^{-}(L') \rangle}{\Phi(z)} dz,$$
(18)

i.e., the set of all functions of the form

$$\Phi(z)\int \frac{\Psi(z)}{\Phi(z)}\mathrm{d}z, \qquad \Psi(z)\in \langle \mathrm{Ser}_A^-(L')\rangle.$$

Proof. (i) Let $\psi_1(z), \psi_2(z), \dots, \psi_d(z) \in \mathbb{C}((z))$ be linearly independent solutions of *L* such that $G(\psi_1(z)) = 0$. Then by formula (17) Laurent's series

$$\psi_1(z)\left(\frac{\psi_2(z)}{\psi_1(z)}\right)', \psi_1(z)\left(\frac{\psi_3(z)}{\psi_1(z)}\right)', \ldots, \psi_1(z)\left(\frac{\psi_d(z)}{\psi_1(z)}\right)'$$

are linearly independent solutions of L' belonging to $\mathbb{C}((z))$.

(ii) First notice that if *G* is of the form (12) with p(z) = 1, then we can rewrite any equation $G(y) = \psi(z), \psi(z) \in \mathbb{C}((z))$, as $\overline{G}(y) = \overline{\psi}(z)$, where $\overline{G} = (1 - vz)D + vw, \overline{\psi}(z) = (1 - vz)\psi(z)$. By Lemma 1, $\psi(z) \in \operatorname{Ser}_{A}^{-}$ implies $(1 - vz)\psi(z) \in \operatorname{Ser}_{A}^{-}$. Moreover if $L = \overline{L}' \circ \overline{G}$, then 0 is a simple point of \overline{L}' . For saving the old notation, we will assume that *G* has one of the following two forms:

$$D - v, \qquad (1 - vz)D + vw, \quad v \in \mathbb{C}, \, w \in \mathbb{C} \setminus \mathbb{N}.$$
(19)

Set $R_G = \mathcal{R}G$. Evidently ord $R_G = 1$.

The rest of the proof of (ii) will be divided into a few short steps.

(a) If $\varphi(z) \in \text{Ser}_A^-$ then $G(\varphi(z)) \in \text{Ser}_A^-$ since the coefficient sequence of $G(\varphi(z))$ is obtained by applying the first-order difference operator R_G to the coefficient sequence of $\varphi(z)$.

- (b) If $G(\varphi(z)) = \psi(z)$ where $\psi(z) \in \operatorname{Ser}_A^-$ and $\varphi(z) \in \mathbb{C}((z))$, then $\varphi(z) \in \operatorname{Ser}_A^-$. Indeed, let M be a completely factorable operator which annihilates the coefficient sequence of $\psi(z)$. Then $M \circ R_G$ annihilates the coefficient sequence of $\varphi(z)$. But $M \circ R_G$ is a completely factorable, since R_G is a first-order operator. Therefore $\varphi(z) \in \operatorname{Ser}_A^-$.
- (c) The inequality dim $\operatorname{Ser}_{A}^{-}(L) \leq \operatorname{dim} \operatorname{Ser}_{A}^{-}(L') + 1$ is valid since, first, dim $\operatorname{Ser}_{A}^{-}(G) = 1$, and, second, by (a) we have $G(\varphi(z)) \in \operatorname{Ser}_{A}^{-}(L')$ for any $\varphi(z) \in \operatorname{Ser}_{A}^{-}(L)$.
- (d) Now to complete the proof of (ii) it is sufficient to show that for any $\psi(z) \in \text{Ser}_A^-(L')$ there exists $\varphi(z) \in \text{Ser}_A^-$ such that $G(\varphi(z)) = \psi(z)$.

Let $\Phi(z)$ be a non-zero analytic solution of *G*. This function can be taken in one of the two forms: e^{vz} , or $(1 - vz)^w$, $v \in \mathbb{C}$, $w \in \mathbb{C} \setminus \mathbb{N}$. In addition, let $\Psi(z)$ be a function that is represented by the series $\psi(z)$ (see (i) and Remark 4). Then by formula (16) the equation $G(y) = \Psi(z)$ has the analytic solution

$$\Phi(z) \int \frac{\Psi(z)}{\Phi(z)} \mathrm{d}z \tag{20}$$

(one can take any fixed integration constant). This function is an analytic solution of *L*, and must be meromorphic since 0 is a simple point of *L*. Therefore the series that represents this function belongs to $\mathbb{C}((z))$. By (b) this series belongs to $\operatorname{Ser}_{A}^{-}$.

