S. A. Abramov
Russian Academy of Sciences
Dorodnicyn Computing Centre
Vavilova 40, 119991, Moscow GSP-1, Russia
sabramov@ccas.ru

Abstract

We consider sequences which satisfy a linear recurrence equation Ly=0 with polynomial coefficients. A criterion, i.e., a necessary and sufficient condition is proposed for validity of the discrete Newton-Leibniz formula when a primitive (an indefinite sum) Rt of a solution t of Ly=0 is obtained either by Gosper's algorithm or by the Accurate Summation algorithm (the operator R has rational-function coefficients, ord R= ord L-1; in the Gosper case ord L=1, ord R=0). Additionally we show that if Gosper's algorithm succeeds on L, ord L=1, then Ly=0 always has some non-zero solutions t, defined everywhere, such that the discrete Newton-Leibniz formula $\sum_{k=v}^w t(k) = u(w+1) - u(v)$ is valid for u=Rt and any integer bounds $v \leq w$.

1 Introduction

Let K be a field of characteristic zero. If t(k) is a K-valued sequence, then Et(k) is the sequence s(k) = t(k+1). We consider P-recursive sequences, i.e., sequences, that satisfy recurrence equations of the form Ly = 0, where

$$L = a_{\rho}(k)E^{\rho} + a_{\rho-1}(k)E^{\rho-1} + \dots + a_{0}(k), \tag{1}$$

 $\rho \geq 1$, $a_{\rho}(k), a_{\rho-1}(k), \ldots, a_{0}(k) \in K[k]$, $a_{\rho}(k)a_{0}(k) \not\equiv 0$ and $\gcd(a_{0}(k), \ldots, a_{\rho-1}(k), a_{\rho}(k)) = 1$. If ord $L = \rho = 1$, then the corresponding P-recursive sequences are $hypergeometric\ terms$.

^{*}Partially supported by RFBR under grant 04-01-00757.

In [4] we discussed validity of the discrete Newton-Leibniz formula when an indefinite sum of the sequence t(k) is obtained either by Gosper's algorithm [5] or by the Accurate Summation algorithm [3]. These algorithms, which we denote hereafter by \mathcal{GA} and \mathcal{AS} , respectively, search for a solution u of the telescoping equation

$$Eu(k) - u(k) = t(k) (2)$$

where the sequence t(k) is P-recursive and satisfies Lt=0. Suppose that using one of these algorithms we found a linear recurrence operator R of order ord L-1 with rational-function coefficients, such that u=Rt is a solution of (2) for some solution t of Lt=0 (in the Gosper case ord L=1 and ord R=0, i.e., R is a rational function). Then the question is: can we use the discrete Newton-Leibniz formula

$$\sum_{k=v}^{w} t(k) = u(w+1) - u(v) \tag{3}$$

to find the definite sum of values of t? It was shown in [4] that sometimes (3) is not valid even when all of $t(v), t(v+1), \ldots, t(w), u(v), u(w+1)$ are defined. The reason is that equation (2) may fail to hold at certain points k of the summation interval.

Both \mathcal{GA} , \mathcal{AS} start by constructing the minimal annihilator L of a given concrete sequence t and this step is not formalized. On the next steps these algorithms work with L only, while the sequence t itself is ignored (more precisely, in the case of ord L=1, $L=a_1(k)E+a_0(k)$, \mathcal{GA} works with the certificate of t, i.e., with the rational function $-\frac{a_0(k)}{a_1(k)}$). The algorithms try to construct an operator R such that u=Rt in (2).

If L is of type (1) then denote by V(L) the space of all sequences t(k) defined for all $k \in \mathbb{Z}$ and such that Lt = 0. If additionally R is obtained from L either by \mathcal{GA} or by \mathcal{AS} , then denote by $V_R(L)$ the subspace of V(L) which contains $t \in V(L)$ iff formula (3) is valid for any integer $v \leq w$ with u = Rt.

It may be that $\dim V_R(L) < \dim V(L)$ (notice that quite often $\dim V(L) > \operatorname{ord} L$; it is possible that $\dim V_R(L) > \operatorname{ord} L$ as well).

