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Abstract

We consider sequences which satisfy a linear recurrence equation
Ly = 0 with polynomial coefficients. A criterion, i.e., a neces-
sary and sufficient condition is proposed for validity of the discrete
Newton-Leibniz formula when a primitive (an indefinite sum) Rt of
a solution ¢ of Ly = 0 is obtained either by Gosper’s algorithm or
by the Accurate Summation algorithm (the operator R has rational-
function coefficients, ord R = ord L — 1; in the Gosper case ord L = 1,
ord R = 0). Additionally we show that if Gosper’s algorithm succeeds
on L, ordL = 1, then Ly = 0 always has some non-zero solutions
t, defined everywhere, such that the discrete Newton-Leibniz formula
Y oney (k) = u(w+1) —u(v) is valid for v = Rt and any integer bounds
v < w.

1 Introduction

Let K be a field of characteristic zero. If ¢(k) is a K-valued sequence, then
Et(k) is the sequence s(k) = t(k +1). We consider P-recursive sequences,
i.e., sequences, that satisfy recurrence equations of the form Ly = 0, where

L=a,(k)E" +a,(k)E*~ + -+ a(k), (1)

p > 1, a,(k),a,_1(k),....;a0(k) € KIk], a,(k)ag(k) # 0 and
ged(ag(k),...,a,—1(k),a,(k)) = 1. If ord L = p = 1, then the corresponding
P-recursive sequences are hypergeometric terms.
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In [4] we discussed validity of the discrete Newton-Leibniz formula when
an indefinite sum of the sequence t(k) is obtained either by Gosper’s algo-
rithm [5] or by the Accurate Summation algorithm [3]. These algorithms,
which we denote hereafter by GA and AS, respectively, search for a solution
u of the telescoping equation

Euk) - u(k) = t(k) 2)

where the sequence t(k) is P-recursive and satisfies Lt = 0. Suppose that
using one of these algorithms we found a linear recurrence operator R of
order ord I, — 1 with rational-function coeflicients, such that v = Rt is a
solution of (2) for some solution ¢ of Lt = 0 (in the Gosper case ord L = 1
and ord R = 0, i.e., R is a rational function). Then the question is: can we
use the discrete Newton-Leibniz formula

it(k) =u(w+1) —u(v) (3)

to find the definite sum of values of 7 It was shown in [4] that sometimes
(3) is not valid even when all of t(v),t(v+1),...,t(w), u(v), u(w+ 1) are
defined. The reason is that equation (2) may fail to hold at certain points
k of the summation interval.

Both GA, AS start by constructing the minimal annihilator L of a given
concrete sequence ¢ and this step is not formalized. On the next steps these
algorithms work with L only, while the sequence ¢ itself is ignored (more
precisely, in the case of ordL = 1, L = a,(k)E 4 ao(k), GA works with the
certificate of ¢, i.e., with the rational function —%) The algorithms try
to construct an operator R such that u = Rt in (2).

If L is of type (1) then denote by V(L) the space of all sequences ¢(k)
defined for all £k € Z and such that Lt = 0. If additionally R is obtained
from L either by GA or by AS, then denote by Vr(L) the subspace of V(L)
which contains ¢ € V(L) iff formula (3) is valid for any integer v < w with
u = Rt.

It may be that dim Vz(L) < dimV(L) (notice that quite often
dim V(L) > ordL; it is possible that dim Vg (L) > ordL as well).

In [4] some sufficient conditions for validity of (3) for a given sequence
were given. In this paper we present a criterion, i.e., a necessary and suffi-
cient condition for validity of this formula for all ¥ € Z when v = Rt, and
R is obtained either by GA or by AS. Note that (3) is valid for all integer
bounds v < w iff (2) is valid for all k£ € Z. In addition, if R is obtained either



by GA or by AS, then we present a description of the linear space Vi (L),
and prove that in the case of ordL = 1 the dimension of Vz(L) is always
positive.