(iii) Follows from (16). \Box

Proposition 2. Let 0 be a simple point of L and $\operatorname{Ser}_{A}^{-}(L) \neq 0$. In this case any element of $\operatorname{Ser}_{A}^{-}(L)$ represents a function of the form

$$h_1(z) \int h_2(z) \int \dots \int h_m(z) \, \mathrm{d}z \dots \mathrm{d}z \mathrm{d}z, \tag{21}$$

with $m \leq \text{ord } L$, and $h_i(z)$ is either of the form $r(z)e^{vz}$ or of the form $r(z)(1-vz)^w$, with $r(z) \in \mathbb{C}(z) \setminus \{0\}$, $v, w \in \mathbb{C}$ (where r(z), v, w depend on i), i = 1, 2, ..., m.

Proof. Follows from (18). \Box

Definition 4. We call an *h*-factor a differential operator *H* of the form

$$F \circ r(z), \tag{22}$$

where $r(z) \in \mathbb{C}(z) \setminus \{0\}$, and *F* is a first-order operator of the form (11), (12) or (15).

Proposition 3. Let 0 be a simple point of L and $L = L' \circ H$, where $L' \in \mathbb{C}(z)[D]$, and H is an h-factor. In this case:

- (i) 0 is a simple point of L',
- (ii) $\operatorname{Ser}_{A}^{-}(L) \neq 0$, and $\operatorname{dim} \operatorname{Ser}_{A}^{-}(L) = \operatorname{dim} \operatorname{Ser}_{A}^{-}(L') + 1$,

(iii) $(\operatorname{Ser}_{A}^{-}(L))$ is described by formula (18), where Φ is a non-zero analytic solution of H.

Proof. Let *H* be of the form (22), and p(z) be a polynomial involved into *F* as in formulas (11), (12) and (15). We have $L = L' \circ F \circ p(z) \circ r_1(z)$, where $r_1(z) = [p(z)]^{-1}r(z) \in \mathbb{C}(z)$, and $L = L' \circ p(z) \circ G \circ r_1(z)$, where *G* is represented by one of the formulas (11), (12) and (15) with p(z) = 1. It is easy to see that:

- (a) 0 is a simple point of $L' \circ p(z) \circ G$ and dim $\operatorname{Ser}_{A}^{-}(L' \circ p(z) \circ G) = \operatorname{dim} \operatorname{Ser}_{A}^{-}(L)$ by Proposition 1;
- (b) 0 is a simple point of $L' \circ p(z)$ and dim $\operatorname{Ser}_{A}^{-}(L' \circ p(z)) + 1 = \operatorname{dim} \operatorname{Ser}_{A}^{-}(L' \circ p(z) \circ G) = \operatorname{dim} \operatorname{Ser}_{A}^{-}(L)$ by (a) and Lemma 2;
- (c) 0 is a simple point of L' and dim $\operatorname{Ser}_A^-(L') = \operatorname{dim} \operatorname{Ser}_A^-(L' \circ p(z))$ by (b) and Proposition 1.

The claims in (i) and (ii) follow. The proof of (iii) is the same as in Lemma 2, i.e., by formula (16).

(23)

Proposition 4. Let 0 be a simple point of L, and $\text{Ser}_{A}^{-}(L) \neq 0$. In this case:

(i) *L* is right divisible in $\mathbb{C}(z)[D]$ by an operator of the form

$$F \circ f(z)$$

where $f(z) \in \mathbb{C}[z]$, and F is a first-order operator of the form (11), (12) or (15),

54

(ii) *L* has a solution of the form

$$\frac{\sum_{n=0}^{\infty} c_n z^n}{f(z)},\tag{24}$$

where the power series $\sum_{n=0}^{\infty} c_n z^n$ has a hypergeometric coefficient sequence and $f(z) \in \mathbb{C}[z]$.

Proof. (i) We can represent *L* in the right-coefficient form:

$$L = \sum_{k=0}^{d} D^{k} \circ b_{k}(z), b_{0}(z), b_{1}(z), \dots, b_{d}(z) \in \mathbb{C}[z].$$
(25)

Let $f(z) = \text{gcd}(b_0(z), b_1(z), \dots, b_d(z)), L = L' \circ f(z), L' \in \mathbb{C}[z, D]$. Then 0 is a simple point of L', since the leading coefficient of L' divides $b_d(z) = a_d(z)$. It is sufficient to consider the case deg f(z) = 0: by Lemma 1(i) we have $\text{Ser}_A^-(L') \neq 0$ and if L' has a right divisor of the form (23) then evidently L has a right divisor of such a form too. In the rest of the proof we suppose that deg f(z) = 0.

