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Abstract

We consider linear q-difference equations with polynomial coefficients depending on a parameter.
We discuss an algorithm recognizing the existence of numerical values of the parameter for which
a given equation has a non-zero rational function solution. If such values exist, then the algorithm
finds them as well as the corresponding solutions. In addition we propose parametric versions
of the q-accurate summation, and q-Zeiberger algorithms. An implementation in Maple of all
proposed algorithms is described.
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1. Introduction

Suppose that in an equation L(y) = 0 the operator L is of the form

rρ(x, t1, . . . , tm)Dρ + rρ−1(x, t1, . . . , tm)Dρ−1 + · · ·+ r0(x, t1, . . . , tm), (1)

where D = d
dx , and r0, r1, . . . , rρ are polynomials over Q in the specified variables, and

t1, t2, . . . , tm are parameters. In the paper (Boucher, 1999) the following result of J.-
A. Weil is mentioned: there is no algorithm that, for an arbitrary operator L of form
(1) answers whether or not numerical values of parameters t1, t2, . . . , tm exist for which
equation L(y) = 0 has a solution in the form of a non-zero rational function of x.
The proof is based on the Davis-Matiyasevich-Putnam-Robinson theorem (Matiyasevich,
1993). The result by Weil can be easily extended to the problem of existence of polynomial
solutions of equation L(y) = 0.
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Similar results have been obtained for the difference case (Abramov (2009, 2010)).
The operator L is of the form

rρ(x, t1, . . . , tm)Eρ + rρ−1(x, t1, . . . , tm)Eρ−1 + . . . · · ·+ r0(x, t1, . . . , tm), (2)

where E is the shift operator: E(y(x)) = y(x+1), and again r0, r1, . . . , rρ are polynomials
over Q in the specified variables, t1, t2, . . . , tm are parameters.

In (Abramov, ISSAC’2010) q-difference equations with parameters were considered.
Differential equations are based on the differentiation operator D, while difference equat-
ions are based on the shift operator E. In turn, the q-difference equations are based on
the q-shift operator Q:

Q(y(x)) = y(qx),
where q is a fixed value or an additional variable (q-calculus and the theory and algorithms
for q-difference equations are of interest in combinatorics, especially in the theory of
partitions (Andrews, 1976, Sect. 8.4), (Andrews, 1986)). The q-difference analogue of
operators (1), (2) is

rρ(x, t1, . . . , tm)Qρ + rρ−1(x, t1, . . . , tm)Qρ−1 + · · ·+ r0(x, t1, . . . , tm), (3)

where r0, r1, . . . , rρ are polynomials in specified variables over a field k of characteristic
0. It is assumed that k = k0(q), where k0 is a subfield of k, and q, x are algebraically
independent over k0. It was shown that in some sense the situation with the parametrized
case for q-difference equations is more interesting than for differential and difference
equations. Let, e.g., the ground field k be Q(q). Then there is an algorithm that recognizes
the existence of numerical (real, complex) values of the parameters for which a given linear
q-difference equation has a solution in the form of a non-zero polynomial or, alternatively,
rational function; it is possible that the right-hand side is a non-zero polynomial in x that
contains parameters (Abramov, ISSAC’2010, Sect. 4). At the same time, if the values of
parameters are allowed to be arbitrary polynomials or rational functions of q then such
algorithm does not exist (Abramov, ISSAC’2010, Sect. 5). The proof is based on two J.
Denef’s theorems (Denef, 1978).

Concerning the case of numeric values of parameters, it was emphasized in (Abramov,
ISSAC’2010) that the aim of that paper was only to establish decidability of some algo-
rithmic problems “in principle”. In the current paper we restrict our consideration to the
case of a single parameter, and propose for this case a detailed version of the algorithm
from (Abramov, ISSAC’2010) that not only recognizes the existence of numerical values
of the parameter for which a given equation has non-zero rational solutions, but also finds
such values as well as the corresponding solutions (Sections 3.1, 3.2). This version of the
algorithm uses only quite elementary algebraic tools like solving linear algebraic systems
depending on a parameter. On the theoretical side, this is one of new results (in com-
parison with Abramov (ISSAC’2010)) presented in this paper. Another new theoretical
result is a parameterized version of q-Zeilberger algorithm (Section 3.4).