We assume that K = C in all examples of this paper.

Example 1 GA succeeds on the operator L = kE — (k+1)?, and the result
is R=1%. The space V(L) is two-dimensional: the sequences

k
0, if £ <0,
tl(k)_{ okl if k>0

and

(k1)1

g—l)kk .
ta(k) = sy
0, if k>0

form a basis of V(L). Our criterion says that, generally speaking, (3) is not
applicable to ty, but is applicable to t,. We can illustrate this as follows.
Applying (3) to t; with v=—1,w =1, we have

1 1 1

Etl(k) |k:2 - Etl(k) |k:—1 = 5 4-0=2
which is wrong, because t;(—1)+¢1(0)+¢1(1) =04+0+1=1. Applying (3)
to ty with the same v, w, we have

tb(=1)+6(0)+6(1)=

L) ey = 0— (1) = 1

L1+ 1(0) + (1) = T (K ey — 7

k
which is correct, because t5(—1) 4+ 15(0) +¢2(1) =1404+0=1.

Our algorithm computes a basis of the subspace Vg(L). In Example 1
Vr(L) is one-dimensional and is generated by t,. Examples which demon-
strate that sometimes this dimension can be greater than 1 are given (see
Examples 2, 4).

2 Preliminaries

For f(k),g(k) € K[k] we write f(k)Lg(k) to indicate that f(k) and g(k) are
coprime. If r(k) € K(k), then den(r(k)) is the monic polynomial from K[k]
such that r(k) = L% _ for some f(k) € K[k], f(k).Lden(r(k)). If L and

den(r(k))
M are linear recurrence operators with coefficients from K (k) then we write




L o M for the product of L and M in the non-commutative ring K (k)[F].
If M =r(k)is a rational function, then L o r(k) is an operator of the same
order as L, while Lr(k) is a rational function (the result of applying L to

r(k))-
The algorithm AS starts with finding a rational function solution r(k)
of the equation L*y = 1 (say, by the algorithms from [1] or [2]), where L* is

the adjoint of L:
L*=a,(k—p)E " +a,_1(k—p+ 1)E" + -+ ag(k).
The equation satisfied by the rational function r(k) can be rewritten as
ok p)r( -+ p) s+ p— D4 p— 1)+ a,()r(k) = 1. (4)

If such r(k) exists then R can be found from the relation

1-rL=(E—1)oR. (5)
We obtain
R=c, ((K)E"™ 4 ¢, o(R)EP? 4 -+ co(k), (6)
where |
() = Z(k 4 aiyh ) -1 7)

for0<i<p-—1.
GA works with the case p =1,

L=a (k)E+ag(k), ai(k),ao(k) € K[k], ai(k)Lay(k), (8)
and tries to construct »'(k) € K(k) such that
o (K + 1) o (B)(K) = —an (K) )

(this can also be done by the algorithms from [1] or [2]). If such " exists
then R =1
If L is as in (8), then GA succeeds on L iff AS does: if p =1 and r(k) is

a rational solution of (4), then (8) has the rational solution

r'(k)y=—r(k - 1a (k- 1). (10)



In this case both AS and GA produce the same operator (rational function)
R=r"
Let p > 1 and suppose that there exists
s(k)
r(k) = —=, s(k) Lq(k), 11
(k) o(k) (k) Lq(k) (11)
which satisfies (4). Let R be the result of applying AS to L of the type (1),
and let a polynomial d € K[k] and an operator B € K[k, E'] with relatively
prime coefficients be such that

E"oL*oé:%B. (12)

Set
p(k) = d(k = p), (13)
L = B*oF". (14)

Then one gets

Lop=qL (15)

and
Rope K[k, F] (16)

(this was deduced in [4]).

3 AS and the discrete Newton-Leibniz formula

The following sufficient condition for validity of (3) is a consequence of The-
orem 5 from [4]: If a K-valued sequence t(k) is defined and satisfies Lt = 0
for all k € Z, then ¢t = pt satisfies Lt = 0 for all k, and the discrete Newton-
Leibniz formula (3) can be applied to ¢t with « = Rt = (R o p)t and any
integer bounds v < w. In this section we prove also the necessity of this
condition.

