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a b s t r a c t

By definition, the coefficient sequence c = (cn) of a d’Alembertian
series — Taylor’s or Laurent’s — satisfies a linear recurrence equa-
tion with coefficients in C(n) and the corresponding recurrence
operator can be factored into first-order factors over C(n) (if this
operator is of order 1, then the series is hypergeometric). Let L be a
linear differential operator with polynomial coefficients. We prove
that if the expansion of an analytic solution u(z) of the equation
L(y) = 0 at an ordinary (i.e., non-singular) point z0 ∈ C of L is
a d’Alembertian series, then the expansion of u(z) is of the same
type at any ordinary point. All such solutions are of a simple form.
However the situation can be different at singular points.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

If one finds a finite number of coefficients of a power series solution of a differential equation at
a fixed point, then this gives an approximate (or asymptotic) representation of this solution. If one
finds a dependence of coefficients on values of the index n, and if this dependence can be described by
some simple tools, e.g. as a function of n in a closed form, then one receives a full representation of the
solution by an infinite series, though it may be that the solution itself as an analytic function has no
closed-form representation via elementary functions and quadratures. The opportunity of using such
a series for representing differential equation solutions extends the notion of closed-form solutions.
A typical example is given by hypergeometric series. In this paper we consider a more general type of
d’Alembertian series which will be defined below.
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Let E be the shift operator acting on sequences of complex numbers c = (cn) as E(c) = b, where
the sequence b = (bn) is defined by the equality bn = cn+1.

Definition 1. The sequence c is d’Alembertian if for large enough values of the index n the elements
cn of the sequence satisfy a linear recurrence equationM(c) = 0, where

M = (E − r1(n)) ◦ (E − r2(n)) ◦ · · · ◦ (E − rm(n)), (1)

r1(n), r2(n), . . . , rm(n) ∈ C(n). Any operator of the form (1) will be called completely factorable.

Notice that any sequence with finite support (i.e., a sequence which has only finite set of non-zero
elements) is d’Alembertian: we can take any completely factorableM in this case.
It is known that the elements (with large enough values of the index) of a d’Alembertian sequence

can be explicitly represented by a function of the index n using only rational functions, the gamma
function and finite sums (Abramov and Petkovšek, 2004), e.g. ifM = (E + 1

2(n+2) ) ◦ (E −
1
2 ) then the

equationM(y) = 0 is satisfied when n ≥ 0 by two linearly independent sequences

2−n and 2−n
n∑
k=0

(−1)k

Γ (k+ 1)
.

Definition 2. Apower series
∑
n cn(z−z0)

n is d’Alembertian if the sequence (cn) is d’Alembertian (this
notion generalizes the notion of hypergeometric series, where the orderm of the operator (1) is 1).

Let

L =
d∑
k=0

ak(z)Dk ∈ C[z,D], (2)

D = d
dz =

′. Assume that the leading coefficient ad(z) is a non-zero polynomial (so ord L = d), and that
a0(z), . . . , ad(z) do not have a non-constant common factor. Recall that z0 ∈ C is an ordinary point of
L if ad(z0) 6= 0, otherwise z0 is singular; this definition can be reformulated so that it will make sense
when the coefficients of L are rational functions: z0 is ordinary if the rational functions

a0(z)
ad(z)

,
a1(z)
ad(z)

, . . . ,
ad−1(z)
ad(z)

have no pole at z0, otherwise z0 is singular. If z0 is an ordinary point of L then any formal power series
y =

∑
n cn(z−z0)

n satisfying L(y) = 0 is a convergent Taylor series, and the dimension of theC-space
of solutions of this type is d = ord L.
It has been shown in Abramov and Petkovšek (1996) that if at an ordinary point of L the expansion

of a solution u(z) of L is a hypergeometric series, then u(z) has one of the three possible forms:

f (z)+ p(z)evz, f (z)+ p(z)(z − c)w,
f (z)

(z − c)l
+ p(z) log(z − c),

where f (z), p(z) ∈ C[z], v, w, c ∈ C, l ∈ N. Furthermore any such solution can be expanded into a
hypergeometric series at any ordinary point of L.
In the present paper we generalize this result proving that if the expansion of an analytic solution

of the equation L(y) = 0 at an ordinary point z0 is a d’Alembertian series, then the expansion of this
analytic solution is of the same type at any other ordinary point. As a consequence, the dimension
of the space of d’Alembertian series solutions of L(y) = 0 is the same for all ordinary points of the
operator L. We also prove that if L(y) = 0 has a d’Alembertian series solution at an ordinary point z0
then it also has a solution of the form

∞∑
n=0

cn(z − z0)n

f (z)
, (3)

where the numerator is a hypergeometric series and the denominator f (z) is a polynomial (however
a hypergeometric series solution does not exist in general; it might be that this looks quite surprising
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because it is well known that if a linear recurrence equation with polynomial coefficients has a
d’Alembertian sequence solution, then it has a hypergeometric sequence solution aswell). In addition,
if z0 is an ordinary point of L then all d’Alembertian series solutions at z0 represent some analytic
solutions which are of the form

g1(z)
∫
g2(z)

∫
. . .

