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Abstract

An H-system is a system of first-order linear homogeneous recurrence
equations for a single unknown function T , with coefficients which are
polynomials with complex coefficients. We consider solutions of H-systems
which are of the form T : dom(T ) → C where either dom(T ) = Zd, or
dom(T ) = Zd \ S and S is the set of integer singularities of the system.
It is shown that any natural number is the dimension of the solution
space of some consistent H-system, and that in the case d ≥ 2 there are
H-systems whose solution space is infinite-dimensional. The relationship
between dimensions of solution spaces in the two cases dom(T ) = Zd

and dom(T ) = Zd \ S is investigated. We prove that every consistent
H-system H has a non-zero solution T with dom(T ) = Zd. Finally we
give an appropriate corollary to the Ore-Sato theorem on possible forms
of solutions of H-systems in this setting.

1 Introduction

Systems of first-order linear homogeneous multivariate recurrence equations
with polynomial coefficients and a single unknown function play a significant
role in combinatorics as well as in the theory of hypergeometric functions. In

∗This work has been conducted during the Special Semester on Groebner Bases, February
1 July 31, 2006, organized by RICAM, Austrian Academy of Sciences, and RISC, Johannes
Kepler University, Linz, Austria.
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applications, it is often not enough to consider solutions of such systems as
abstract algebraic objects. Rather, the user is looking for a solution which is
defined everywhere, or at least at all non-singular points of the system. If there
are no singular points, the solution space is at most one-dimensional, and the
solutions are easy to compute. However, in the presence of singularities the sit-
uation changes radically. In particular, the question of existence of a non-zero
solution defined everywhere can be very non-trivial. In this paper, we investi-
gate the possible values that the dimension of various solution spaces of such
systems can have, a question important both from theoretical and algorithmic
points of view.

More precisely, let n1, n2, . . . , nd be variables ranging over the integers. We
consider d-dimensional H-systems, that is to say,, systems of equations of the
form

fi(n1, n2, . . . , nd) T (n1, n2, . . . , ni + 1, . . . , nd)
= gi(n1, n2, . . . , nd) T (n1, n2, . . . , nd),

where fi, gi ∈ C[x1, x2, . . . , xd] \ {0} are relatively prime polynomials for
i = 1, 2, . . . , d. The notion of singular points (singularities) of such systems
can be defined in the usual way. Such singularities make obstacles (sometimes
insuperable) for continuation of partial solutions of the system on all of Zd.

In this paper we consider two spaces of solutions of H-systems: the space
V1 of solutions defined everywhere on Zd, and the space V2 of solutions that
are defined at all nonsingular points of Zd. The precise definitions are given in
Section 2 where it is also shown that the dimension of V2 equals the number of
components induced on Zd by the singularities of the system.

In Sections 3, 4 and 5 we investigate the dimensions of the spaces V1, V2 and
their relationship. It is well known [7] that if (in the case d = 1) one considers
the germs of sequences at infinity (i.e., classes of functions T : N0 → C which
agree from some point on), the dimension of the solution space is 1. However,
the situation is different with dim V1 and dim V2. In Section 3 we prove for the
case d = 1 that if the equation has singularities then 1 ≤ dim V1 < dim V2 < ∞,
and that for any integers s, t such that 1 ≤ s < t there exists an equation
with dim V1 = s and dim V2 = t (the case where there is no singularity is
trivial: dim V1 = dim V2 = 1). In Section 4 we show that in the case d > 1 the
possibilities are even richer: for any s, t ∈ N ∪ {∞} there exists an H-system
with dim V1 = s and dim V2 = t.

The central part of the paper is Section 5 where we prove that
dim V1 > 0 for every consistent H-system. Thus we prove an existence
theorem for H-systems, which claims that for every consistent H-system
there is a non-zero solution defined everywhere on Zd. Since the coeffi-
cients fi(n1, n2, . . . , nd), gi(n1, n2, . . . , nd), i = 1, 2, . . . , d, can vanish for some
(n1, n2, . . . , nd) ∈ Zd, this fact is not self-evident.
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Example 1 Let H be the two-dimensional H-system

((n1 + 1)2 + n2
2)T (n1 + 1, n2) = (n2

1 + n2
2)T (n1, n2),

(n2
1 + (n2 + 1)2)T (n1, n2 + 1) = (n2

1 + n2
2)T (n1, n2).

The only singularity of H is the point (0, 0), and its space V2 is spanned by

T (n1, n2) =
1

n2
1 + n2

2

which is defined and non-zero at all points of Z2\{(0, 0)}. The situation is quite
different with V1. It is easy to check that any solution of H defined everywhere
on Z2 vanishes at all points of Z2 except possibly at (0, 0), where its value can
be chosen arbitrarily. So V1 is spanned by

T (n1, n2) =
{

1, n1 = n2 = 0,
0, otherwise.

In the light of Example 1, it is not entirely inconceivable that some H-system,
even though it is consistent, might not have any non-zero solutions T : Zd → C
at all. However, we prove in Section 5 that this is not the case.

As our proof of this fact is based on the well-known Ore-Sato structure
theorem [5, 6, 8], we use this opportunity to remark in Section 6 that, contrary
to some interpretations found in the literature (e.g., [3, 4]), the Ore-Sato theorem
does not imply that every solution of an H-system is of the form

R(n1, n2, . . . , nd)
∏p

i=1 Γ(ai,1n1 + n2 + · · ·+ ai,dnd + αi)∏q
j=1 Γ(bj,1n1 + n2 + · · ·+ bj,dnd + βj)

un1
1 un2

2 · · ·und

d (1)

where R ∈ C(x1, x2, . . . , xd), aik, bjk ∈ Z, and αi, βj ∈ C (for the case when
the solution of the system is holonomic, and R is required to be a polynomial,
we have already noted this in [2]). We conclude by giving an appropriate corol-
lary to the Ore-Sato theorem on possible forms of solutions of systems under
consideration.