Let R be an operator of type (6). We call the monic polynomial

den(R) =lem(den(c,_1(k — p+1)),den(c,—2(k — p+2)),...,den(cq(k)))

the denominator of R. It is evident that the operator R o den(R) has poly-
nomial coefficients (i.e., belongs to K[k, £]).



In the rest of this paper we suppose that the operator R can be applied
to a sequence t only if the sequence ¢ is represented in the form

t = den(R)t', (17)

where t’ is a sequence defined for all k. In this case we compute the value of
Rt for any integer k as the value of the sequence (Roden(R))t'. If a sequence
t(k) is defined for all k£ and annihilated by an operator from K[k, E], and if
AS or GA is applicable to the minimal annihilator of this sequence returning
an operator R as result, then ¢ has to be represented in the form (17) before
using (3) with « = Rt (in the case where den(R) has integer zeros, the
application of R to ¢ is not possible without such representation).

Certainly, representation (17) does not guarantee that (3) gives the cor-
rect result.

Proposition 1 Let L be of the type (1), r = o satisfy (4), and let R satisfy
(5). Then den(R) = p, where the polynomial p is as in (13).
Proof: First we show that
p|den(R). (18)

We have
1 ag(k + p) ap—l(k +1) ap(k)
Eol*o—-=—— [/ 4+...+ F+ 19

¢ qlk+p) q(k+1) q(k) 19

(notice that the coefficients of E*’s in the right-hand side of (19) may be
reducible). By (12)

k (k41 k
d(k) |lem (den (ap( )) ,den (M) ,...,den (M)) .
q(k) q(k+1) q(k + p)
Let d = df* ---dgm be the full factorization of the polynomial d. Then for
each 7 there is an [ such that d{ (k)| den (M), so let

q(k+p=1)
v; = min {l : d' (k)| den (M) } )
q(k+p—1)

for i = 1,2,...,m. Notice that any polynomial d;"(k) divides the denom-
inators of at least two coefficients of the right hand side of (19), since
E"oL*(é) =1 € K[k]. This gives us 0 < r; < p—1,7=1,2,...,m.
Since E"oL*or:E"oL*og7 and s L ¢, we have

v = min{l : di" (k)| den(a;(k+p—Or(k+p—1)}, (20)



i=1,2,...,m. Formula (7) is equivalent to
clk+p—r)=3 rlk+p—1+j)as;(k+p—7+j) -1
7=0
for 0 <1 <p—1.If 7 =, then it follows from this and from (20) that
i (k)|den(r(k+p— 7+ j)a-_;(k+p—7+j))
iff j = 7. As a consequence we have

45 (k) den(ey, (k + p — 1)),

or, equivalently,

di" (k — p)lden(c,, (k — vi)),
for e =1,2,...,m. This implies that
42 (k - p) | den(F),

for all i =1,2,...,m. Relation (18) follows since p(k) = d(k — p).
From (16) it follows that den(R)|p as well. Since both p and den(R) are
monic, we have p = den(R). ]
Now we can prove the following criterion for validity of the discrete
Newton-Leibniz formula in the case where AS succeeds on a given operator
of order p > 1.

Theorem 1 Let
o L be of type (1), a sequence t(k) be defined and Lt =0 for all k,
e r== slq, satisfy (4), and R be found from (5),
e p, L be such as in (13), (14),
o t(k) be a sequence such that t(k) = p(k)t(k) for all k.

Then (3) is applicable everywhere iff Lt(k) = 0 for all k € Z. (If Lt(k) =0
for allk € Z, then w = (Rop)t in (3).)