Set $R = \Re L$, $R_1 = \Re L^{\smile}$ (see Remark 3 for the definition of L^{\smile}). If R has a non-zero solution with finite support then L has a right divisor of the form (15) and there is nothing to prove. Suppose R has no such solution. Then the operators R, R_1 have in $\mathbb{C}(n)[E, E^{-1}]$ a common right divisor M of the form (1). Let $\mathbf{c} = (c_n)$ be the coefficient sequence of a non-zero element of $\operatorname{Ser}_A^-(L)$; we can take a completely factorable operator M of minimal order such that $M(\mathbf{c}) = 0$ for all large enough values of the index n. Therefore R and R_1 have a common right divisor of the form E - r(n), $r(n) \in \mathbb{C}(n) \setminus \{0\}$. We claim that $r(n) \notin \mathbb{C}$. Indeed, otherwise $r(n) = c \in \mathbb{C} \setminus \{0\}$, and L is right divisible in $\mathbb{C}[z, z^{-1}, D]$ by $z^{-1} - c$; this implies that $L = L' \circ (z - \frac{1}{c})$, where $L' \in \mathbb{C}[z, D]$ because $L \in \mathbb{C}[z, D]$. This contradicts the condition deg f(z) = 0. So $r(n) \notin \mathbb{C}$. Since 0 is an ordinary point of L^{\smile} the operator E - r(n) has one of the forms (9) and (10) by Theorem 1(i). By Theorem 1(ii) L has a right divisor of one of the forms (11) and (12). The claim follows.

(ii) The statement follows from (i), since *F* has a series solution with a hypergeometric coefficient sequence. \Box

Example 1. Consider the operator L = (z - 1)D - (z - 2). The space Ser_A(L) is generated by the series

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{k!} \right) z^{n}.$$

This series is equal to

$$\frac{\sum_{n=0}^{\infty}\frac{1}{n!}z^n}{1-z},$$

where the numerator is a hypergeometric series, and the denominator is a polynomial. The operator *L* has no hypergeometric series solution. Notice that $L = D \circ (z - 1) - (z - 1) = (D - 1) \circ (z - 1)$.

Remark 5. It follows from the proof of Proposition 4(i) that if 0 is a simple point of L, Ser_A(L) \neq 0, and $b_0(z), b_1(z), \ldots, b_d(z)$ in (25) have no common root, then Ser_A⁻(L) contains a hypergeometric series solution, which is the expansion of an analytic solution of one of the forms

$$p(z)e^{vz}, \qquad p(z)(c-z)^w, \tag{26}$$

 $p(z) \in \mathbb{C}[z] \setminus \{0\}, v, w \in \mathbb{C}, c \in \mathbb{C} \setminus \{0\}$ (we use Remark 1).

As a consequence of Propositions 2–4 we have the following

Theorem 2. Let 0 be a simple point of L. In this case:

(i) if Ser_A⁻(L) ≠ 0, then L is right divisible in C(z)[D] by an h-factor;
(ii) if L = L' ∘ H, where L' ∈ C(z)[D] and H is an h-factor, then
0 is a simple point of L',
Ser_A⁻(L) ≠ 0, and dim Ser_A⁻(L) = dim Ser_A⁻(L') + 1,
formula (18) is valid where Φ(z) is a non-zero analytic solution of H,
L has a solution of the form (24);

(iii) if $L = L' \circ H_m \circ \cdots \circ H_2 \circ H_1$, where an operator $L' \in \mathbb{C}(z)[D]$ is not right divisible by any h-factor, and H_1, H_2, \ldots, H_m are h-factors, then dim Ser_A⁻(L) = m, $\langle Ser_A^-(L) \rangle$ is the space of analytic solutions of the operator $H_m \circ \cdots \circ H_2 \circ H_1$, any element of $\langle Ser_A^-(L) \rangle$ is an analytic function of the form (21).

As a consequence of Theorem 2 we have $\operatorname{Ser}_{A}^{-}(L) \neq 0$ iff *L* is right divisible by an *h*-factor.