A practical contribution of this paper is the Maple package PQDEquations whose main
procedures are RationalSolution, QZeilberger, and AccurateQSummation (a parameter-
ized version of the q-accurate summation is described in Section 3.3).

We touch upon the problem of finding corresponding values of the parameter in the
fields of rational and algebraic functions of q. It was mentioned above that for the case of
an arbitrary number of parameters the question related to rational functions is undecid-
able. For the case of a single parameter the question is open. In Section 4 we propose an
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approach that occasionally enables one to find adequate rational and algebraic function
values of the parameter (the search for such values was not considered in Abramov (IS-
SAC’2010)). This is also implemented in the package PQDEquations, that contains some
tools for experiments concerning adequate parameter values of functional type (Section
5.3).

2. Preliminaries

Hereafter we will suppose that k = Q(q), and q, x are algebraically independent over
Q̄ (the algebraic numbers field). Let L be as in (3), and f ∈ k[x, t1, . . . , tm]. Considering
the equation L(y) = f we will suppose that r0, r1, . . . , rρ are polynomials in x, t1, . . . , tm
over Q[q], and therefore the value degq ri is defined for any i = 0, 1, . . . , ρ.

Let

wq =
ρ

max
i=0

degq ri, wx =
ρ

max
i=0

degx ri, w = max{wq, wx}, d = ρw2
x + 2wxwq. (4)

The following two propositions are a consequence of (Abramov, ISSAC’2010, Prop. 2).

Proposition 1. Let the equation L(y) = f have a polynomial solution ϕ ∈ Q̄(q)[x] for
some values τ1, τ2, . . . , τm ∈ Q̄ of parameters t1, t2, . . . , tm. Then

degx ϕ ≤ max{wq, degx f}. (5)

Proposition 2. Let the equation L(y) = f for some values τ1, τ2, . . . , τm ∈ Q̄ of
parameters t1, t2, . . . , tm have a rational-function solution u. Let τ1, τ2, . . . , τm be
such that rρ(q, x, τ1, τ2, . . . , τm) is a non-zero polynomial. Then u can be represented
as ϕ

W (q,x,τ1,τ2,...,τm) , where ϕ ∈ Q̄(q)[x] and

W (q, x, τ1, τ2, . . . , τm) = xw
d∏

i=0

rρ(q, q−ρ−ix, τ1, τ2, . . . , τm).

Thus the value
l = max{wq, degx f}. (6)

is an upper bound for the degree of polynomial solutions (the bound is independent of
the values of parameters). If rρ does not vanish for concrete values of parameters then
the polynomial

W (q, x, t1, t2, . . . , tm) = xw
d∏

i=0

rρ(q, q−ρ−ix, t1, t2, . . . , tm) (7)

is a universal denominator of all rational solutions of L(y) = f for these values of pa-
rameters.

This plays a significant role in the sequel.

3. The case of a single parameter: finding rational solutions and related
summation problems

Hereafter we will suppose that there is only one parameter, denoted by t. The correspond-
ing q-difference operator is

rρ(x, t)Qρ + rρ−1(x, t)Qρ−1 + . . . · · ·+ r0(x, t), (8)
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r0, r1, . . . , rρ are polynomials over Q[q] in the specified variables, and

gcd(rρ(x, t), . . . , r0(x, t)) = 1.