Proof: Let (3) be applicable everywhere with « = (R o p)t. We have from

(5):
EoR-R=1-rL, (21)



and, as a consequence,
FoRop—Rop—p=—rLop. (22)

By (15) we have
rLop=rql = Eqi:si,
q

therefore B
FoRop—Rop—p=—sL. (23)

Since the sequence t is defined for all k € Z, (E — 1)u =t, u = (Rop)t, and
t = pt for all k € Z, we have

(EoRop)t— (Rop)t—pt=0.

It follows from (23) that sLt = 0, and if ko is such that s(ky) # 0 then
Lt(ko) = 0 (i.e., the value of the term Lt is equal to 0 when k = ko). If
s(ko) = 0, then by s(k)Lg(k) we have ¢(kq) # 0 and

1 _ 1
(](ko) Lp(ko)t(ko) = @

as a consequence of (15). However, Lt = 0 identically, hence Lt(kq) = 0.
If Lt(k) = 0 for all k& € Z then (3) is applicable everywhere with u =
(R o p)t by Theorem 5 of [4]. 0

Liko) = Lt (ko)

Example 2 In Example 6 from [}] the operator L = (k — 3)(k — 2)(k +
E?* = (k—3)(k* =2k — 1)E — (k — 2)? was considered to demonstrate some
sufficient conditions of applicability of the discrete Newton-Leibniz formula.
It was shown, in particular, that AS succeeds on I and returns
-1 1
=————, R=kFE+ —

Tk =3) T3
Apply the criterion from Theorem 1 to L. We get q(k) = (k — 2)(k — 3),
p==k—3, and

L=((k-1D)k+1)FE— (K -2k-1)E— (k- 2).

We have dim V(L) = 2, since each of solutions of Lt = 0 is defined uniquely
by £(2) and t(3) and by the equation Lt = 0 when k < 2 or k > 3. The
sequences p(k)t,(k), p(k)ta(k) such that t,(k),ts(k) € V(L), t,(2) = 0,



1(3) = 1, 6,(2) = 1, t2(3) = 0 are linearly independent over C: while
p(2)t1(2) = p(3)t1(3) = 0, nevertheless p(4)t,(4) = — %, p(4)t2(4) =0, and

PR ) ()
P26 pnh@)] 7

By our criterion, formula (3) is applicable to t(k) € V(L) iff t(k) = (k —
3)(c1t1 (k) + eato(k)), ¢1, ¢ € C. Notice that dim V(L) = 3: we can take any
£(2),¢(3),t(4),t(5) such that

(k=3)(k=2)(k+1)t(k+2)— (k= 3)(k* =2k — 1)t(k+1) — (k - 2)*t(k) = 0

for k = 2,3 (this gives the only constraint t(3) = 0) and define t(k) by the
equation Lt = 0 when k < 2 or k > 5.

4 The case ordL =1

In the case of ordL = 1 it is possible to prove that L and p, defined as
in (13), (14), have some additional useful properties. This enables us to
simplify the general criterion from Theorem 1.

Proposition 2 Let p=1 and L be as in (14). If L = a,(k)E + ay(k) then
ay (k)|ay(k), @o(k)|ao(k).

Proof: It follows from (4) (the case p = 1), i.e., from

s(k+1) s(k)

dhrn) Ty =t

that the denominators of both terms (after reduction) in the left-hand side

are equal:

ag(k+1)

q(k+1) _ q(k)
ged(ao(k + 1), q(k + 1)) ged(ax(k), q(k))

We can compute p(k) using this. Indeed,

EoL*olzao(k—l_l)E al(k).

¢ q(k+1) q(k)

Therefore if d(k) € K[k] and B € K[k, E'] are such that the coefficients of
B are relatively prime and

(24)

1 1
FolL*o—-—==-B
g d



then

_ q(k)
) = e 8, g )
and
0 =t 1) = el Sy >
By (24), (25) we have
. (k) ) (k)
Lor=a® (amrm) + oW (g am)
The right hand side of this equation can be rewritten as
ai (k) ao(k)
1) (Gt 707 0,9
Therefore
UL B— awlk) (26)
ged(ay(k), q(k)) —  ged(ao(k), ¢(k))
O

Corollary 1 In the case of ordl = 1 the coefficients of L are relatively
prime, and as a consequence, any K-valued sequence t such that Lt = 0 is
a hypergeometric term.