∫
gm(z) dz . . .dzdz,

withm ≤ ord L, and gi(z) is either of the form r(z)evz or of the form r(z)(z−c)w , with r(z) ∈ C(z)\{0},
v,w, c ∈ C (here r(z), v,w, c depend on i, i = 1, 2, . . . ,m).
It follows from the results of the present paper that solutions in the form of d’Alembertian series at

ordinary points are of limited interest, since they represent quite simple functions, and, additionally,
at each ordinary point we get d’Alembertian series expansion of the same solutions. So going from an
ordinary point to another we get nothing new in this respect. As a contrast, the singular points of L can
be of particular interest. However there is only a finite number of singular points, and one can check
them using a step-by-step examination.
We also consider the point at infinity and, as is usually done in the theory of linear ordinary

differential equations, distinguish the cases of ordinary and singular point of L at infinity. It turns out
that if the point at infinity is ordinary, then it is not improbable that there exists an analytic solution
which has d’Alembertian series expansion at infinity while its Taylor expansion at any finite ordinary
point is not a d’Alembertian series. Notice that up to Section 5 we consider only finite (i.e., belonging
to C) points.
In the rest of this paper Lwill always denote operator (2). For short, we will say about solutions of

L instead of solutions of the equation L(y) = 0 and will use the same style in the recurrence operator
case.

2. Preliminaries

We denote by C[z, z−1,D] the non-commutative ring of polynomials in z, z−1 and D. The
multiplication corresponds to the composition of operators and it is characterized by the following
rules:

• D ◦ z = zD+ 1
• D ◦ z−1 = z−1D− z−2
• the rings C[z, z−1] and C[D] are commutative.

We denote by C[n, E, E−1] the non-commutative ring of polynomials in n, E and E−1. The
multiplication corresponds to the composition of operators and it is characterized by the following
rules:

• E ◦ n = (n+ 1)E
• E−1 ◦ n = (n− 1)E−1
• the ring C[n] and C[E, E−1] are commutative.

The correspondence z 7→ E−1, D 7→ (n + 1)E, z−1 7→ E defines an isomorphism R from
C[z, z−1,D] onto C[n, E, E−1].
We will also consider the field

C((z)) = C[[z]][z−1] (4)

of power series of the form
∞∑
n=m

cnzn, m ∈ Z, ci ∈ C. (5)

The coefficient sequence of (5) is the double-sided sequence

. . . , 0, 0, cm, cm+1, . . . (6)

(so we set ck = 0 for all k < m).
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It is well known that the application of L to (5) gives a series, whose coefficient sequence is the
result of the application to (6) of the recurrence operator

R =
l∑
k=t

qk(n)Ek ∈ C[n, E, E−1] (7)

which is the R-image of L (see, e.g., Abramov et al. (2000)). We suppose that ql(n), qt(n) 6= 0 in (7)
(note that it is possible that t < 0 and even l < 0).
For R of the form (7) we set ord R = l− t .
In the following we will use some facts proven in Abramov and Petkovšek (1996) and Abramov

et al. (2000). The main points of those facts can be formulated as in the following theorem.

Theorem 1. Let 0 be an ordinary point of L and R = RL. Suppose that R has no non-zero solution
with finite support. If R is right divisible in C(n)[E, E−1] by a first-order monic operator E − r(n),
r(n) ∈ C(n) \ {0} then

(i) the operator E − r(n) has one of the forms:

E − v, (8)

E −
v

n+ 1
C(n+ 1)
C(n)

, (9)

E −
v

n+ 1
C(n+ 1)
C(n)

(n− w), (10)

where v ∈ C \ {0},w ∈ C \ N, C(n) ∈ C[n] \ {0};
(ii) according to the cases (8), (9) and (10) the operator L either can be represented in the form L′ ◦ (z−1−

v), L′ ∈ C[z, z−1,D], or is right divisible in C(z)[D] by a monic first-order operator of one of the two
forms:

D−
(
p′(z)
p(z)
+ v

)
, (11)

D−
(
p′(z)
p(z)
−

vw

1− vz

)
, (12)

where p(z) ∈ C[z] \ {0} and, as in (i), v ∈ C \ {0},w ∈ C \ N.