3.1. Polynomial solutions

Let L have the form (8), f ∈ k[x, t], and l be as in (6). The method of undetermined
coefficients can be used. Let y0, y1, . . . , yl be the undetermined coefficients. We get a
system S of linear algebraic equations for y0, y1, . . . , yl with coefficients from Q[q, t], and
try to find such value of t belonging to Q̄ that the system which is obtained as a result
of substituting this values into S, has a non-zero solution with components in Q̄(q).
Working over the field k(t) we use the Gaussian elimination for reducing S to a system
S′ whose matrix is in the row echelon form. Solve the system S separately for each of
values of t such that at least one of the pivots vanishes when we substitute this value
into it. Similarly consider separately the values of t such that all the right hand sides of
the equations of S′ having the form 0 = g vanish. All other values of the parameter can
be considered as in the generic case.

Example 1. Consider the equation

y(q2x)−(2t+q2−x)y(qx)+(t+q2)(−x+t)y(x) = −q(q−1)x2−q(q2+t−qt)x+q2(−1+t).

The upper bound (6) is equal to 2. The system S is

(−1 + t)(−1 + t + q2) y0 = (−1 + t)q2

(−t− q2 + 1) y0 − (t− q + q2)(−t + q) y1 = −q(q2 + t− qt)

(q − t− q2) y1 − t(q2 − t) y2 = q(1− q)

t y2 = 0

After the Gaussian elimination we get S′

(−1 + t)(−1 + t + q2) y0 = (−1 + t)q2

−(t− q + q2)(−t + q) y1 = −q(q − 1)(−t + q)

−t(q2 − t) y2 = 0

Considering separately the values t = 0, 1 we find polynomial solutions

y2x
2 + x +

q2

q2 − 1
,

(y2 is an arbitrary constant) for t = 0 and, resp.

1 +
q(q − 1)x
q2 − q + 1

(9)

for t = 1. For all other algebraic values of t we get the solution

q2

q2 + t− 1
+

xq(q − 1)
q2 + t− q

. (10)

Note that the solution (9) that we get for t = 1 is a particular case of (10).
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3.2. Rational solutions

In the single parameter case the universal denominator (7) can be rewritten as

W (q, x, t) = xw
d∏

i=0

rρ(q, q−ρ−ix, t). (11)

(subresultant methods from (Abramov & Kvashenko, 1993) can be used for decreasing
the degree of (11)). The substitution y(x) = z(x)

W (q,x,t) into the original equation reduces
the problem of finding rational solutions to the problem of finding polynomial solutions.
However each of values of t such that rρ vanishes has to be tested separately (in accor-
dance to Proposition 2).

Example 2. By (11), for the equation

(xq + q2 + t)y(qx) + (−x− q2 − t)y(x) = 0

we get the universal denominator

W = x2
(
x + q2 + t

) (
x

q
+ q2 + t

)(
x

q2
+ q2 + t

)
· · ·

(
x

q5
+ q2 + t

)
. (12)

After substituting y(x) = z(x)/W (q, x, t) into the given equation and clearing denomi-
nators we get the equation

(x + q7 + tq5)z(xq) + (−q7t− q7x− q9)z(x) = 0.

having the polynomial solution

z(x) = C x2(x + q3 + t q)(x + q4 + t q2) · · · (q7 + x + t q5)

for an arbitrary algebraic value of t (C is an arbitrary constant). The rational solution
is y(x) = C

x+q2+t .

Example 3. Consider the inhomogeneous equation with the operator L from the pre-
vious example:

(xq + q2 + t)y(qx) + (−x− q2 − t)y(x) = 1− t2.

We may use the universal denominator (12). After substituting y(x) = z(x)/W (q, x, t)
we get the equation

−q8(x+q7+tq5)z(qx)+q15(x+q2+t)z(x) = x2(t2−1)(x+q2+t)(x+q3+qt) · · · (x+q7+tq5).

having a polynomial solution iff t = ±1. The rational solution of the original equation is
C

x+q2+1 for t = 1, and C
x+q2−1 for t = −1. This can be rewritten as C

x+q2+t for the case
t2 − 1 = 0.