We write p⊥ q to indicate that polynomials p, q ∈ C[x1, x2, . . . , xd] are rela-
tively prime. We write u = (u1, u2, . . . , ud) for d-tuples of numbers or indeter-
minates, and u · v =

∑d
i=1 uivi for their inner product. We denote by ei the

d-tuple whose components are zero except the i-th one which is 1. The mono-
mial xu1

1 xu2
2 · · ·xud

d is denoted by xu. A polynomial p ∈ C[x] is integer-linear if
p(x) = a ·x+β where a ∈ Zd and β ∈ C. The set of positive integers is denoted
by N, and the set of non-negative integers by N0.
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2 H-systems and their solution spaces

Definition 1 An H-system1 of dimension d is a system of equations of the form

fi(n)T (n + ei) = gi(n)T (n) (2)

for i = 1, 2, . . . , d, where fi, gi ∈ C[x] \ {0} and fi⊥ gi. The rational functions
gi/fi ∈ C(x)\{0}, i = 1, 2, . . . , d, are called the certificates of (2), and a function
T : dom(T ) → C is a solution of (2) if (2) is satisfied for all n ∈ dom(T ) such
that n + ei ∈ dom(T ) for i = 1, 2, . . . , d. A solution of an H-system is called a
hypergeometric term.

Definition 2 Rational functions F1, F2, . . . , Fd ∈ C(x) \ {0} are compatible if

Fi(x)Fj(x + ei) = Fj(x)Fi(x + ej)

for all 1 ≤ i < j ≤ d. We call an H-system of the form (2) consistent if its
certificates are compatible.

If an H-system has a solution with Zariski-dense2 support, then it is con-
sistent, and its certificates are uniquely determined by this solution (see [2]).
Note that in the case d = 1, every H-system (containing a single equation) is
consistent.

Definition 3 Let H be an H-system of the form (2). A point n ∈ Zd is

• a trailing integer singularity of H if there exists i, 1 ≤ i ≤ d, such that
gi(n) = 0;

• a leading integer singularity of H if there exists i, 1 ≤ i ≤ d, such that
fi(n− ei) = 0;

• an integer singularity of H if it is a leading or a trailing integer singularity
of H.

Definition 4 Let S(H) denote the set of all integer singularities of H. Denote

• by V1(H) the C-linear space of all solutions T of H such that dom T = Zd,
and

• by V2(H) the C-linear space of all solutions T of H such that dom T =
Zd \ S(H).

1The prefix “H” refers to Jakob Horn and to the adjective “hypergeometric” as well.
2Recall that a set S ⊆ Cd is Zariski-dense if the only polynomial p ∈ C[x1, x2, . . . , xd]

which vanishes at each point of S is the zero polynomial p = 0.
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We consider only integer singularities here, therefore we will drop the ad-
jective “integer” in the sequel. Sometimes we will also drop the name of the
H-system, and will write V1, V2 instead of V1(H), V2(H).

Definition 5 Two points p,p′ ∈ Zd are adjacent if p − p′ = ± ei for some
i ∈ {1, 2, . . . , d}. A finite sequence p1,p2, . . . ,pk ∈ Zd is a path from p1 to
pk of length k − 1 if pi is adjacent to pi+1 for i = 1, 2, . . . , k − 1. Given an
H-system H, the components induced by H on Zd are the equivalence classes
of the following equivalence relation ∼ in Zd: p′ ∼ p′′ iff there exists a path
from p′ to p′′ which contains no singularity of H. If T is a solution of H, then
for each component C induced by H on Zd, the restriction of T to C is called a
constituent of T .

Proposition 1 Let H be a consistent H-system. Then dim V2 equals the number
of components induced by H on Zd.

Proof: To each component Ci induced by H on Zd we assign a solution Ti of (2)
which is 1 at a selected point pi ∈ Ci, and 0 on all the remaining components.
The values of Ti on the remaining points of Ci are uniquely determined by (2).
It is clear that the set of all Ti is a basis for V2. 2

3 The univariate case

When d = 1 the system (2) is of the form

f(n)T (n + 1) = g(n)T (n) (3)

where f(n), g(n) ∈ C[n] \ {0} and f(n)⊥ g(n).

Example 2 (dim V1 = 1, dim V2 = k) Consider the recurrence

T (n + 1) = pk(n) T (n) (4)

where k ≥ 1 and pk(n) =
∏k−2

i=0 (n − 2i + 1). Here we use the convention that
a product is 1 if its lower limit exceeds its upper limit. Clearly the set of
singularities of (4) is {2i − 1 ; i = 0, 1, . . . , k − 2}, so dim V2 = k. To compute
dim V1, note that any solution T (n) of (4) defined for all n ∈ Z is a constant
multiple of

Fk(n) =
{

(−1)(k−1)n/
∏k−2

i=0 (2i− n− 1)!, n < 0,
0, n ≥ 0.

Therefore dim V1 = 1.
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Example 3 (dim V1 = m, dim V2 = m + 1) Now consider the recurrence

qm(n + 1) T (n + 1) = qm(n) T (n) (5)

where m ≥ 1 and qm(n) =
∏m

i=1(n + 2i + 1). The set of singularities is {−(2i +
1) ; i = 1, 2, . . . ,m}, so dim V2 = m + 1. Let T (n) be a solution of (5) defined
for all n ∈ Z. By substituting n = −2(i + 1) for i = 1, 2, . . . ,m into (5), we see
that T (n) = 0 for these values of n. Likewise, by substituting n = −3 into (5),
we find that T (−2) = 0. Using (5) it follows by induction on n that T (n) = 0
for all n ≤ −2(m + 1) and for all n ≥ −2 as well. On the other hand, it is easy
to check that

G(i)
m (n) = δn,−(2i+1)

(where δ is the Kronecker delta) is a solution of (5) for i = 1, 2, . . . ,m. Therefore
dim V1 = m.

Before describing the general situation we need a definition and a lemma.

Definition 6 Let H be an H-system of the form (3). An interval of integers

I = {k, k + 1, . . . , k + m}, m ≥ 0, (6)

is a segment of singularities of H if I ⊆ S(H) while k − 1, k + m + 1 /∈ S(H).

Lemma 1 Each segment of singularities (6) of equation (3) is of (at least) one
of the following types:

(i) all elements of the segment are trailing singularities;

(ii) all elements of the segment are leading singularities;

(iii) there exists j, 0 ≤ j < m, such that k, k + 1, . . . , k + j are leading singu-
larities, while k + j + 1, k + j + 2, . . . , k + m are trailing singularities.

Proof: If u ∈ Z is a trailing singularity and u + 1 a leading singularity of (3)
then f(u) = g(u) = 0, contrary to the assumption f ⊥ g. So any segment of
singularities of (3) consists of a (possibly empty) interval of leading singularities
followed by a (possibly empty) interval of trailing singularities. 2

Theorem 1 Let S denote the set of singularities of equation (3).
a) If S = ∅ then dim V1 = dim V2 = 1.
b) If S 6= ∅ then 1 ≤ dim V1 < dim V2 < ∞.