Remark 1. If L is right divisible in C(z)[D] by (11) or by (12), then L has a solution

p(z)evz, (13)

or, resp.,

p(z)(1− vz)w. (14)

Solution (14) can be rewritten in the form

q(z)(z − c)w,

q(z) ∈ C[z], c ∈ C \ {0}.

Remark 2. Let 0 be an ordinary point of L and R = RL. If R has a non-zero solution with finite support
then L has a non-zero polynomial solution p(z) and therefore is right divisible in C(z)[D] by

D−
p′(z)
p(z)

. (15)
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We will use also a well-known elementary fact on first-order linear differential operators. Let
F ∈ C[z,D], ord F = 1. If u(z) is a non-zero analytic solution of F then

u′(z)
u(z)

∈ C(z),

and the general solution of an equation F(y) = v(z)with analytic v(z) is

u(z)
∫
v(z)
u(z)

dz (16)

(the integration constant can be taken to be arbitrary). If L = L̄ ◦ F , L̄ ∈ C(z)[D], and u1, u2, . . . , ud
are linearly independent solutions (analytic functions or formal Laurent’s series from C((z)) of L such
that F(u1) = 0, then

u1

(
u2
u1

)′
, u1

(
u3
u1

)′
, . . . , u1

(
ud
u1

)′
(17)

are linearly independent solutions of L̄.

3. Simple points

The statements of this paper are easier to prove, if we formulate them for a more general case than
the case of an ordinary point.

Definition 3. Wecall z0 ∈ C a simple point of L, if there exists l ∈ N such that the function (z−z0)lu(z)
is holomorphic at z0 (i.e. without singularities in a neighborhood of z0) for any solution u(z) of L. The
minimal lwith such a property will be called the exponent of L at z0 (if the point z0 is ordinary then z0
is evidently a simple point, and the exponent of L at z0 is 0).

If 0 is a simple point of L then the exponent of L at 0 will be referred to as the exponent of L for
short.

Remark 3. Notice that if 0 is a simple point of L and the exponent of L is equal to l then, generally
speaking, 0 is not an ordinary point of the operator L ◦ z−l. However if 0 is a singular point of L ◦ z−l,
then 0 is an apparent singularity, and there exists an operator, which, first, is right divisible inC(z)[D]
by L ◦ z−l, and, second, has 0 as an ordinary point (Tsai, 2000; Abramov et al., 2006). We will denote
by L^ an arbitrary operator having such properties. If 0 is an ordinary point of L ◦ z−l, then we can set
L^ = L ◦ z−l.

We will denote the set of d’Alembertian series of the form
∑
∞

n=0 cnz
n by SerA. The notation

SerA(L) will be used for the set of solutions of L belonging to SerA. The sets SerA, SerA(L) are
C-linear spaces (Abramov and Petkovšek, 2004). We can extend the notions of hypergeometric and,
resp., d’Alembertian series, considering in addition Laurent’s series with hypergeometric and d’Alem-
bertian coefficient sequences. The corresponding C-linear space of d’Alembertian Laurent series will
be denoted by Ser−A . One has SerA ⊂ Ser

−

A . We will also consider the corresponding solution space
Ser−A (L).

Remark 4. Suppose that 0 is a simple point of L and let ϕ(z) ∈ C((z)) be a formal solution of L. Then
ϕ(z) is a convergent series (in a punctured neighborhood of 0) and its sumΦ(z) is an analytic solution
of L. This follows directly from Definition 3.

Lemma 1. Let f (z) ∈ C[z] \ {0} be an arbitrary non-zero polynomial. Then

(i) if 0 is a simple point of L then it is a simple point of L ◦ f (z) and L ◦ [f (z)]−1;
(ii) dim Ser−A (L) = dim Ser

−

A (L ◦ f (z)) = dim Ser
−

A (L ◦ [f (z)]
−1).
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Proof. We note first that it suffices to prove the lemma for f (z) = z − c , with c ∈ C.
(i) If c 6= 0 then the exponent of L ◦ (z − c) does not exceed the exponent l of L. The exponent of