In the following example non-rational algebraic numbers appear.

Example 4. With the same operator L, the inhomogeneous equation

(xq + q2 + t)y(qx) + (−x− q2 − t)y(x) = t3 + t + 1

has a rational solution iff t3 + t + 1 = 0: we have
C

x + q2 + t
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for the case t3 + t + 1 = 0.

For the equations considered above there is no value of t such that the leading coeffi-
cient vanishes. In the following example there is one.

Example 5. For

(t + 2)(xq + q2 + t)y(qx) + (−x− q2 − t)y(x) = t2 − 1

there is t = −2 for which the given equation turns to

(−x− q2 + 2)y(x) = 3

with the solution 3
−x−q2+2 . For the case t 6= 2 the universal denominator is (12) and

there are the solutions C
x+q2−1 for t = −1 and −1+t

x+q2+t for any other values of t.

3.3. q-Accurate summation algorithm

Suppose that an operator L contains no parameters, i.e., L ∈ k[x,Q]. Then an operator
R ∈ k(x)[Q] is said to be a summing operator for L if

(Q− 1) ◦R = 1 + M ◦ L

for some M ∈ k(x)[Q]. In this sense R ≡ (Q− 1)−1 (mod L).
We can assume w.l.g. that ordR < ordL = ρ. In the case ρ = 1 we have ordR = 0, i.e.,

R is a rational function. If a summing operator exists then it can be constructed by the
q-accurate summation algorithm (Abramov & van Hoei, 1997, 1999) or, when ρ = 1, by
q-Gosper’s algorithm (Petkovšek & Wilf & Zeilberger, 1996) (the q-accurate summation
algorithm is therefore more general than q-Gosper’s algorithm, and we will not consider
q-Gosper’s algorithm in the subsequent text). The summing operator R exists iff the
equation

L∗(y) = 1 (13)
has a rational solution r ∈ k(x). The operator L∗ in (13) is the adjoint operator for L.
For

L = rρQ
ρ + · · ·+ r1Q + r0,

one has
L∗ = Q−ρ(rρ)Q−ρ + · · ·+ Q−1(r1)Q−1 + r0.

If a rational solution r exists then a summing operator R satisfies the relation

(Q− 1)R = 1− rL

(1− rL is left divisible by Q− 1) and can be found easily.
This algorithm is used for finding indefinite sums of sequences of the form f(qn)

where f(x) is a solution of L(y) = 0 (the sequence g(qn) is an indefinite sum of f(qn) iff
g(qn+1)− g(qn) = f(qn)).

The algorithm from Section 3.2 enables us to use the q-accurate summation in the
parameterized case.

Example 6. Consider the q-hypergeometric parameterized sequence

hn = (tq)n(
q

t
; q)n, (14)
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where (a; q)n is the q-Pochhammer symbol:

(a; q)n =





1, n = 0

(1− a)(1− aq) . . . (1− aqn−1), n > 0

Write x for qn. Then
L = Q− q(t− qx)

annihilates hn.
To find a summing operator we have to find a rational solution of

y
(
q−1x

)
+ q(−t + qx)y(x) = 1, (15)

or, the same, a rational solution of

q(−t + q2x)y(qx) + y(x) = 1.

This equation has a rational solution iff t = 1. This solution is 1
xq2 . For t = 1 we find the

summing operator

R = − 1
qx

= − 1
qqn

,

and the indefinite sum − (q;q)n+1
q .

3.4. q-Zeilberger algorithm

For a function F of two variables x1, x2 we define

Q1(F (x1, x2)) = F (qx1, x2), Q2(F (x1, x2)) = F (x1, qx2).