Proof: a) This is clear.
b) There is only a finite set of components induced on Z by (3), therefore

dim V2 < ∞.
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Next we prove that dim V1 < dim V2. First we show that if (6) is a segment
of singularities of (3), then the restriction of V1 to

Î = {k − 1, k, . . . , k + m, k + m + 1}

has dimension ≤ 1, while the analogous restriction of V2 obviously has dimension
2. Indeed, if u is a trailing singularity, then any element of V1 vanishes at u+1;
and if u is a leading singularity, then any element of V1 vanishes at u − 1. By
Lemma 1 we have three possibilities (i), (ii), (iii) for (6). In case (i) we have
T (k + 1) = T (k + 2) = . . . = T (k + m + 1) = 0, in case (ii) T (k − 1) = T (k) =
. . . = T (k + m − 1) = 0, in case (iii) T (k − 1) = T (k) = . . . T (k + j − 1) = 0
and T (k + j + 2) = T (k + j + 3) = . . . = T (k + m + 1) = 0; in each case T (n)
can be non-zero at most in two points of Î, however the value at one of them is
uniquely determined by the value at the other one. Therefore the dimension of
the restricted V1 is ≤ 1. The same holds for dimension of the restriction of V1

to the set

{k − v, k − v + 1, . . . , k, k + 1, . . . , k + m, k + m + 1, . . . , k + w},

where k, k + 1, . . . , k + m are singularities, while k − v, k − v + 1, . . . , k − 1 and
k+m+1, k+m+2, . . . , k+w are not. Gluing together two such restrictions with
coinciding, say, k + m + 1, k + m + 2, . . . , k + w, and non-intersecting singular
parts, we get the dimension ≤ 2, while the dimension of the corresponding
restriction of V2 is 3 and so on. This proves that dim V1 < dim V2.

Finally we prove that dim V1 ≥ 1. If there are leading singularities, let n0

be the largest leading singularity. Set T (n0) = 1 and T (n) = 0 for n < n0.
None of the points n > n0 is a leading singularity, hence the value of T at
n > n0 is uniquely determined by the recurrence (3) and the initial condition
T (n0) = 1. If there are no leading singularities, let n0 be the least trailing
singularity. Set T (n0) = 1 and T (n) = 0 for n > n0. None of the points n < n0

is a trailing singularity, hence the value of T at n < n0 is uniquely determined
by the recurrence (3) and the initial condition T (n0) = 1. In either case V1

contains a non-zero solution. 2

Theorem 2 For any integers s, t such that 1 ≤ s < t there exists an equation
of the form (3) such that dim V1 = s and dim V2 = t.

Proof: Consider the recurrence

qm(n + 1) T (n + 1) = pk(n)qm(n) T (n) (7)

where k, m ≥ 1, pk(n) is as in Example 2, and qm(n) is as in Example 3. Here the
set of singularities is {2i− 1 ; i = 0, 1, . . . , k− 2} ∪ {−(2i + 1); i = 1, 2, . . . ,m},
so dim V2 = k + m. Let T (n) be a solution of (7) defined for all n ∈ Z. In
exactly the same way as in Example 3 we can see that T (n) = 0 for n =
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−2,−4, . . . ,−2(m+1), n ≤ −2(m+1) or n ≥ −2, and that G
(i)
m (n) = δn,−(2i+1)

is a solution of (7) for i = 1, 2, . . . ,m. Therefore dim V1 = m.
If 1 ≤ s < t, let m = s and k = t−s. Then for equation (7), dim V1 = m = s

and dim V2 = k + m = t. 2

We conclude this section by some remarks on computation of dim V1 and
dim V2. Let H denote equation (3). According to Proposition 1, dim V2(H) is
the number of components induced on Z by H and is thus easy to compute. We
claim that dim V1(H) equals the dimension of the kernel of a bidiagonal matrix
B defined as follows. Let α be the maximum and β the minimum of the integer
roots of f(x)g(x); if H has no integer singularities then we can take α = β = 1.
Let B be the (α− β + 1)× (α− β + 2) matrix with entries

bi,j =

 f(α− i + 1), j = i,
−g(α− i + 1), j = i + 1,
0, otherwise,

where 1 ≤ i ≤ α− β + 1 and 1 ≤ j ≤ α− β + 2. Indeed, any vector v such that
Bv = 0 can be extended to a solution of H in a unique way. This mapping is
an isomorphism between the kernel of B and V1(H).

Incidentally, this gives an alternative proof of the inequality dim V1 ≥ 1: B
has more columns than rows, hence its kernel is nontrivial.

4 The relation between dimensions of V1 and V2

in the multivariate case

If d ≥ 2 in (2) then the dimensions of V1 and/or V2 can be infinite as shown by
the following examples.

Example 4 (dim V1 = ∞, dim V2 = 1) Let H be the system

(n1 − 4n2 + 1)T (n1 + 1, n2) = (n1 − 4n2)T (n1, n2),
(n1 − 4n2 − 4)T (n1, n2 + 1) = (n1 − 4n2)T (n1, n2).

It is easy to check that

Ti(n1, n2) = δn1,4iδn2,i, for i ∈ Z,

are linearly independent solutions of H on all of Z2, hence dim V1 = ∞. On the
other hand, S(H) = {(n1, n2) ; n1 = 4n2}, so H induces a single component on
Z2, and dim V2 = 1.

Example 5 (dim V1 = 1, dim V2 = ∞) Let B be the system

(n1 − 4n2)T (n1 + 1, n2) = (n1 − 4n2 + 1)T (n1, n2),
(n1 − 4n2)T (n1, n2 + 1) = (n1 − 4n2 − 4)T (n1, n2).
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It can be shown that any solution of B defined on all Z2 is a constant multiple
of n1 − 4n2, so dim V1 = 1. On the other hand, S(B) = {(n1, n2) ; n1 − 4n2 ∈
{−4,−1, 1, 4}}, so each of the points (4i, i) for i ∈ Z is a separate component of
Z2 induced by B, hence dim V2 = ∞.

Example 6 (dim V1 = dim V2 = ∞) Let C be the system

(n1 − n2 − 1)(n1 − n2 + 1)T (n1 + 1, n2) = (n1 − n2)(n1 − n2 + 2)T (n1, n2),
(n1 − n2 − 1)(n1 − n2 + 1)T (n1, n2 + 1) = (n1 − n2)(n1 − n2 − 2)T (n1, n2).