L ◦ z does not exceed l+ 1. The exponent of L ◦ (z − c)−1 does not exceed l.
(ii) Let ϕ(z) ∈ Ser−A , then the coefficient sequence of the series (z − c)ϕ(z) is the result of action

of the linear difference operator P = E−1 − c on the d’Alembertian coefficient sequence of ϕ(z).
The result is a d’Alembertian sequence (Abramov and Petkovšek, 2004). If the coefficient sequence of
ϕ(z) is a solution of a completely factorable difference operator M , then the coefficient sequence of
ϕ(z)/(z−c) is a solution of the operatorM◦P . This implies that the coefficient sequence ofϕ(z)/(z−c)
is a solution of a completely factorable operator and therefore is d’Alembertian. So the multiplication
by (z − c) and the multiplication by (z − c)−1 can be viewed as linear maps from Ser−A into itself. The
kernel of each of these linear maps is zero. Therefore, the image of a finite-dimensional subspace of
Ser−A (e.g., the space Ser

−

A (L)) by each of this transformations, is a subspace of the same dimension. �

The following proposition is a consequence of Lemma 1.

Proposition 1. Let 0 be a simple point of L and r(z) ∈ C(z) \ {0}. In this case:

(i) 0 is a simple point of L ◦ r(z),
(ii) the multiplication by r(z) is a linear transformation of Ser−A onto Ser

−

A with zero kernel,
(iii) dim Ser−A (L) = dim Ser

−

A (L ◦ r(z)).

If W is a subset of C((z)) consisting of convergent Laurent series (see Remark 4), then we will
denote by 〈W 〉 the set of all analytic functions with a Laurent series expansion (at 0) belonging toW .

Lemma 2. Let 0 be a simple point of L and suppose that L = L′◦G,where L′ ∈ C(z)[D] andG is a first-order
operator of the form (11), (12) or (15) with p(z) = 1. In this case:

(i) 0 is a simple point of L′;
(ii) Ser−A (L) 6= 0, and dim Ser

−

A (L) = dim Ser
−

A (L
′)+ 1;

(iii) if Φ(z) is a non-zero analytic solution of G, then the set of analytic functions representable by series
belonging to Ser−A (L) is

〈Ser−A (L)〉 = Φ(z)
∫
〈Ser−A (L

′)〉

Φ(z)
dz, (18)

i.e., the set of all functions of the form

Φ(z)
∫
Ψ (z)
Φ(z)

dz, Ψ (z) ∈ 〈Ser−A (L
′)〉.

Proof. (i) Let ψ1(z), ψ2(z), . . . , ψd(z) ∈ C((z)) be linearly independent solutions of L such that
G(ψ1(z)) = 0. Then by formula (17) Laurent’s series

ψ1(z)
(
ψ2(z)
ψ1(z)

)′
, ψ1(z)

(
ψ3(z)
ψ1(z)

)′
, . . . , ψ1(z)

(
ψd(z)
ψ1(z)

)′
are linearly independent solutions of L′ belonging to C((z)).
(ii) First notice that if G is of the form (12) with p(z) = 1, then we can rewrite any equation

G(y) = ψ(z),ψ(z) ∈ C((z)), as Ḡ(y) = ψ̄(z), where Ḡ = (1− vz)D+ vw, ψ̄(z) = (1− vz)ψ(z). By
Lemma 1, ψ(z) ∈ Ser−A implies (1− vz)ψ(z) ∈ Ser

−

A . Moreover if L = L̄
′
◦ Ḡ, then 0 is a simple point

of L̄′. For saving the old notation, we will assume that G has one of the following two forms:

D− v, (1− vz)D+ vw, v ∈ C, w ∈ C \ N. (19)

Set RG = RG. Evidently ord RG = 1.
The rest of the proof of (ii) will be divided into a few short steps.

(a) If ϕ(z) ∈ Ser−A then G(ϕ(z)) ∈ Ser
−

A since the coefficient sequence of G(ϕ(z)) is obtained by
applying the first-order difference operator RG to the coefficient sequence of ϕ(z).
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(b) If G(ϕ(z)) = ψ(z) where ψ(z) ∈ Ser−A and ϕ(z) ∈ C((z)), then ϕ(z) ∈ Ser−A . Indeed, let M be a
completely factorable operator which annihilates the coefficient sequence of ψ(z). Then M ◦ RG
annihilates the coefficient sequence of ϕ(z). But M ◦ RG is a completely factorable, since RG is a
first-order operator. Therefore ϕ(z) ∈ Ser−A .

(c) The inequality dim Ser−A (L) ≤ dim Ser
−

A (L
′)+ 1 is valid since, first, dim Ser−A (G) = 1, and, second,

by (a) we have G(ϕ(z)) ∈ Ser−A (L
′) for any ϕ(z) ∈ Ser−A (L).