Let H1,H2 be first order operators

H1 = Q1 − s1(x1, x2), H2 = Q2 − s2(x1, x2), (16)

s1, s2 ∈ k(x1, x2). A pair
(r(x1, x2), L),

r(x1, x2) ∈ k(x1, x2), L ∈ k(x2)[Q2], is a Z-pair of H1,H2, if

(Q1 − 1)r = L + AH1 + BH2,

A,B ∈ k(x1, x2)[Q1, Q2]. The order of a Z-pair is defined as ordL. For given ρ ∈ N and
H1,H2 of the form (16) the q-Zeilberger algorithm (Petkovšek & Wilf & Zeilberger, 1996)
recognizes the existence of a Z-pair of order ρ of H1,H2. If such a pair exists, then the
algorithm finds it. The base of this algorithm is the fact that if L is of the form

L = rρ(x2)Q
ρ
2 + · · ·+ r1(x2)Q2 + r0(x2)

then

s1(x1, x2)r(qx1)− r(x1) =
ρ∑

i=0

ri(x2)
i−1∏

j=0

s2(x1, q
jx2). (17)

This equality is considered as a first order linear q-difference equation for r(x1), while
the ground field is k(x2). One can construct a universal denominator (without applying
Gosper’s algorithm) which does not contain r0, r1, . . . , rρ. The corresponding substitu-
tion gives a first order equation for a polynomial numerator, and the usual approach
gives an upper bound for the degree of this polynomial (the bound does not depend on
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r0, r1, . . . , rρ). The undeterminate coefficients method leads to a system of linear alge-
braic equations whose unknowns are r0, r1, . . . , rρ and the coefficients of a polynomial
solution.

This algorithm is used for finding definite sums of q-hypergeometric two-dimensional
sequences (terms). Recall that the sequence g(qn) is the definite sum of f(qm, qn) iff
g(qn) =

∑∞
m=−∞ f(qm, qn), or, alternatively g(qn) =

∑n
m=0 f(qm, qn).

The algorithm from Section 3.2 enables us to use the q-Zeilberger algorithm in the
parameterized case.

Example 7. Consider the q-hypergeometric sequence

f(qm, qn) = (−1)mqmn+ 3
2 m+n− 1

2 m2 ( 1
qn ; q)m

(q + qt; q)m
.

Write x1 for qm and x2 for qn. Then

H1 = Q1 − q(x2 − x1)
x1(−1 + qx1 + qx1t)

, H2 = Q2 − x1q(qx2 − 1)
qx2 − x1

annihilate f(x1, x2). For ρ = 0 the equation (17) is

q(x2 − x1)
x1(−1 + x1 + x1t)

r(qx1)− r(x1) = r0.

There is no rational solution for any values of t with r0 6= 0. For ρ = 1 the equation
(17) is

q(qx2 − x1)
x1(−1 + x1 + x1t)

r(qx1)− r(x1) = r0 + r1
x1q(qx2 − 1)

qx2 − x1
.

It has a rational solution with r1 6= 0 iff t = −1. Finally, a first order Z-pair of H1,H2 is
(
− (qx2 − 1)x1q

qx2 − x1
, Q2 + q3x2 − q2

)
.

Therefore if t = −1 then the sequence

g(qn) =
n−1∑
m=0

f(qm, qn),

satisfies the equation
g(qn+1) + (q3qn − q2)g(qn) = qn+1.

4. When t depends on q

We have mentioned in Section 1 that if the values of parameters are allowed to be ar-
bitrary polynomials or rational functions of q and the number of parameters is arbitrary
then there is no algorithm for recognizing the existence of such values of the parameters
for which a given equation has a non-zero rational solution. We also mentioned that for
the case of a single parameter the corresponding question is open. Below we propose
an approach that occasionally enables one to find adequate rational and algebraic func-
tion values of the parameter t. Note that no upper bound for the degree of polynomial
solutions, independent of functional values of t, exists in general. (For example the ho-
mogeneous q-difference equation y(qx) − ty(x) = 0 has the polynomial solution xm of
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degree m when t = qm, m ∈ N.) However sometimes the use of the bound (5) yields
results. Suppose that this bound is computed and we apply the algorithms from Sections
3.1, 3.2. The point is that for finding the values of t for which a polynomial a ∈ Q[q, t, x]
vanishes we can represent a as a polynomial in x, and find the full factorization of the
gcd of its coefficients. Let p(q, t) be one of the irreducible factors. If degt p = 0 then we
ignore p(q, t). Otherwise, if degq p = 0 then this factor defines a value of t belonging to
Q̄; if degq p > 0 and degt p = 1 then we get a value belonging to Q(q); if degq p > 0 and
degt p > 1 then the obtained value belongs to Q(q) \Q(q).