In [4] some sufficient conditions for validity of (3) for a given sequence were given. In this paper we present a criterion, i.e., a necessary and sufficient condition for validity of this formula for all $k \in \mathbb{Z}$ when u = Rt, and R is obtained either by \mathcal{GA} or by \mathcal{AS} . Note that (3) is valid for all integer bounds $v \leq w$ iff (2) is valid for all $k \in \mathbb{Z}$. In addition, if R is obtained either

by \mathcal{GA} or by \mathcal{AS} , then we present a description of the linear space $V_R(L)$, and prove that in the case of ordL=1 the dimension of $V_R(L)$ is always positive.

We assume that $K = \mathbb{C}$ in all examples of this paper.

Example 1 GA succeeds on the operator $L = kE - (k+1)^2$, and the result is $R = \frac{1}{k}$. The space V(L) is two-dimensional: the sequences

$$t_1(k) = \begin{cases} 0, & \text{if } k < 0, \\ k \cdot k!, & \text{if } k \ge 0 \end{cases}$$

and

$$t_2(k) = \begin{cases} \frac{(-1)^k k}{(-k-1)!}, & \text{if } k < 0, \\ 0, & \text{if } k \ge 0 \end{cases}$$

form a basis of V(L). Our criterion says that, generally speaking, (3) is not applicable to t_1 , but is applicable to t_2 . We can illustrate this as follows. Applying (3) to t_1 with v = -1, w = 1, we have

$$t_1(-1) + t_1(0) + t_1(1) = \frac{1}{k}t_1(k)|_{k=2} - \frac{1}{k}t_1(k)|_{k=-1} = \frac{1}{2} \cdot 4 - 0 = 2$$

which is wrong, because $t_1(-1) + t_1(0) + t_1(1) = 0 + 0 + 1 = 1$. Applying (3) to t_2 with the same v, w, we have

$$t_2(-1) + t_2(0) + t_2(1) = \frac{1}{k}t_2(k)|_{k=2} - \frac{1}{k}t_2(k)|_{k=-1} = 0 - (-1) = 1$$

which is correct, because $t_2(-1) + t_2(0) + t_2(1) = 1 + 0 + 0 = 1$.

Our algorithm computes a basis of the subspace $V_R(L)$. In Example 1 $V_R(L)$ is one-dimensional and is generated by t_2 . Examples which demonstrate that sometimes this dimension can be greater than 1 are given (see Examples 2, 4).

2 Preliminaries

For $f(k), g(k) \in K[k]$ we write $f(k) \perp g(k)$ to indicate that f(k) and g(k) are coprime. If $r(k) \in K(k)$, then $\operatorname{den}(r(k))$ is the monic polynomial from K[k] such that $r(k) = \frac{f(k)}{\operatorname{den}(r(k))}$ for some $f(k) \in K[k]$, $f(k) \perp \operatorname{den}(r(k))$. If L and M are linear recurrence operators with coefficients from K(k) then we write

 $L \circ M$ for the product of L and M in the non-commutative ring K(k)[E]. If M = r(k) is a rational function, then $L \circ r(k)$ is an operator of the same order as L, while Lr(k) is a rational function (the result of applying L to r(k)).

The algorithm \mathcal{AS} starts with finding a rational function solution r(k) of the equation $L^*y = 1$ (say, by the algorithms from [1] or [2]), where L^* is the adjoint of L:

$$L^* = a_{\rho}(k-\rho)E^{-\rho} + a_{\rho-1}(k-\rho+1)E^{-\rho+1} + \dots + a_{0}(k).$$

The equation satisfied by the rational function r(k) can be rewritten as

$$a_0(k+\rho)r(k+\rho) + a_1(k+\rho-1)r(k+\rho-1) + \dots + a_{\rho}(k)r(k) = 1.$$
 (4)

If such r(k) exists then R can be found from the relation

$$1 - rL = (E - 1) \circ R. \tag{5}$$

We obtain

$$R = c_{\rho-1}(k)E^{\rho-1} + c_{\rho-2}(k)E^{\rho-2} + \dots + c_0(k), \tag{6}$$

where

$$c_i(k) = \sum_{i=0}^{i} r(k+j)a_{i-j}(k+j) - 1$$
 (7)

for $0 \le i \le \rho - 1$.