(d) Now to complete the proof of (ii) it is sufficient to show that for any ψ(z) ∈ Ser−A (L
′) there exists

ϕ(z) ∈ Ser−A such that G(ϕ(z)) = ψ(z).
Let Φ(z) be a non-zero analytic solution of G. This function can be taken in one of the two

forms: evz , or (1− vz)w , v ∈ C,w ∈ C \ N. In addition, let Ψ (z) be a function that is represented
by the seriesψ(z) (see (i) and Remark 4). Then by formula (16) the equation G(y) = Ψ (z) has the
analytic solution

Φ(z)
∫
Ψ (z)
Φ(z)

dz (20)

(one can take any fixed integration constant). This function is an analytic solution of L, and must
be meromorphic since 0 is a simple point of L. Therefore the series that represents this function
belongs to C((z)). By (b) this series belongs to Ser−A .

(iii) Follows from (16). �

Proposition 2. Let 0 be a simple point of L and Ser−A (L) 6= 0. In this case any element of Ser
−

A (L) represents
a function of the form

h1(z)
∫
h2(z)

∫
. . .

∫
hm(z) dz . . .dzdz, (21)

withm ≤ ord L, and hi(z) is either of the form r(z)evz or of the form r(z)(1−vz)w , with r(z) ∈ C(z)\{0},
v,w ∈ C (where r(z), v,w depend on i), i = 1, 2, . . . ,m.

Proof. Follows from (18). �

Definition 4. We call an h-factor a differential operator H of the form

F ◦ r(z), (22)

where r(z) ∈ C(z) \ {0}, and F is a first-order operator of the form (11), (12) or (15).

Proposition 3. Let 0 be a simple point of L and L = L′ ◦ H, where L′ ∈ C(z)[D], and H is an h-factor. In
this case:

(i) 0 is a simple point of L′,
(ii) Ser−A (L) 6= 0, and dim Ser

−

A (L) = dim Ser
−

A (L
′)+ 1,

(iii) 〈Ser−A (L)〉 is described by formula (18), whereΦ is a non-zero analytic solution of H.

Proof. LetH be of the form (22), and p(z) be a polynomial involved into F as in formulas (11), (12) and
(15). We have L = L′ ◦ F ◦p(z)◦ r1(z), where r1(z) = [p(z)]−1r(z) ∈ C(z), and L = L′ ◦p(z)◦G◦ r1(z),
where G is represented by one of the formulas (11), (12) and (15) with p(z) = 1. It is easy to see that:

(a) 0 is a simple point of L′ ◦ p(z) ◦ G and dim Ser−A (L
′
◦ p(z) ◦ G) = dim Ser−A (L) by Proposition 1;

(b) 0 is a simple point of L′ ◦p(z) and dim Ser−A (L
′
◦p(z))+1 = dim Ser−A (L

′
◦p(z)◦G) = dim Ser−A (L)

by (a) and Lemma 2;
(c) 0 is a simple point of L′ and dim Ser−A (L

′) = dim Ser−A (L
′
◦ p(z)) by (b) and Proposition 1.

The claims in (i) and (ii) follow. The proof of (iii) is the same as in Lemma 2, i.e., by formula (16). �

Proposition 4. Let 0 be a simple point of L, and Ser−A (L) 6= 0. In this case:
(i) L is right divisible in C(z)[D] by an operator of the form

F ◦ f (z), (23)

where f (z) ∈ C[z], and F is a first-order operator of the form (11), (12) or (15),
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(ii) L has a solution of the form∑
∞

n=0 cnz
n

f (z)
, (24)

where the power series
∑
∞

n=0 cnz
n has a hypergeometric coefficient sequence and f (z) ∈ C[z].

Proof. (i) We can represent L in the right-coefficient form:

L =
d∑
k=0

Dk ◦ bk(z), b0(z), b1(z), . . . , bd(z) ∈ C[z]. (25)

Let f (z) = gcd(b0(z), b1(z), . . . , bd(z)), L = L′ ◦ f (z), L′ ∈ C[z,D]. Then 0 is a simple point of L′, since
the leading coefficient of L′ divides bd(z) = ad(z). It is sufficient to consider the case deg f (z) = 0: by
Lemma 1(i) we have Ser−A (L