4. Space of d'Alembertian series solutions at an arbitrary simple point

The aim of this section is an investigation of the spaces of d'Alembertian series solutions of *L* at different simple points. We will exploit the fact that the operator *L* of the form (2) has a solution $\sum_{n} c_n (z - z_0)^n$ iff the operator

$$L_{z+z_0} = \sum_{k=0}^{d} a_k (z+z_0) D^k$$

has the solution $\sum_{n} c_n z^n$. It is clear that point $z_0 \in \mathbb{C}$ is a simple point of *L* iff 0 is a simple point of L_{z+z_0} .

Proposition 5. Starting from *L* one can construct an operator $\widetilde{L} \in \mathbb{C}(z)[D]$ of order m, $0 \le m \le$ ord *L*, which has the form $\widetilde{L} = H_m \circ \cdots \circ H_2 \circ H_1$, where $H_i = G_i \circ r_i(z), r_i(z) \in \mathbb{C}(z) \setminus \{0\}, G_i$ is a monic first-order operator of one of the two forms:

$$D - v, \tag{27}$$

$$D + \frac{vw}{1 - vz} \tag{28}$$

with $v \in \mathbb{C}$, $w \in \mathbb{C} \setminus \mathbb{N}$, i = 1, 2, ..., m. Moreover, for any simple point z_0 of L one has:

(i) dim Ser⁻_A(L_{z+z_0}) = ord \widetilde{L} ;

(ii) $\operatorname{Ser}_{A}^{-}(L_{z+z_{0}}) = \operatorname{Ser}_{A}^{-}((\widetilde{L})_{z+z_{0}});$

(iii) $(\operatorname{Ser}_{A}^{-}(L_{z+z_{0}}))$ is the space of analytic solutions of $(L)_{z+z_{0}}$.

Proof. We may suppose that 0 is a simple point of *L*, otherwise we could pick any simple (e.g., ordinary) point $z' \in \mathbb{C}$ of *L* and consider $L_{z+z'}$ instead of *L*. Then it follows from Theorem 2 that such \widetilde{L} can be easily constructed if we consider $z_0 = 0$. Take such \widetilde{L} and show that it satisfies the claimed conditions. Let L' be such that $L = L' \circ \widetilde{L}$. The operator L' has no right divisor in the form of an *h*-factor. Now let z_0 be an arbitrary simple point. We have $L_{z+z_0} = (L')_{z+z_0} \circ (\widetilde{L})_{z+z_0}$. Notice that the operator $(L')_{z+z_0}$ has no right divisor in the form of an *h*-factor, and $(\widetilde{L})_{z+z_0} = (H_m)_{z+z_0} \circ \cdots \circ (H_2)_{z+z_0} \circ (H_1)_{z+z_0}$ (i.e., *m* is independent on z_0). If H_i , $1 \le i \le m$, is of the form (27), then $(H_i)_{z+z_0}$ is of the form (28) iff $vz_0 \ne 1$. However $(z - z_0)^{-l}(z - z_0)^w$ is holomorphic at z_0 for some $l \in \mathbb{N}$ iff $w \in \mathbb{Z}$. In this case rewrite $(G_i)_{z+z_0}$ in the form $z^{-w}D \circ z^w$. If i = m then joint the factor z^{-w} with $(\widetilde{L})_{z+z_0}$, otherwise joint it with $(r_{i+1}(z))_{z+z_0}$, i.e., with $r_{i+1}(z + z_0)$. So we can suppose that $(H_i)_{z+z_0}$ is of the form (28). The claim follows from Theorem 2. \Box

The main result of this paper is:

Theorem 3. Let z_0 be a simple (in particular, an ordinary) point of *L*. In this case:

(i) if the expansion of an analytic solution u(z) of L is a d'Alembertian series at z_0 , then the expansion of u(z) is of the same type at any simple point;

(ii) if the expansion of an analytic solution u(z) of L is a d'Alembertian series at z_0 , then u(z) is of the form

$$g_1(z) \int g_2(z) \int \dots \int g_m(z) \, \mathrm{d}z \dots \mathrm{d}z \mathrm{d}z, \tag{29}$$

with $m \leq \text{ord } L$, and $g_i(z)$ is either of the form $r(z)e^{vz}$ or of the form $r(z)(z-c)^w$, with $r(z) \in \mathbb{C}(z) \setminus \{0\}, v, w, c \in \mathbb{C}$ (where r(z), v, w, c depend on i), i = 1, 2, ..., m;

(iii) if *L* has a non-zero d'Alembertian series solution

$$\sum_{n=k}^{\infty} c_n (z-z_0)^n,\tag{30}$$

then L has a solution of the form

$$\frac{\sum_{n=0}^{\infty}c_n'(z-z_0)^n}{f(z)},$$

where the numerator is a non-zero hypergeometric series and the denominator is a polynomial;

(iv) if *L* has a non-zero d'Alembertian series solution (30) and the right-coefficient form (25) of *L* is such that $b_0(z), b_1(z), \ldots, b_d(z)$ have no common root, then *L* has a non-zero solution in the form of a hypergeometric series $\sum_{n=0}^{\infty} c_n z^n$ which represents a function of one of the two forms (26).