 \mathcal{GA} works with the case $\rho = 1$,

$$L = a_1(k)E + a_0(k), \ a_1(k), a_0(k) \in K[k], \ a_1(k) \perp a_0(k), \tag{8}$$

and tries to construct $r'(k) \in K(k)$ such that

$$a_0(k)r'(k+1) + a_1(k)r'(k) = -a_1(k)$$
(9)

(this can also be done by the algorithms from [1] or [2]). If such r' exists then R=r'.

If L is as in (8), then \mathcal{GA} succeeds on L iff \mathcal{AS} does: if $\rho = 1$ and r(k) is a rational solution of (4), then (8) has the rational solution

$$r'(k) = -r(k-1)a_1(k-1). (10)$$

In this case both \mathcal{AS} and \mathcal{GA} produce the same operator (rational function) R=r'.

Let $\rho \geq 1$ and suppose that there exists

$$r(k) = \frac{s(k)}{q(k)}, \quad s(k) \perp q(k), \tag{11}$$

which satisfies (4). Let R be the result of applying \mathcal{AS} to L of the type (1), and let a polynomial $d \in K[k]$ and an operator $B \in K[k, E]$ with relatively prime coefficients be such that

$$E^{\rho} \circ L^* \circ \frac{1}{q} = \frac{1}{d}B. \tag{12}$$

Set

$$p(k) = d(k - \rho), \tag{13}$$

$$\bar{L} = B^* \circ E^{\rho}. \tag{14}$$

Then one gets

$$L \circ p = q\bar{L} \tag{15}$$

and

$$R \circ p \in K[k, E] \tag{16}$$

(this was deduced in [4]).

3 \mathcal{AS} and the discrete Newton-Leibniz formula

The following sufficient condition for validity of (3) is a consequence of Theorem 5 from [4]: If a K-valued sequence $\bar{t}(k)$ is defined and satisfies $\bar{L}\bar{t}=0$ for all $k\in\mathbb{Z}$, then $t=p\bar{t}$ satisfies Lt=0 for all k, and the discrete Newton-Leibniz formula (3) can be applied to t with $u=Rt=(R\circ p)\bar{t}$ and any integer bounds $v\leq w$. In this section we prove also the necessity of this condition.

Let R be an operator of type (6). We call the monic polynomial

$$den(R) = lcm(den(c_{\rho-1}(k-\rho+1)), den(c_{\rho-2}(k-\rho+2)), \dots, den(c_0(k)))$$

the denominator of R. It is evident that the operator $R \circ \text{den}(R)$ has polynomial coefficients (i.e., belongs to K[k, E]).

In the rest of this paper we suppose that the operator R can be applied to a sequence t only if the sequence t is represented in the form

$$t = \operatorname{den}(R)t',\tag{17}$$

where t' is a sequence defined for all k. In this case we compute the value of Rt for any integer k as the value of the sequence $(R \circ \operatorname{den}(R))t'$. If a sequence t(k) is defined for all k and annihilated by an operator from K[k, E], and if \mathcal{AS} or \mathcal{GA} is applicable to the minimal annihilator of this sequence returning an operator R as result, then t has to be represented in the form (17) before using (3) with u = Rt (in the case where $\operatorname{den}(R)$ has integer zeros, the application of R to t is not possible without such representation).

Certainly, representation (17) does not guarantee that (3) gives the correct result.

Proposition 1 Let L be of the type (1), $r = \frac{s}{q}$ satisfy (4), and let R satisfy (5). Then den(R) = p, where the polynomial p is as in (13).

Proof: First we show that

$$p \mid \operatorname{den}(R). \tag{18}$$

We have

$$E^{\rho} \circ L^* \circ \frac{1}{q} = \frac{a_0(k+\rho)}{q(k+\rho)} E^{\rho} + \dots + \frac{a_{\rho-1}(k+1)}{q(k+1)} E + \frac{a_{\rho}(k)}{q(k)}$$
(19)

(notice that the coefficients of E^i 's in the right-hand side of (19) may be reducible). By (12)

$$d(k) \mid \operatorname{lcm}\left(\operatorname{den}\left(\frac{a_{\rho}(k)}{q(k)}\right), \operatorname{den}\left(\frac{a_{\rho-1}(k+1)}{q(k+1)}\right), \ldots, \operatorname{den}\left(\frac{a_{0}(k+\rho)}{q(k+\rho)}\right)\right).$$