′) 6= 0 and if L′ has a right divisor of the form (23) then evidently L has a
right divisor of such a form too. In the rest of the proof we suppose that deg f (z) = 0.
Set R = RL, R1 = RL^ (see Remark 3 for the definition of L^). If R has a non-zero solution with

finite support then L has a right divisor of the form (15) and there is nothing to prove. Suppose R has no
such solution. Then the operators R, R1 have inC(n)[E, E−1] a common right divisorM of the form (1).
Let c = (cn) be the coefficient sequence of a non-zero element of Ser−A (L); we can take a completely
factorable operatorM of minimal order such thatM(c) = 0 for all large enough values of the index n.
Therefore R and R1 have a common right divisor of the form E− r(n), r(n) ∈ C(n)\ {0}. We claim that
r(n) /∈ C. Indeed, otherwise r(n) = c ∈ C \ {0}, and L is right divisible in C[z, z−1,D] by z−1− c; this
implies that L = L′ ◦ (z − 1

c ), where L
′
∈ C[z,D] because L ∈ C[z,D]. This contradicts the condition

deg f (z) = 0. So r(n) /∈ C. Since 0 is an ordinary point of L^ the operator E− r(n) has one of the forms
(9) and (10) by Theorem 1(i). By Theorem 1(ii) L has a right divisor of one of the forms (11) and (12).
The claim follows.
(ii) The statement follows from (i), since F has a series solution with a hypergeometric coefficient

sequence. �

Example 1. Consider the operator L = (z−1)D− (z−2). The space SerA(L) is generated by the series
∞∑
n=0

(
n∑
k=0

1
k!

)
zn.

This series is equal to∑
∞

n=0
1
n! z
n

1− z
,

where the numerator is a hypergeometric series, and the denominator is a polynomial. The operator
L has no hypergeometric series solution. Notice that L = D ◦ (z − 1)− (z − 1) = (D− 1) ◦ (z − 1).

Remark 5. It follows from the proof of Proposition 4(i) that if 0 is a simple point of L, SerA(L) 6= 0, and
b0(z), b1(z), . . . , bd(z) in (25) have no common root, then Ser−A (L) contains a hypergeometric series
solution, which is the expansion of an analytic solution of one of the forms

p(z)evz, p(z)(c − z)w, (26)

p(z) ∈ C[z] \ {0}, v,w ∈ C, c ∈ C \ {0} (we use Remark 1).

As a consequence of Propositions 2–4 we have the following

Theorem 2. Let 0 be a simple point of L. In this case:
(i) if Ser−A (L) 6= 0, then L is right divisible in C(z)[D] by an h-factor;
(ii) if L = L′ ◦ H, where L′ ∈ C(z)[D] and H is an h-factor, then

0 is a simple point of L′,
Ser−A (L) 6= 0, and dim Ser

−

A (L) = dim Ser
−

A (L
′)+ 1,

formula (18) is valid whereΦ(z) is a non-zero analytic solution of H,
L has a solution of the form (24);



Author's personal copy

56 S.A. Abramov, M.A. Barkatou / Journal of Symbolic Computation 44 (2009) 48–59

(iii) if L = L′ ◦ Hm ◦ · · · ◦ H2 ◦ H1, where an operator L′ ∈ C(z)[D] is not right divisible by any h-factor,
and H1,H2, . . . ,Hm are h-factors, then

dim Ser−A (L) = m,
〈Ser−A (L)〉 is the space of analytic solutions of the operator Hm ◦ · · · ◦ H2 ◦ H1,
any element of 〈Ser−A (L)〉 is an analytic function of the form (21).

As a consequence of Theorem 2 we have Ser−A (L) 6= 0 iff L is right divisible by an h-factor.

4. Space of d’Alembertian series solutions at an arbitrary simple point

The aim of this section is an investigation of the spaces of d’Alembertian series solutions of L at
different simple points. We will exploit the fact that the operator L of the form (2) has a solution∑
n cn(z − z0)

n iff the operator

Lz+z0 =
d∑
k=0

ak(z + z0)Dk

has the solution
∑
n cnz

n. It is clear that point z0 ∈ C is a simple point of L iff 0 is a simple point of
Lz+z0 .

Proposition 5. Starting from L one can construct an operator L̃ ∈ C(z)[D] of order m, 0 ≤ m ≤ ord L,
which has the form L̃ = Hm ◦ · · · ◦ H2 ◦ H1, where Hi = Gi ◦ ri(z), ri(z) ∈ C(z) \ {0}, Gi is a monic
first-order operator of one of the two forms:

D− v, (27)

D+
vw

1− vz
(28)

with v ∈ C,w ∈ C \ N, i = 1, 2, . . . ,m. Moreover, for any simple point z0 of L one has:

(i) dim Ser−A (Lz+z0) = ord L̃;
(ii) Ser−A (Lz+z0) = Ser

−

A ((̃L)z+z0);
(iii) 〈Ser−A (Lz+z0)〉 is the space of analytic solutions of (̃L)z+z0 .