It is easy to check that

Ti(n1, n2) = δn1,iδn2,i, for i ∈ Z, (8)

are linearly independent solutions of C on all of Z2, hence dim V1 = ∞. As
S(C) = {(n1, n2) ; n1−n2 ∈ {−2, 0, 2}}, each of the points (i, i−1) and (i, i+1)
for i ∈ Z is a separate component of Z2 induced by C, so dim V2 = ∞ as well.

The following theorem describes the general situation.

Theorem 3 Let 1 ≤ s, t ≤ ∞. Then there exists an H-system such that
dim V1 = s and dim V2 = t.

Proof: Let t ≥ 2 and pt(n1, n2) =
∏t−2

i=0(n1 − n2 + 3i). Then the set of
singularities of

pt(n1 + 1, n2)T (n1 + 1, n2) = pt(n1, n2)T (n1, n2),
pt(n1, n2 + 1)T (n1, n2 + 1) = pt(n1, n2)T (n1, n2)

is S = {(n1, n2) ; n1 − n2 ∈ {−3i ; 0 ≤ i ≤ t − 2}}. As in Example 6, the
functions (8) are linearly independent solutions of this system on all of Z2,
hence dim V1 = ∞. On the other hand, the number of components induced on
Z2 is t, so dim V2 = t.

Let s ≥ 2 and

qs(n1, n2) =
s−1∏
i=1

((n1 − 2i)2 + n2
2). (9)

Then the set of singularities of

(n1 − 4n2)qs+1(n1 + 1, n2)T (n1 + 1, n2) = (n1 − 4n2 + 1)qs+1(n1, n2)T (n1, n2),
(n1 − 4n2)qs+1(n1, n2 + 1)T (n1, n2 + 1) = (n1 − 4n2 − 4)qs+1(n1, n2)T (n1, n2)

is S = {(n1, n2) ; n1 − 4n2 ∈ {−4,−1, 1, 4}} ∪ {(2i, 0) ; 1 ≤ i ≤ s}. Each of
the points (4i, i) for i ∈ Z is a separate component, so dimV2 = ∞. It can be
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shown that any solution T (n1, n2) defined on all Z2 vanishes everywhere except
at the points (2i, 0) where 1 ≤ i ≤ s, and that

Ti(n1, n2) = δn1,2iδn2,0, (10)

for i = 1, 2, . . . , s, are linearly independent solutions of this system defined on
all Z2. Hence dim V1 = ∞.

Together with Examples 4 – 6 this proves the assertion in the case when at
least one of s, t is infinite.

Now assume that s, t are natural numbers, and let rt(n1, n2) =
∏t−1

i=1(n1 +
2i + 1). Consider the system

qs(n1 + 1, n2)T (n1 + 1, n2) = qs(n1, n2)rt(n1, n2)T (n1, n2),
qs(n1, n2 + 1)T (n1, n2 + 1) = qs(n1, n2)T (n1, n2),

where qs is as in (9). It can be shown that any solution T (n1, n2) defined on all
Z2 vanishes for all (n1, n2) such that n1 > −(2t − 1) and (n1, n2) is not of the
form (2i, 0) with 1 ≤ i ≤ s−1. Further, a basis of V1 is given by the s functions
Ti(n1, n2) for i = 0, 1, . . . , s− 1 where

T0(n1, n2) =

{
(−1)(t−1)n1∏s−1

i=1
((n1−2i)2+n2

2)
∏t−1

i=1
(−n1−2i−1)!

, n1 ≤ −(2t− 1),

0, otherwise,

and Ti(n1, n2) are as in (10) for i = 1, 2, . . . , s − 1. It follows that dim V1 = s.
The set of singularities of this system is S = {(2i, 0) ; 1 ≤ i ≤ s− 1}∪ {(−(2i +
1), j) ; 1 ≤ i ≤ t− 1, j ∈ Z}, and the number of components induced on Z2 is t,
so dim V2 = t as desired. 2

We considered the case d = 2 here. The corresponding H-systems for the case
of an arbitrary d > 1 can be obtained by adding equations T (n + ei) = T (n),
i = 3, 4, . . . , d, to the systems with d = 2.

5 Existence of solutions in the multivariate case

In this section we assume that H is a consistent H-system of the form (2), and
show that dimV1(H) > 0.

At first glance, it seems that obtaining a non-zero solution T of H, defined
everywhere on Zd, is trivial: Select any point s ∈ Zd and define T (s) = 1, then
extend T to all of Zd by recursion using H. However, if S(H) 6= ∅ this simple
idea may fail: for instance, in Example 1 the only possible starting point is
s = (0, 0). Since this is a singularity of H, we refine the idea by always selecting
s ∈ S(H). That this, too, can fail, is shown by the following system.

10



Example 7 Let H be the consistent H-system

(n1 − n2 + 2)((n1 + 1)2 + n2
2)T (n1 + 1, n2) = (n1 − n2)(n2

1 + n2
2)T (n1, n2),

(n1 − n2 − 1)(n2
1 + (n2 + 1)2)T (n1, n2 + 1) = (n1 − n2 + 1)(n2

1 + n2
2)T (n1, n2)

with S(H) = {(n1, n2) ∈ Z2; (n1 − n2)(n1 − n2 + 1)(n2
1 + n2

2) = 0}. It is easy
to check that, as in Example 1, V1(H) is spanned by

T (n1, n2) =
{

1, n1 = n2 = 0,
0, otherwise.

Selecting s = (0, 0) and defining T (s) = 1 will indeed produce the non-zero
solution T (n1, n2) = δn1,0δn2,0. However, as every element of V1(H) vanishes at
all n 6= (0, 0), any other choice of s, including all the other singular points of H,
will lead to contradiction.

In general, it is not clear how to select s, or even if a “good” s exists at all. We
will now show that it does.

A sketch of the route to be taken is the following. To each rational function
R(x) we will associate the sequence of rational functions R̂(n) := R(n+x). Us-
ing the Ore-Sato theorem (Theorem 4), we will construct a sequence of rational
functions ϕ : Zd → C(x) which solves the modified H-system

f̂i(n)ϕ(n + ei) = ĝi(n)ϕ(n), i = 1, 2, . . . , d

over C(x). We will define an integer valuation valR(x) for any R(x) ∈ C(x).
The key point of our proof will be the fact that the sequence val ϕ(n) is bounded
(Proposition 4), which will enable us to associate with H the set MH = {n ∈
Zd ; val ϕ(n) = m} where m = min

n∈Zd val ϕ(n). Then we will prove that for
any s ∈ MH we can construct a solution T (n) ∈ V1(H) such that T (s) = 1.