By (10) the right-hand side of (25) is equal to the denominator of a
rational solution r'(k) of equation (9). We have

Corollary 2 In the case of ordL = 1 the polynomial p is the denominator of
a rational solution of equation (9). When p is known, L can be computed by
removing from Lop the greatest common polynomial factor of its coefficients.

If ordL = 1 and one uses GA, then Theorem 1 can be reformulated as
the following criterion.

Theorem 2 Let L be of type (8), and let {—), fLp, be a rational solution
of Gosper’s equation (9). Then the discrete Newton-Leibniz formula is ap-
plicable everywhere to t, iff t = pt for some hypergeometric term t defined
everywhere. If such t exists, then w = ft in (3).

Proof: This follows from Theorem 1 and Corollary 1. a

10



Example 3 (Exzample 1 continued.) We have t5(k) = kt,(k), where

(=n* :
fz(k) _ e if k<0,
0, if k>0

is a hypergeometric term defined everywhere. We take u(k) = t5(k) in (3).
For the sequence t; (k) we have t,(k) = kt,(k), where

. 0, if k<0,
tl(k):{ L k> 0.

The sequence ty is not a hypergeometric term for any value of t1(0).
We can summarize Corollaries 1,2 and Theorem 2 as follows:

Corollary 3 If L is of type (8), GA succeeds on L and returns R € K(k),
den(R) = p, then
Vr(L) =p-V(pp(Lop)),

where the operator pp(Lop) is computed by removing from Lop the greatest
common polynomial factor of its coefficients.

5 Indefinite summable hypergeometric terms
which are definite summable by the discrete
Newton-Leibniz formula

If an operator L of the form (8) is such that AS or GA succeeds on L, then,
using Theorem 1, we can describe the space Vi(L): this is the space of
sequences of the form pt, Lt = 0.

Proposition 3 Let p, L be as in (25), (26). Then there exists a sequence t
which is defined everywhere and is such that Lt = 0 for all k € Z, and that
pt is a non-zero sequence.

Proof: By (24), (25) we can write p(k) = ¢(k)/ ged(ao(k), ¢(k). So by (26),
p is relatively prime with both a,(k — 1) and aq (k).

If the equation a,(k — 1) = 0 has integer roots then set &’ to be the
maximal one. There exists a sequence ¢ which is defined everywhere and
satisfies Lt = 0 for all k, such that (k') = 1 (and ¢(k) = 0 for all k& < &').
Then pt is not zero at &’ because p is relatively prime with a;(k — 1). If

11



the equation ag(k) = 0 has integer roots then set k" to be the minimal one.
There exists a sequence ¢ which is defined everywhere and satisfies Lt = 0
for all k, such that ¢(k”) = 1 (and t(k) = 0 for all & > £&”). Then pt is not
zero at k” because p is relatively prime with ag(k). If a;(k — 1)aq(k) # 0
for all integer k, then there exists a sequence ¢ which is defined everywhere,
and satisfies Lt = 0 and (k) # 0 for all k. It is evident that pt is a non-zero
sequence. a

As a consequence we get the following theorem.

Theorem 3 Let GA succeed on an operator L of type (8), and let r'(k) = {—),
fLp, be a rational solution of Gosper’s equation (9). Then there exists a
hypergeometric term t which is defined everywhere, and is such that the
hypergeometric term t = pt is not zero, satisfies Lt = 0, and formula (3) is
valid with w = ft for all v < w.

It is possible to give examples showing that in some cases ordl = 1,

dim Vg(L) > 1.