Proof. We may suppose that 0 is a simple point of L, otherwise we could pick any simple (e.g.,
ordinary) point z ′ ∈ C of L and consider Lz+z′ instead of L. Then it follows from Theorem 2 that such
L̃ can be easily constructed if we consider z0 = 0. Take such L̃ and show that it satisfies the claimed
conditions. Let L′ be such that L = L′ ◦ L̃. The operator L′ has no right divisor in the form of an h-factor.
Now let z0 be an arbitrary simple point. We have Lz+z0 = (L

′)z+z0 ◦ (̃L)z+z0 . Notice that the operator
(L′)z+z0 has no right divisor in the form of an h-factor, and (̃L)z+z0 = (Hm)z+z0 ◦· · ·◦(H2)z+z0 ◦(H1)z+z0
(i.e., m is independent on z0). If Hi, 1 ≤ i ≤ m, is of the form (27), then (Hi)z+z0 is of the form (27)
as well. Suppose that Hi, 1 ≤ i ≤ m, is of the form (28), then (Hi)z+z0 is of the form (28) iff vz0 6= 1.
However (z − z0)−l(z − z0)w is holomorphic at z0 for some l ∈ N iff w ∈ Z. In this case rewrite
(Gi)z+z0 in the form z

−wD ◦ zw . If i = m then joint the factor z−w with (̃L)z+z0 , otherwise joint it with
(ri+1(z))z+z0 , i.e., with ri+1(z + z0). So we can suppose that (Hi)z+z0 is of the form (28). The claim
follows from Theorem 2. �

The main result of this paper is:

Theorem 3. Let z0 be a simple (in particular, an ordinary) point of L. In this case:

(i) if the expansion of an analytic solution u(z) of L is a d’Alembertian series at z0, then the expansion of
u(z) is of the same type at any simple point;
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(ii) if the expansion of an analytic solution u(z) of L is a d’Alembertian series at z0, then u(z) is of the form

g1(z)
∫
g2(z)

∫
. . .

∫
gm(z) dz . . .dzdz, (29)

with m ≤ ord L, and gi(z) is either of the form r(z)evz or of the form r(z)(z − c)w , with r(z) ∈
C(z) \ {0}, v,w, c ∈ C (where r(z), v,w, c depend on i), i = 1, 2, . . . ,m;

(iii) if L has a non-zero d’Alembertian series solution
∞∑
n=k

cn(z − z0)n, (30)

then L has a solution of the form∑
∞

n=0 c
′
n(z − z0)

n

f (z)
,

where the numerator is a non-zero hypergeometric series and the denominator is a polynomial;
(iv) if L has a non-zero d’Alembertian series solution (30) and the right-coefficient form (25) of L is such

that b0(z), b1(z), . . . , bd(z) have no common root, then L has a non-zero solution in the form of a
hypergeometric series

∑
∞

n=0 cnz
n which represents a function of one of the two forms (26).

Proof. Let L̃ be the operator which corresponds to L as described in Proposition 5.
(i) By Proposition 5(iii), since u(z) is a solution of L̃.
(ii)We can substitute z+z0 for z into (21) and after an easy transformation receive (29) (the rational

functions ri(z) can be changed).
(iii) By Proposition 5 and Theorem 2.
(iv) If z0 is an ordinary point then the statement follows from Remark 5. If the point z0 is simple

but not ordinary then pick an ordinary point z1. By (i), Ser−A (Lz+z0) 6= 0 implies Ser
−

A (Lz+z1). The
coefficients of the right-coefficient form of Lz+z1 evidently have no common root. By Remark 5, Lz+z1
has a solution of one of the two forms (26), and as a consequence Lz+z0 has a solution of this form
(w.l.g. we can assume that z1 = 0). It is clear that p(z)evz has a hypergeometric expansion at z0. Since
z0 is a simple point, the solution p(z)(z − c)w must have at z0 either no singularity or a pole (c can be
equal to 0). In both cases the expansion of this solution at z0 is a hypergeometric series. �

The following two examples show that the situation at a singular point can differ from the one at
ordinary points.

Example 2. Consider the operator

L =
(
z2 + z − 2

)
D2 +

(
z2 − z

)
D−

(
6 z2 + 7 z

)
.

L has two singular points, z = 1 and z = −2. The point z = 1 is not a simple point (since local
solutions of L at z = 1 contain a logarithm term) while z = −2 is a simple point of L. A basis of
solutions of L is

(z − 1) e2 z, (z − 1) e2 z
∫ (

z + 2
z − 1

)2
e5 zdz.