Proof. Let \tilde{L} be the operator which corresponds to L as described in Proposition 5.

(i) By Proposition 5(iii), since u(z) is a solution of *L*.

(ii) We can substitute $z + z_0$ for z into (21) and after an easy transformation receive (29) (the rational functions $r_i(z)$ can be changed).

(iii) By Proposition 5 and Theorem 2.

(iv) If z_0 is an ordinary point then the statement follows from Remark 5. If the point z_0 is simple but not ordinary then pick an ordinary point z_1 . By (i), $\operatorname{Ser}_A^-(L_{z+z_0}) \neq 0$ implies $\operatorname{Ser}_A^-(L_{z+z_1})$. The coefficients of the right-coefficient form of L_{z+z_1} evidently have no common root. By Remark 5, L_{z+z_1} has a solution of one of the two forms (26), and as a consequence L_{z+z_0} has a solution of this form (w.l.g. we can assume that $z_1 = 0$). It is clear that $p(z)e^{vz}$ has a hypergeometric expansion at z_0 . Since z_0 is a simple point, the solution $p(z)(z-c)^w$ must have at z_0 either no singularity or a pole (c can be equal to 0). In both cases the expansion of this solution at z_0 is a hypergeometric series. \Box

The following two examples show that the situation at a singular point can differ from the one at ordinary points.

Example 2. Consider the operator

$$L = (z^{2} + z - 2) D^{2} + (z^{2} - z) D - (6 z^{2} + 7 z).$$

L has two singular points, z = 1 and z = -2. The point z = 1 is not a simple point (since local solutions of *L* at z = 1 contain a logarithm term) while z = -2 is a simple point of *L*. A basis of solutions of *L* is

$$(z-1)e^{2z}, \qquad (z-1)e^{2z}\int \left(\frac{z+2}{z-1}\right)^2 e^{5z} dz$$

Notice that dim Ser_A⁻(L) = dim Ser_A⁻(L_{z+z₀}) = 2 for all $z_0 \in \mathbb{C} \setminus \{1\}$ while dim Ser_A⁻(L_{z+z₀}) = 1 if $z_0 = 1$. The right-coefficient form of L is

$$L = D^{2} (z^{2} + z - 2) + D (z^{2} - 5 z - 2) - (6 z^{2} + 9 z - 3).$$

The right coefficients of *L* have no common root and *L* has a hypergeometric series solution as expected. Notice also that *L* can be factorized as $L' \circ F$:

$$L' = \left(\left(z^2 + z - 2 \right) D + 3 z^2 + 2 z - 2 \right) \circ (z - 1),$$

$$F = (D - 2) \circ \frac{1}{z - 1}.$$

This example shows that the dimension of the space of d'Alembertian series solutions at a singular point may be less than the dimension of the space of d'Alembertian series solutions at an ordinary point.

Example 3. Consider the operator

 $L = 9 z D^2 + 6 D - 1.$

The only singular point is z = 0, which is not a simple point (the roots of the indicial equation at 0 are $\frac{1}{3}$ and 0).

One can verify that *L* is irreducible over $\mathbb{C}(z)$ (check it by using the command DEtools[DFactor] (L, [D, z]) of Maple). Hence dim Ser_A⁻(L) = dim Ser_A⁻(L_{z+z₀}) = 0 for all $z_0 \in \mathbb{C} \setminus \{0\}$.

If $z_0 = 0$, then the space Ser⁻_A(L_{z+z_0}) is generated by the hypergeometric series

$$\sum_{n=0}^{\infty} \frac{z^n}{9^n \Gamma(n+2/3) \Gamma(n+1)}.$$

Note that the space of all local solutions of L at z = 0 is generated by the above series and the Frobenius series

$$z^{1/3} \sum_{n=0}^{\infty} \frac{z^n}{9^n \Gamma(n+4/3) \Gamma(n+1)}.$$

This example shows that the dimension of the space of d'Alembertian series solutions at a singular point may exceed the dimension of the space of d'Alembertian series solutions at an ordinary point.