Example 4 Let L =2(k* —4)(k— 9)E — (2k — 3)(k — 1)(k — 8). Then GA

succeeds on L and returns

Here p(k) =k —9 and L = 2(k* — 4)F — (2k — 3)(k — 1). Any sequence t
which satisfies the equation Lt = 0 has t(k) = 0 for k =2 or k < —2. The
values of t(1) and t(3) can be chosen arbitrarily, and all the other values are
determined uniquely by the recurrence 2(k* —4)t(k+1) = (2k —3) (k= 1)t(k).
Hence the solution space of Lt = 0 has dimension 2; the space of sequences
pt, Lt = 0, has dimension 2 too, since p(1), p(3) # 0.

At the same time, the space V(L) of all solutions of Lt = 0 is of dimen-
sion 3. Indeed, if Lt =0, then t(—2) = t(2) =t(9) = 0. The value t(k) =0
from k = —2 propagates to all k < —2, but on each of the integer intervals
[—1,0,1], [3,4,5,6,7,8] and [10,11,...) we can choose one value arbitrarily,
and the remaining values on that interval are then determined uniquely. A
sequence t € V(L) belongs to Vr(L) iff 22¢(10) — 13£(8) = 0.

Set
m=min({oc} U{n € Z : ag(n) = 0}), (27)

12



M = max({—occ}U{n €7 : a;(n—1)=0}). (28)

If M < m, then pick any integer [ such that M < [ < m and then reset
M = m = 1. It is clear that any sequence ¢ € V(L) is uniquely determined
by the vector (t(m),t(m+1),...,t(M)), whose entries satisfy the system of
algebraic linear equations:

aj(m+Ot(m+i+1)+a(m+i)t(m+i) =0, 1=0,....M—m—1 (29)

(if m = M then t(m) can be chosen arbitrarily).

Using the values m, M we can present a more formal description of our
algorithm for constructing a basis of Vg(L), where L of type (8) is such
that GA succeeds on L and returns R. The algorithm starts with computing
m, M as above, and L = a, (k) +d,(k), p(k) as in Corollaries 2, 3. Then the
system of algebraic linear equations with the unknowns z,,, Zmy1, - - -, 2u:

ay(m 4 1) Zmqig1 F oM+ 1) 2mg =0, 1=0,...,. M —m—1 (30)

has to be solved. (Notice that if the vector (z,, Zmy1, ..., 2ar) satisfies (30),
then the vector (¢(m),t(m+1),...,t(M)), such that t(m—+17) = p(m+1)zmyi,
i=0,...,M—m~—1, satisfies (29).) Let the dimension of the solution space
of (30) be A,

(Zims ooy 21 )s oo s (Bams ooy 2a M)

be a basis of this space, and the space generated by the vectors

(p(m)z1 my s D(M) 21 31)s oo (P(M) 20 s« ooy D(M) 22 01)

be of dimension p < A (if p has no root among the numbers m, m+1,..., M,
then g = X). W.l.g. we can assume that the vectors

(p(m)z1 sy D(M) 21 1)y o (P(M) 20y - ooy D(M) 24 01)

are linearly independent. Then we get a basis pty,...,pt, of Vg(L), where
the sequence #; is defined by

L(m) =2imy L(m4+1) = Zimer 5oy G(M) =201,

and by the equation Lt = 0 when k < m or k > M.

We finish with the following remark. If we are interested in the applica-
bility of (3) only for the case k > ko, where kg is a given integer, then we
change (27), 28 by

m=min({oc} U{n € Z,n > ky : ag(n) =0}),

13



M =max({ko} U{n € Z : a;(n—1) =0}).

If M < m, then reset m = M. Respectively, if we are interested only in the
case k < kg, then

m=min({ko} U{n € Z : ao(n) =0}),

M =max({—ooc}U{n €Z,n<ky : a(n—1)=0}),

and if M < m, then reset M = m.
If in Examples 1, 3 we are interested only in the case k > 0, then we get,
e.g., that (3) is applicable to t; (k) when w > v > ky = 0 with u(k) = k.
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