Let K be a field. For k ∈ Z and α ∈ K, denote by ℘(α; k) the Pochhammer
symbol

℘(α; k) =



k−1∏
j=0

(α + j), k ≥ 0,

|k|∏
j=1

1
α− j

, k < 0, α 6= 1, 2, . . . , |k|.

Theorem 4 (Ore-Sato) Let {Gn(x) ∈ C(x) ; n ∈ Zd} be a family of rational
functions satisfying the cocycle condition

∀n,m ∈ Zd : Gn+m(x) = Gn(x) ·Gm(x + n). (11)

Then we can write

Gn(x) = C(n) ·
p∏

j=1

℘(a(j) · x + βj ; a(j) · n)sj · R(x + n)
R(x)

(12)

11



where C : Zd → C satisfies C(n + m) = C(n)C(m), p ∈ N0, a(j) ∈ Zd \ {0},
βj ∈ C, sj ∈ Z \ {0}, and R(x) ∈ C(x).

For a proof, see [8, pp. 26–33]3.

Corollary 1 Let F1(x), F2(x), . . . , Fd(x) ∈ C(x) be compatible rational func-
tions (see Def. 2). Then for i = 1, 2, . . . , d we can write

Fi(x) = ci ·
p∏

j=1

℘(a(j) · x + βj ; a
(j)
i )sj · R(x + ei)

R(x)
(13)

where ci ∈ C, p ∈ N0, a(j) = (a(j)
1 , a

(j)
2 , . . . , a

(j)
d ) ∈ Zd\{0}, βj ∈ C, sj ∈ Z\{0},

R(x) ∈ C(x)\{0}, the complete factorization of the numerator and denominator
of R(x) contains no integer-linear factors, gcd(a(j)

1 , a
(j)
2 , . . . , a

(j)
d ) = 1, and the

first non-zero component of a(j) is positive, for j = 1, 2, . . . , p.

Proof: Write B = {e1, e2, . . . , ed}. To each sequence of unit vectors
d1,d2, . . . ,dr from B ∪ (−B) assign the rational function

G̃d1,d2,...,dr
(x) =

r∏
j=1

F̃dj
(x + nj−1)

where

F̃d(x) =
{

Fi(x), d = ei,
Fi(x− ei)−1, d = −ei,

and nj =
∑j

i=1 di, for 0 ≤ j ≤ r. As F1, F2, . . . , Fd are com-
patible, G̃d1,d2,...,dr

(x) does not change if two consecutive terms in
the sequence d1,d2, . . . ,dr are transposed. Hence G̃d1,d2,...,dr (x) =
G̃dπ(1),dπ(2),...,dπ(r)(x) for any permutation π of {1, 2, . . . , r}. In particu-
lar, we can sort the sequence d1,d2, . . . ,dr into a sequence of the form
e1, . . . , e1,−e1, . . . ,−e1, . . . , ed, . . . , ed,−ed, . . . ,−ed. Since G̃di,di+1(x) = 1 if
di = −di+1, by definition of F̃d, and

G̃d1,d2,...,dr,dr+1,...,ds(x) = G̃d1,d2,...,dr (x) · G̃dr+1,...,ds(x + nr), (14)

by definition of G̃, this sequence can be reduced by omitting each consecutive
pair of ei and −ei. It follows that G̃d1,d2,...,dr depends only on d1 + d2 + · · ·+
dr = nr.

3In fact, a more general version of the Ore-Sato theorem is proved in [8], with Zd replaced
by an arbitrary abelian group Ξ generated by d elements, and with C replaced by an arbitrary
algebraically closed field Ω of characteristic zero. Note however that in the statement and proof
of this theorem in [8],

∏
l≤k≤−1

ψi(x+ k)−1 should be replaced by
∏

l≤k≤−1
ψi(x− k)−1.
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Thus we can define a family of rational functions {Gn(x) ∈ C(x) ; n ∈ Zd}
by setting

Gn(x) = G̃d1,d2,...,dr
(x)

where d1,d2, . . . ,dr is any sequence of vectors from B ∪ (−B) summing to n.
Because of (14), the family {Gn(x) ; n ∈ Zd} satisfies the cocycle condition (11),
hence by Theorem 4, Gn(x) has the form (12). Notice that Gei

(x) = Fi(x) and
a(j) · ei = a

(j)
i , so with n = ei and C(ei) = ci, (12) turns into (13).

If R(x) = R̃(x) (a · x + β)s where R̃(x) ∈ C(x), a ∈ Zd, β ∈ C and s ∈ Z,
then R(x+ei)/R(x) = R̃(x+ei)/R̃(x)·℘(a·x+β+1; ai)s/℘(a·x+β; ai)s. Thus
we can extract all integer-linear factors from R and replace them by appropriate
Pochhammer symbols in the product in (13).

The last two claims follow from the formulæ

℘(a · x + β; ai) = δai

δ−1∏
k=0

℘((a · x + β + k)/δ; ai/δ)

where δ = gcd(a1, a2, . . . , ad), and

℘(a · x + β; ai)℘(1− a · x− β; −ai) = (−1)ai ,

both easily verifiable by direct computation. 2

To each rational function R(x) ∈ C(x) we associate a sequence of rational
functions R̂ : Zd → C(x) by setting R̂(n) = R(n + x). Obviously we have

Proposition 2 If R(x) is not identically zero, then for all n ∈ Zd, R̂(n) is not
identically zero.

Define a valuation val : C(x) → Z in the following way: For p(x) ∈ C[x] let

val p = min{e1 + e2 + · · ·+ ed ; xe1
1 xe2

2 · · ·xed

d is a monomial of p}.

If R(x) ∈ C(x) \ C[x] and R = p/q where p, q ∈ C[x] and p⊥ q, let

val R = val p− val q.

Proposition 3 (i) If p ∈ C[x] then
∑d

i=1 degxi
p ≥ val p ≥ 0, and

val p > 0 ⇐⇒ p(0) = 0.

(ii) If R1, R2 ∈ C(x) then val R1R2 = valR1 + val R2.