Notice that dim Ser−A (L) = dim Ser
−

A (Lz+z0) = 2 for all z0 ∈ C \ {1} while dim Ser−A (Lz+z0) = 1 if
z0 = 1. The right-coefficient form of L is

L = D2
(
z2 + z − 2

)
+ D

(
z2 − 5 z − 2

)
−
(
6 z2 + 9 z − 3

)
.

The right coefficients of L have no common root and L has a hypergeometric series solution as
expected. Notice also that L can be factorized as L′ ◦ F :

L′ =
((
z2 + z − 2

)
D+ 3 z2 + 2 z − 2

)
◦ (z − 1),

F = (D− 2) ◦
1
z − 1

.
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This example shows that the dimension of the space of d’Alembertian series solutions at a singular
point may be less than the dimension of the space of d’Alembertian series solutions at an ordinary
point.

Example 3. Consider the operator

L = 9 zD2 + 6D− 1.

The only singular point is z = 0, which is not a simple point (the roots of the indicial equation at 0 are
1
3 and 0).
One can verify that L is irreducible over C(z) (check it by using the command DEtools[DFactor]

(L, [D, z]) of Maple). Hence dim Ser−A (L) = dim Ser
−

A (Lz+z0) = 0 for all z0 ∈ C \ {0}.
If z0 = 0, then the space Ser−A (Lz+z0) is generated by the hypergeometric series

∞∑
n=0

zn

9nΓ (n+ 2/3)Γ (n+ 1)
.

Note that the space of all local solutions of L at z = 0 is generated by the above series and the Frobenius
series

z1/3
∞∑
n=0

zn

9nΓ (n+ 4/3)Γ (n+ 1)
.

This example shows that the dimension of the space of d’Alembertian series solutions at a singular
point may exceed the dimension of the space of d’Alembertian series solutions at an ordinary point.

5. The point at infinity

Definition 5. The point z = ∞ is an ordinary (simple) point of L, if the point t = 0 is an ordinary
(simple) point of the operator Ľ, which can be constructed by the substitution

z =
1
t
, D = −t2Dt (31)

into L (here Dt = d
dt ). If the point∞ is simple, then each non-zero solution of Ľ can be expanded into

a series

bktk + bk+1tk+1 + · · · , k ∈ Z (32)

with coefficients from C. Each such series gives the solution

bkz−k + bk+1z−k−1 + · · · (33)

of L. The series (33) is d’Alembertian if the series (32) is d’Alembertian in the sense of Definition 2.

In Lemma 3 and Theorem 4, L̃ is the operator which corresponds to L as described in Proposition 5.

Lemma 3. Let∞ be a simple point of L, and ord L̃ = m > 0. Then

L̃ = D ◦ rm(z) ◦ · · · ◦ D ◦ r2(z) ◦ D ◦ r1(z), (34)

where ri(z) ∈ C(z), i = 1, 2, . . . ,m.

Proof. It follows from Proposition 5. Indeed, using the notation of Proposition 5, if for i, 1 ≤ i ≤ m,
either

Hi = D− v, v 6= 0,

or

Hi = D−
vw

1− vz
, v 6= 0, w /∈ Z,

then∞ is not evidently a simple point. �
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Theorem 4. Let z0 ∈ C and∞ be simple (in particular, ordinary) points of L. Let u(z) be an analytic
solution of L and suppose that its expansion at z0 is a d’Alembertian series. In this case:

(i) at any simple point (including∞) of L the series expansion of u(z) is a d’Alembertian series;
(ii) u(z) can be represented in the form (21) with hi(z) ∈ C(z), i = 1, 2, . . . ,m;
(iii) L has a solution in C(z).

Proof. (i) It follows from Lemma 3, Theorem 3, and the fact that the substitution (31) transforms (34)
into an operator of the form

sm+1(t)Dt ◦ sm(t) ◦ · · · ◦ s2(t)Dt ◦ s1(t),

s1(t), s2(t), . . . , sm+1(t) ∈ C(t).
(ii), (iii) By (i). �

Example 4. Consider the first-order operator L = z2D + 1 which has ce
1
z , c ∈ C, as the general

solution. Here the point at infinity is an ordinary point and the expansion series of e
1
z at infinity is the

hypergeometric series
∞∑
n=0

1
n!
z−n.

However L has no non-zero d’Alembertian series solution at any finite point.
The example shows that one may get non-zero d’Alembertian series solutions at∞ even if such

solutions do not exist at simple points belonging to C.
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