It is guaranteed that at least all the adequate numeric values will be found if we use
the bounds given in Section 2. This is a motivation for the choice of these bounds in the
functional case. Of course, any larger bounds also can be taken.

In the following examples we use the bounds from Section 2. We will return to this
question in Section 5.3.

Example 8. For the equation from the Example 5 we get additionally C
x(x+q2+q−2) +

q−3
x+q2+q−2 for t = q−2 and C

x2(x+2q2−2) + q2−3
x+2q2−2 for t = q2−2. But the existing solutions

for t = q3 − 2, t = q4 − 2, . . . are not obtained.

Example 9. For
y(qx)− t2qy(x) = 0

we get solutions y(x) = C1x for t = ±1, C0 if t2q − 1 = 0 and C
x for t = ± 1

q . But the
solution C

x2 , C
x3 , . . . for t2q2 − 1 = 0, t2q3 − 1 = 0, . . . are not obtained.

Example 10. Consider again the q-hypergeometric sequence (14). For the equation (15)
we get 1

q2x for t = 1, q+qx−1
x2q3 for t = q, and qx2−x+q2x+1−q−q2+q3

q3x3 for t = q2. The bound
(5) does not allow to get rational solutions for t = q3, t = q4, . . .

Example 11. Consider the q-hypergeometric sequence

f(qm, qn) = (−1)mqmn+ 3
2 m+n− 1

2 m2 ( 1
qn ; q)m

(q + t; q)m
.

Write x1 for qm and x2 for qn. Then

H1 = Q1 − q(x2 − x1)
x1(−1 + qx1 + x1t)

, H2 = Q2 − x1q(qx2 − 1)
qx2 − x1

annihilate f(x1, x2). For ρ = 0 there is no Z-pair. For ρ = 1 a Z-pair of H1,H2 is
(
− (qx2 − 1)x1q

qx2 − x1
, Q2 − q3x2 + q2

)

if t = −q.

5. PQDEquations package

We implemented the algorithms in the PQDEquations package. The package contains
three procedures:

RationalSolution, AccurateQSummation, QZeilberger.
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All these procedures use the corresponding procedures from the Maple package QDiffe-
renceEquations (see (Maple, 2010)) if the input is not dependent on a parameter. The
procedure GaussianElimination from the package LinearAlgebra is used as an auxiliary
tool for finding polynomial solutions.

5.1. When t is a number

The output of the procedures may have one of the following three forms. The first
output form is

t = t1, F1, . . . , t = ts, Fs

with ti ∈ Q̄. Non-rational algebraic numbers are represented using Maple’s RootOf mech-
anism. The form of Fi is dependent on the concrete procedure.

The second output form is

t = t1, F1, . . . , t = ts, Fs, p(t) 6= 0, Fs+1,

where p(t) ∈ Q[t]. The result is Fs+1 for any t ∈ Q̄ which is not a root of p(t). The
polynomial p(t) must have the roots ti, i = 1, 2, . . . , s (some extra roots are also possible).