Proof: Assertion (i) is obvious, and so is (ii) when R1, R2 ∈ C[x]. To prove
(ii) in general, write Ri = pi/qi where pi, qi ∈ C[x] and pi⊥ qi, for i = 1, 2.
Denote r = gcd(p1, q2), s = gcd(p2, q1), p′1 = p1/r, q′2 = q2/r, p′2 = p2/s,
q′1 = q1/s. Then R1R2 = p1p2/(q1q2) = p′1p

′
2/(q′1q

′
2) where p′1p

′
2⊥ q′1q

′
2. Hence

val R1R2 = val p′1p
′
2− val q′1q

′
2 = val p′1 + val p′2− val q′1− val q′2 = val p′1 + val r +

val p′2 +val s−val q′1−val s−val q′2−val r = val p′1r+val p′2s−val q′1s−val q′2r =
val p1 + val p2 − val q1 − val q2 = valR1 + val R2, as claimed. 2
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Proposition 4 Let R ∈ C(x). Then the sequence val R̂(n) is bounded every-
where on Zd.

Proof: Let R = p/q where p, q ∈ C[x] and p⊥ q. By Proposition 3(i) we have

d∑
i=1

degxi
p =

d∑
i=1

degxi
p̂(n)

≥ val p̂(n) ≥ val R̂(n) ≥ − val q̂(n)

≥ −
d∑

i=1

degxi
q̂(n)

= −
d∑

i=1

degxi
q

for any n ∈ Zd. 2

The following proposition is obvious.

Proposition 5 If F1, F2, . . . , Fd ∈ C(x) are compatible rational functions (see
Def. 2), then the sequences F̂1, F̂2, . . . , F̂d are also compatible in the sense that
for any n ∈ Zd, the rational functions F̂i(n)F̂j(n+ ei) and F̂j(n)F̂i(n+ ej) are
equal in C(x), for 1 ≤ i < j ≤ d.

Let H be a consistent H-system of the form (2). By Corollary 1 we can write
its certificates Fi = gi/fi in the form (13). For i = 1, 2, . . . , d, define

F ′
i (x) = ci ·

p∏
j=1

℘(a(j) · x + βj ; a
(j)
i )sj , (15)

F ′′
i (x) =

R(x + ei)
R(x)

. (16)

Then Fi = F ′
iF

′′
i for i = 1, 2, . . . , d. Since F1, F2, . . . , Fd as well as

F ′′
1 , F ′′

2 , . . . , F ′′
d are compatible, so are F ′

1, F
′
2, . . . , F

′
d.

We will associate with H three sequences ξ, η, ϕ : Zd → C(x) with rational-
function values, defined by the following requirements:

• ξ(0) = 1, ξ(n + ei) = ξ(n)F̂ ′
i (n), i = 1, 2, . . . , d,

• η(n) = R̂(n),

• ϕ(n) = ξ(n)η(n).
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Notice that the existence and uniqueness of ξ follow from the compatibility of
F̂ ′

1, F̂
′
2, . . . , F̂

′
d. For i = 1, 2, . . . , d set

F ′
i =

g′i
f ′i

, F ′′
i =

g′′i
f ′′i

,

where g′i, f
′
i , g

′′
i , f ′′i ∈ C[x], g′i⊥ f ′i , g′′i ⊥ f ′′i . Then ξ, η satisfy the systems

f̂ ′i(n)ξ(n + ei) = ĝ′i(n)ξ(n), i = 1, 2, . . . , d, (17)

f̂ ′′i (n)η(n + ei) = ĝ′′i (n)η(n), i = 1, 2, . . . , d. (18)

Since R(x) contains no integer linear factors, no cancellation occurs on the
left-hand side of

f ′if
′′
i

g′i g′′i
=

fi

gi
.

Therefore f ′if
′′
i = fi and g′ig

′′
i = gi, hence f̂ ′i f̂

′′
i = f̂i and ĝ′iĝ

′′
i = ĝi as well. As a

consequence of equalities (17), (18) we have

f̂i(n)ϕ(n + ei) = ĝi(n)ϕ(n), i = 1, 2, . . . , d. (19)

Our next goal is to show that the sequence valϕ(n) is bounded.
With any factor ℘(a(j) · x + βj ; a

(j)
i ) in (15), we associate |a(j)

i | hyperplanes
in Cd: those hyperplanes are defined by the equations

a(j) · x + βj + l = 0, l = 0, 1, . . . , a
(j)
i − 1

if a
(j)
i > 0, and by

a(j) · x + βj + l = 0, l = −1,−2, . . . , a
(j)
i

if a
(j)
i < 0. All the factors from (15) generate a finite set of hyperplanes which

we will denote by P. The number of elements of P will be denoted by N . We
call a point n ∈ Zd special if it belongs to at least one hyperplane from P.

Proposition 6 If two points n,n′ ∈ Zd are adjacent and val ξ(n) 6= val ξ(n′),
then at least one of these points is special. In this case | val ξ(n) − val ξ(n′)| ≤
|s1|+ |s2|+ · · ·+ |sp|, where s1, s2, . . . , sp are as in (15).

Proof: From the definition of ξ(n) and from Proposition 3(ii) it follows that
| val ξ(n)− val ξ(n′)| = val F̂ ′

i (n) for some i ∈ {1, 2, . . . , d}. From the definition
of F ′

i it follows that val F̂ ′
i (n) =

∑p
j=1 sj val ℘(a(j) · (n + x) + βj ; a

(j)
i ). Note

that | val ℘(a(j) · (n+x)+βj ; a
(j)
i )| ≤ 1, hence | val ξ(n)−val ξ(n′)| ≤

∑p
j=1 |sj |.

2

In order to show that val ϕ(n) is bounded, we prove three lemmas.
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Lemma 2 Assume that neither of n′,n′′ ∈ Zd is special. Then there exists a
path between them which contains no more than (2d− 1)N special points.

Proof: By induction on d. If d = 1, there are N special points in all, so the claim
is true. Assume that d > 1 and n′ = (n′1, n

′
2, . . . , n

′
d), n′′ = (n′′1 , n′′2 , . . . , n′′d).

Consider the two discrete lines

L′ = {(n′1, n′2, . . . , n′d−1, t) ; t ∈ Z}, L′′ = {(n′′1 , n′′2 , . . . , n′′d−1, t) ; t ∈ Z}.