5. The point at infinity

Definition 5. The point $z = \infty$ is an *ordinary (simple)* point of *L*, if the point t = 0 is an ordinary (simple) point of the operator \check{L} , which can be constructed by the substitution

$$z = \frac{1}{t}, \qquad D = -t^2 D_t \tag{31}$$

into *L* (here $D_t = \frac{d}{dt}$). If the point ∞ is simple, then each non-zero solution of \check{L} can be expanded into a series

$$b_k t^k + b_{k+1} t^{k+1} + \cdots, \quad k \in \mathbb{Z}$$

$$(32)$$

with coefficients from \mathbb{C} . Each such series gives the solution

$$b_k z^{-k} + b_{k+1} z^{-k-1} + \cdots$$
 (33)

of L. The series (33) is d'Alembertian if the series (32) is d'Alembertian in the sense of Definition 2.

In Lemma 3 and Theorem 4, \tilde{L} is the operator which corresponds to *L* as described in Proposition 5. Lemma 3. Let ∞ be a simple point of *L*, and ord $\tilde{L} = m > 0$. Then

$$\widetilde{L} = D \circ r_m(z) \circ \cdots \circ D \circ r_2(z) \circ D \circ r_1(z),$$
(34)

where $r_i(z) \in \mathbb{C}(z), i = 1, 2, ..., m$.

Proof. It follows from Proposition 5. Indeed, using the notation of Proposition 5, if for i, $1 \le i \le m$, either

$$H_i = D - v, \quad v \neq 0,$$

or

$$H_i = D - \frac{vw}{1 - vz}, \quad v \neq 0, w \notin \mathbb{Z},$$

then ∞ is not evidently a simple point. \Box

Theorem 4. Let $z_0 \in \mathbb{C}$ and ∞ be simple (in particular, ordinary) points of *L*. Let u(z) be an analytic solution of *L* and suppose that its expansion at z_0 is a d'Alembertian series. In this case:

(i) at any simple point (including ∞) of *L* the series expansion of u(z) is a d'Alembertian series;

(ii) u(z) can be represented in the form (21) with $h_i(z) \in \mathbb{C}(z)$, i = 1, 2, ..., m;

(iii) *L* has a solution in $\mathbb{C}(z)$.

Proof. (i) It follows from Lemma 3, Theorem 3, and the fact that the substitution (31) transforms (34) into an operator of the form

$$s_{m+1}(t)D_t \circ s_m(t) \circ \cdots \circ s_2(t)D_t \circ s_1(t),$$

 $s_1(t), s_2(t), \dots, s_{m+1}(t) \in \mathbb{C}(t).$ (ii), (iii) By (i). \Box

Example 4. Consider the first-order operator $L = z^2D + 1$ which has $ce^{\frac{1}{z}}$, $c \in \mathbb{C}$, as the general solution. Here the point at infinity is an ordinary point and the expansion series of $e^{\frac{1}{z}}$ at infinity is the hypergeometric series

$$\sum_{n=0}^{\infty} \frac{1}{n!} z^{-n}$$

However *L* has no non-zero d'Alembertian series solution at any finite point.

The example shows that one may get non-zero d'Alembertian series solutions at ∞ even if such solutions do not exist at simple points belonging to \mathbb{C} .

Acknowledgements

The authors would like to thank the anonymous referees for their comments, that helped in improving the final version of this paper. The first author was supported by RFBR grant 07-01-00482-a.

References

Abramov, S.A., Barkatou, M.A., van Hoeij, M., 2006. Apparent singularities of linear difference equations with polynomial coefficients. Appl. Algebra Eng., Commun. Comput. 17 (N 2), 117–133.

Abramov, S.A., Petkovšek, M., 1996. Special power series solutions of linear differential equations, In: Stanton D. (Ed.), Proc. FPSAC'96, Univ. of Minnesota, pp. 1–8.

Abramov, S.A., Petkovšek, M., 2004. D'Alembertian solutions of linear operator equations. In: Proc. ISSAC'94, Oxford, pp. 169–174.

Abramov, S.A., Petkovšek, M., Ryabenko, A., 2000. Special formal solutions of linear operator equations. Discrete Math. 210, 3–25.

Tsai, H., 2000. Weyl closure of linear differential operator. J. Symb. Comput. 29, 747–775.