The third output form is F . This means that we have F for any t ∈ Q̄.
For the RationalSolution procedure the input equation must be given in the form which

is recognizable by the procedure QECreate from the QDifferenceEquations package.
We illustrate the use of RationalSolution by the equations from Examples 1, 2, 3, 4, and
5.
> with(PQDEquations):
> Exmpl_1 := y(q^2*x)-(2*t+q^2-x)*y(q*x)+(t+q^2)*(-x+t)*y(x) =
> -q*(q-1)*x^2-q*(q^2+t-q*t)*x+q^2*(-1+t):
> RationalSolution(Exmpl_1, y(x), t);

t = 0, C2 x2 + x +
q2

q2 − 1
, t = 1, 1 +

(−1 + q)qx
1 + q2 − q

, t(t− 1) 6= 0,
q2

q2 + t− 1
+

xq(q − 1)
q2 + t− q

Names Ci (where i is integer) denote arbitrary constants. The CPU time 1 needed to
compute is 0.140.
> Exmpl_2 := (-x-q^2-t)*y(x)+(x*q+q^2+t)*y(x*q):
> RationalSolution(Exmpl_2, y(x), t);

q15 C7

x + q2 + t
The CPU time is 0.056.
> RationalSolution(Exmpl_2 = 1 - t^2, y(x), t);

t = 1,
q15 C7

x + q2 + 1
, t = −1,

q15 C7

x + q2 − 1
,

The CPU time is 0.132.
> RationalSolution(Exmpl_2 = t^3+t+1, y(x), t);

t = RootOf(1 + Z3 + Z),
q15 C7

RootOf(1 + Z3 + Z) + x + q2

The CPU time is 0.068.

1 For all the experiments: Maple 13, Ubuntu 8.04.4 LTS, AMD Athlon(tm) 64 Processor 3700+, 990MB.
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> Exmpl_5 := (-x-q^2-t)*y(x)+(t+2)*(q*x+q^2+t)*y(q*x) = t^2-1:
> RationalSolution(Exmpl_5, y(x), t);

t = −2,− 3
x + q2 − 2

, t = −1,− C1

x + q2 − 1
, (t + 2)(t + 1) 6= 0,

t− 1
x + q2 + t

The CPU time is 0.176.

The first argument of the procedure AccurateQSummation is a q-difference operator
which must be a polynomial in x and Q. In the output, Fi (as well as Fs+1 and F ) is a
summing operator R. Return back to the Example 6:
> AccurateQSummation(Q-q*(t-q*x), Q, x, q, t);

t = 1,− 1
qx

The CPU time is 0.152.
The arguments of the QZeilberger procedure are rational functions s1, s2, and the order

ρ of the constructed Z-pair. In the output, Fi is a list [L, r], where L is a q-difference
operator with q-shift operator Q2 while r is a rational function.
> QZeilberger(q*(x[1]-x[2])/((-1+q*x[1]+q*x[1]*t)*x[1]),
> -x[1]*q*(q*x[2]-1)/(q*x[2]-x[1]), x[1], x[2], Q[2], 0, t);
No Z-pair of order 0 was found
The CPU time is 0.228.
> QZeilberger(q*(x[1]-x[2])/((-1+q*x[1]+q*x[1]*t)*x[1]),
> -x[1]*q*(q*x[2]-1)/(q*x[2]-x[1]), x[1], x[2], Q[2], 1, t);

t = −1,

[
q3x2 − q2 + Q2,

x1q(qx2 − 1)
qx2 − x1

]

The CPU time is 0.236.

5.2. When t depends on q

The flag
> SetExtended(true):
initializes the search for adequate functional values of the parameter. If this flag is set
then we get the following results from the examples considered above
> RationalSolution(Exmpl_5, y(x), t);

t = −2,− 3
x + q2 − 2

, t = −1,− C1

x + q2 − 1
,

t = q − 2,
qx− 3x− C1

x(x + q2 + q − 2)
, t = q2 − 2,

x2q2 − 3x2 − C1

(x + 2q2 − 2)x2
,

(t + 2)(1 + t)(q − t− 2)(q2 − 2− t) 6= 0,
t− 1

x + q2 + t

The CPU time is 0.376.
> RationalSolution(y(q*x)-t^2*q*y(x), y(x), t);
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t = 1, C1x, t = −1, C1x,