Since n′,n′′ are not special, each of the lines L′, L′′ contains a finite number of
special points, and there exists t0 ∈ Z such that both n′0 = (n′1, n

′
2, . . . , n

′
d−1, t0)

and n′′0 = (n′′1 , n′′2 , . . . , n′′d−1, t0) are not special. The straight path from
n′ to n′0 contains no more than N special points, as well as the straight
path from n′′0 to n′′. By induction hypothesis, there is a path in the set
{(n1, n2, . . . , nd−1, t0) ; (n1, n2, . . . , nd−1) ∈ Zd−1} from n′0 to n′′0 that contains
no more than (2d − 3)N special points. So there is a path from n′ to n′′ that
contains no more than 2N + (2d− 3)N = (2d− 1)N special points. 2

Lemma 3 Let a ∈ Zd \ {0}, β ∈ C, q ∈ Zd, and r ∈ N0. Denote

A = {n ∈ Zd ; a · n = β, |ni − qi| ≤ r for i = 1, 2, . . . , d}.

Then |A| ≤ (2r + 1)d−1.

Proof: Since a 6= 0, there exists k ∈ {1, 2, . . . , d} such that ak 6= 0. Denote
B = {n ∈ Zd; nk = qk, |ni − qi| ≤ r for i = 1, 2, . . . , d and i 6= k}. The
orthogonal projection π : A → B, n 7→ n − (nk − qk)ek is injective, hence
|A| ≤ |B| = (2r + 1)d−1. 2

Lemma 4 Let n = (n1, n2, . . . , nd) ∈ Zd be special. Then there exists a non-
special point n∗, and a path from n to n∗ which contains at most (N+1)d

2 special
points.

Proof: The set P of hyperplanes is finite, so not all points in Zd are special.
Let r+1 be the length of a shortest path from n to a non-special point n∗. This
path contains r + 2 points, out of which at most r + 1 are special. Notice that
by the definition of r, the set

Cr = {(n̄1, n̄2, . . . , n̄d) ∈ Zd; |n̄i − ni| ≤ r/d, i = 1, 2, . . . , d}

contains only special points. By Lemma 3, a hyperplane from P contains at
most (2br/dc + 1)d−1 points from Cr, hence |Cr| ≤ N(2br/dc + 1)d−1. But
|Cr| = (2br/dc+ 1)d, so N ≥ 2br/dc+ 1 ≥ 2(r− d + 1)/d + 1, and consequently
(N + 1)d/2 ≥ r + 1, which proves the assertion. 2

As a consequence we have
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Proposition 7 The sequence val ξ(n) is bounded on Zd.

Proof: Let n0 ∈ Zd be a fixed non-special point, and let n ∈ Zd be arbitrary.
We distinguish two cases:

a) If n is non-special then, by Lemma 2, there exists a path from n0 to n
that contains at most (2d− 1)N special points.

b) If n is special then, by Lemma 4, there is a non-special point n∗ and a
path from n to n∗ that contains at most (N + 1)d/2 special points. By Lemma
2, there is a path from n∗ to n0 that contains at most (2d− 1)N special points.

In either case, there is a path from n0 to n that contains no more than
M := (2d − 1)N + (N + 1)d/2 special points. By Proposition 6 we have then
| val ξ(n)− val ξ(n0)| ≤ M(|s1|+ |s2|+ · · ·+ |sp|). 2

Finally we get the following result.

Proposition 8 The sequence val ϕ(n) is bounded on Zd.

Proof: By Proposition 3(ii), val ϕ(n) = val ξ(n) + val η(n) for all n ∈ Zd. So
the sequence valϕ(n) is bounded by Propositions 7 and 4. 2

Definition 7 Let H be an H-system of the form (2).
We say that a point n′ ∈ Zd is accessible from a point n ∈ Zd w.r.t. H

if there exists a path n1,n2, . . . ,nk such that n1 = n, nk = n′ and for each
j ∈ {1, 2, . . . , k−1} there is i ∈ {1, 2, . . . , d} such that either nj+1 = nj +ei and
fi(nj) 6= 0, or nj+1 = nj − ei and gi(nj+1) 6= 0. Otherwise n′ is inaccessible
from n w.r.t. H.

If M ⊆ Zd, then M is inaccessible w.r.t. H if every n′ ∈ M is inaccessible
from any n ∈ Zd \M w.r.t. H.

We will omit the qualification “w.r.t. H” when the system H is clear from the
context. Informally, n′ is inaccessible from n if for any solution T ∈ V1(H), the
value of T at n′ is uniquely determined by H and the value of T at n. Note also
that the accessibility relation is reflexive and transitive.

Since the sequence valϕ(n) is bounded on Zd, we can define

m = min
n∈Zd

val ϕ(n)

and associate with H the non-empty set

MH = {n ∈ Zd | val ϕ(n) = m}.

Lemma 5 MH is inaccessible.

Proof: It is sufficient to prove that if a is adjacent to b, a /∈ MH and b ∈ MH,
then b is inaccessible from a. W.l.o.g. assume that b = a+e1. By (19) we have

f̂1(a)ϕ(b) = ĝ1(a)ϕ(a). (20)
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By Proposition 3(ii), val f̂1(a)+val ϕ(b) = val ĝ1(a)+val ϕ(a). As a /∈ MH and
b ∈ MH, we have valϕ(a) > val ϕ(b), therefore

val f̂1(a) > val ĝ1(a).

Since val ĝ1(a) ≥ 0, this implies that val f1(a + x) = val f̂1(a) > 0. So by
Proposition 3(i), f1(a) = 0. This proves that b is inaccessible from a. 2

Lemma 6 Let H be an H-system of the form (2). If a,b ∈ MH are such that
b is inaccessible from a, then a is inaccessible from b as well.

Proof: It suffices to prove the statement for the case where a is adjacent to
b. W.l.o.g. assume that b = a + e1. As in the proof of Lemma 5 we find that
val f̂1(a) + valϕ(b) = val ĝ1(a) + valϕ(a), but this time val ϕ(b) = valϕ(a), so
val f̂1(a) = val ĝ1(a). Since b is inaccessible from a, f1(a) = 0, which implies
that val f̂1(a) > 0. Hence val ĝ1(a) > 0 as well. Therefore g1(a) = 0, and the
claim follows. 2

Theorem 5 Let H be a consistent H-system. Then dim V1(H) > 0.

Proof: Pick any a ∈ MH and let S(a) = {p ∈ MH ; p is accessible from a}.
We claim that S(a) is inaccessible. Indeed, take p ∈ S(a) and q /∈ S(a). Then
either q ∈ MH \ S(a) or q /∈ MH. In the former case, p is inaccessible from q
because otherwise, by Lemma 6, q is accessible from p and hence from a, which
is impossible since q /∈ S(a). In the latter case, p is inaccessible from q because
p ∈ MH, q /∈ MH, and MH is inaccessible by Lemma 5. This proves the claim.

Now define T : Zd → C as follows. Set T (a) = 1 and define T on S(a) \ {a}
recursively, using the system H. This is possible because if p ∈ MH is accessible
from a along some path t1, t2, . . . , tk where t1 = a and tk = p, then the entire
path belongs to MH (otherwise there is a j, 1 ≤ j ≤ k − 1, such that tj /∈ MH,
tj+1 ∈ MH, and tj+1 is accessible from tj , which contradicts Lemma 5). Finally,
set T (p) = 0 for all p /∈ S(a).

We claim that this T satisfies (2) for all n ∈ Zd and all i ∈ {1, 2, . . . , d}.
Indeed, if n,n + ei ∈ S(a) then (2) is satisfied by definition of T and by consis-
tency of H. If n,n + ei /∈ S(a) then both sides of (2) are zero by definition of
T . If n ∈ S(a) and n + ei /∈ S(a) (or vice versa) then again both sides of (2)
are zero by definition of T and because S(a) is inaccessible. Hence T ∈ V1(H).
Since T 6= 0, the claim follows. 2

Example 8 Let H be the system

(n1 + n2 + 2)T (n1 + 1, n2) = (n1 + n2)(n1 − n2)T (n1, n2),
(n1 + n2 + 2)(n1 − n2 − 1)T (n1, n2 + 1) = (n1 + n2)T (n1, n2).
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It is easy to check that H is a consistent H-system with certificates

F1(n1, n2) =
(n1 + n2)(n1 − n2)

n1 + n2 + 2
= ℘(n1 − n2; 1)

R(n1 + 1, n2)
R(n1, n2)

,

F2(n1, n2) =
n1 + n2

(n1 + n2 + 2)(n1 − n2 − 1)
= ℘(n1 − n2; −1)

R(n1, n2 + 1)
R(n1, n2)

(cf. (13)), where

R(n1, n2) =
1

(n1 + n2)(n1 + n2 + 1)
.

Note that for (n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2) 6= 0, H is satisfied by

T (n1, n2) =
(−1)n1+n2

Γ(1− n1 + n2)
R(n1, n2),

but this solution does not belong to V1(H).
In this case ξ(n1, n2) satisfies

ξ(0, 0) = 1,

ξ(n1 + 1, n2) = (n1 − n2 + x1 − x2)ξ(n1, n2),

ξ(n1, n2 + 1) =
ξ(n1, n2)

n1 − n2 − 1 + x1 − x2
.

It is straightforward to verify that ξ(n1, n2) = ℘(x1 − x2; n1 − n2) and

val ξ(n1, n2) =
{

0, n1 ≤ n2,
1, otherwise.

Next, η(n1, n2) = 1/((n1 + n2 + x1 + x2)(n1 + n2 + 1 + x1 + x2)), and

val η(n1, n2) =
{
−1, (n1 + n2)(n1 + n2 + 1) = 0,
0, otherwise.

Hence m = min
(n1,n2)∈Z2 val ϕ(n1, n2) = −1, and

MH = {(n1, n2) ∈ Z2 ; (n1 + n2)(n1 + n2 + 1) = 0 ∧ n1 ≤ n2}.

By taking a = (0, 0) in the proof of Theorem 5, we have S(a) = MH, and the
corresponding non-zero solution belonging to V1(H) is

T (n1, n2) =


1

Γ(2n2+1) , n1 + n2 = 0 ∧ n1 ≤ n2,
1

Γ(2n2+2) , n1 + n2 + 1 = 0 ∧ n1 ≤ n2,

0, otherwise.
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6 The Ore-Sato theorem and its consequences

The Ore-Sato theorem (see Theorem 4) is commonly believed to imply that
every hypergeometric term is of the form (1). For example, in [3, p. 223] one
reads: “From Ore’s result it can be deduced that the most general form of Amn

is of the form
Amn = R(m,n)γmnambn

where R is a fixed rational function of m and n, a and b are constants, and γmn

is a gamma product (. . . ) that is to say it is of the form

γmn =
∏

i

Γ(ai + uim + vin)/Γ(ai)

where the ai are arbitrary (real or complex) constants, and the ui and vi are
arbitrary integers which may be positive, negative, or zero.” A similar quote can
be found in [4, p. 5].

It may be the case that in the literature referred to above, Amn is implicitly
assumed to be non-zero for all m,n ∈ Z. This possibility is supported by the
fact that, e.g., in [3] the corresponding H-system is given in terms of the two
quotients Am+1,n/Amn and Am,n+1/Amn. But such a severe restriction would
exclude from consideration many important functions, such as the binomial
coefficient Amn =

(
m
n

)
, and all polynomials with integer roots.

However if we do not adopt this restriction, then there are hypergeometric
terms which cannot be written in the form (1), as illustrated by the following
example.

Example 9 Take the H-system

p(n1, n2)T (n1 + 1, n2) = p(n1 + 1, n2)T (n1, n2), (21)
p(n1, n2)T (n1, n2 + 1) = p(n1, n2 + 1)T (n1, n2),

where p(n1, n2) = (n1 − n2 − 1)(n1 − n2 + 1). It can be checked that any
T : Z2 → C which satisfies T (n1, n2) = 0 unless n1 = n2 is a solution of (21).
In particular,

T (n1, n2) =
{

2n2
1 , n1 = n2,

0, otherwise

is a solution of (21), even though it does not have the form (1) because it grows
too fast along the diagonal.

There are examples which look less artificial and where the solution has
Zariski-dense support, such as T (n1, n2) = |n1 − n2|. In [1, Example 6] it is
shown that this hypergeometric term cannot be written in the form (1) if R is
assumed to be a polynomial. In a similar way it can be shown that the same is
true even if R is allowed to be a rational function.

The following statement does follow from the Ore-Sato theorem.
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Corollary 2 Let T be a hypergeometric term. If T has Zariski-dense support,
then any constituent4 of T is of the form (1).
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