t = RootOf(−1 + Z2q), C1,

t =
1
q
,

C0

x
, t = −1

q
,

C0

x

The CPU time is 0.092.
> AccurateQSummation(Q-q*(t-q*x), Q, x, q, t);

t = 1,− 1
qx

, t = q,−q + x− 1
qx2

, t = q2,−x2 + q4 − q3 + q2x− q2 + q − x

qx3

The CPU time is 0.128.
> QZeilberger(q*(x[1]-x[2])/((-1+q*x[1]+x[1]*t)*x[1]),
> x[1]*q*(q*x[2]-1)/(q*x[2]-x[1]), x[1], x[2], Q[2], 1, t);

t = −q,

[
−q3x2 + q2 + Q2,−x1q(qx2 − 1)

qx2 − x1

]

The CPU time is 0.284.

5.3. Use of larger bounds

Our package gives a possibility to increase the bounds l, w, and d. The user can indicate
a non-negative integer N that will be added to the computed bounds. For example, due
to the command
> SetIncrement(2):
the program will use

w = max{wq, wx}+ 2, d = ρw2
x + 2wxwq + 2, l = max{wq, degx f}+ 2.

Occasionally this enables one to find some additional adequate rational and algebraic
function values of the parameter t. Going back to the first example from Section 5.2 we
perform the computation based on the new bounds:
> RationalSolution(Exmpl_5, y(x), t);

t = −2,− 3
x + q2 − 2

, t = −1,− C1

x + q2 − 1
,

t = q − 2,
qx− 3x− C1

x(x + q2 + q − 2)
, t = q2 − 2,

x2q2 − 3x2 − C1

(x + 2q2 − 2)x2
,

t = q3 − 2,
x3q3 − 3x3 − C1

(x + q2 + q3 − 2)x3
, t = q4 − 2,

x4q4 − 3x4 − C1

(x + q2 + q4 − 2)x4
,

t = −−1 + 2q2

q2
,− C1x

2q2 + 3q2 − 1
q2x + q4 + 1− 2q2

, t = −2q − 1
q

,− C1xq + 3q − 1
qx + q3 − 2q + 1

,

(q2t− 1 + 2q2)(qt− 1 + 2q)(t + 1)(t + 2)(−t− 2 + q) (−t− 2

+ q2
)
(−t− 2 + q3)(−t− 2 + q4) 6= 0,

−1 + t

x + q2 + t
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Now we know sufficiently many solutions for different values of the parameter to make
the conjecture that for

t = qn − 2, and t =
1− 2qn

qn

the equation has rational solutions

xnqn − 3xn − C1

xn(x + q2 − 2 + qn)
and − C1x

nqn + 3qn − 1
qn(x + q2 − 2 + q−n)

,

n = 0, 1, 2 . . . We can formulate this conjecture more succinctly: if t = qn − 2 then the
original equation has the rational solution

xnqn − 3xn − C1

xn(x + q2 − 2 + qn)

for all integer n. The latter conjecture can be verified by Maple. We substitute the
assumed solution into the equation by the standard procedure eval, and simplify the
result by simplify. This yields the equality 0 = 0:
> eval(Expml_5, {t = q^n-2,
> y(x) = (q^n*x^n-3*x^n-_C[1])/(x^n*(x+q^2-2+q^n)),
> eval(y(x) = (q^n*x^n-3*x^n-_C[1])/(x^n*(x+q^2-2+q^n)), x = q*x)});
> simplify((lhs-rhs)(%)=0) assuming n::integer;

(2− x− q2 − qn)(qnxn − 3xn − C1)
xn(x + q2 − 2 + qn)

+
qn(qn(qx)n − 3(qx)n − C1)

(qx)n
= (qn − 2)2 − 1

0 = 0
The package PQDEquations is available from

http://www.ccas.ru/sabramov/PQDE
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