Let $d = d_1^{\alpha_1} \cdots d_m^{\alpha_m}$ be the full factorization of the polynomial d. Then for each i there is an l such that $d_i^{\alpha_i}(k) | \operatorname{den} \left(\frac{a_l(k+\rho-l)}{q(k+\rho-l)} \right)$, so let

$$\nu_i = \min \left\{ l : d_i^{\alpha_i}(k) | \operatorname{den} \left(\frac{a_l(k+\rho-l)}{q(k+\rho-l)} \right) \right\},\,$$

for $i=1,2,\ldots,m$. Notice that any polynomial $d_i^{\alpha_i}(k)$ divides the denominators of at least two coefficients of the right hand side of (19), since $E^{\rho} \circ L^*(\frac{s}{q}) = 1 \in K[k]$. This gives us $0 \leq \nu_i \leq \rho - 1$, $i=1,2,\ldots,m$. Since $E^{\rho} \circ L^* \circ r = E^{\rho} \circ L^* \circ \frac{s}{q}$, and $s \perp q$, we have

$$\nu_i = \min\{l : d_i^{\alpha_i}(k) | \operatorname{den}(a_l(k+\rho-l)r(k+\rho-l))\}, \tag{20}$$

 $i = 1, 2, \ldots, m$. Formula (7) is equivalent to

$$c_i(k+\rho-\tau) = \sum_{j=0}^{\tau} r(k+\rho-\tau+j) a_{\tau-j}(k+\rho-\tau+j) - 1$$

for $0 \le \tau \le \rho - 1$. If $\tau = \nu_i$, then it follows from this and from (20) that

$$d_i^{\alpha_i}(k)|\operatorname{den}(r(k+\rho-\tau+j)a_{\tau-j}(k+\rho-\tau+j))$$

iff $j = \tau$. As a consequence we have

$$d_i^{\alpha_i}(k) | \operatorname{den}(c_{\nu_i}(k+\rho-\nu_i)),$$

or, equivalently,

$$d_i^{\alpha_i}(k-\rho)|\operatorname{den}(c_{\nu_i}(k-\nu_i)),$$

for i = 1, 2, ..., m. This implies that

$$d_i^{\alpha_i}(k-\rho) \mid \operatorname{den}(R),$$

for all i = 1, 2, ..., m. Relation (18) follows since $p(k) = d(k - \rho)$.

From (16) it follows that den(R)|p as well. Since both p and den(R) are monic, we have p = den(R).

Now we can prove the following criterion for validity of the discrete Newton-Leibniz formula in the case where \mathcal{AS} succeeds on a given operator of order $\rho \geq 1$.

Theorem 1 Let

- L be of type (1), a sequence t(k) be defined and Lt = 0 for all k,
- $r = \frac{s}{a}$, $s \perp q$, satisfy (4), and R be found from (5),
- p, \bar{L} be such as in (13), (14),
- $\bar{t}(k)$ be a sequence such that $t(k) = p(k)\bar{t}(k)$ for all k.

Then (3) is applicable everywhere iff $\bar{L}\bar{t}(k) = 0$ for all $k \in \mathbb{Z}$. (If $\bar{L}\bar{t}(k) = 0$ for all $k \in \mathbb{Z}$, then $u = (R \circ p)\bar{t}$ in (3).)

Proof: Let (3) be applicable everywhere with $u = (R \circ p)\bar{t}$. We have from (5):

$$E \circ R - R = 1 - rL,\tag{21}$$

and, as a consequence,

$$E \circ R \circ p - R \circ p - p = -rL \circ p. \tag{22}$$

By (15) we have

$$rL\circ p=rq\bar{L}=\frac{s}{q}q\bar{L}=s\bar{L},$$

therefore

$$E \circ R \circ p - R \circ p - p = -s\bar{L}. \tag{23}$$

Since the sequence \bar{t} is defined for all $k \in \mathbb{Z}$, (E-1)u = t, $u = (R \circ p)t$, and $t = p\bar{t}$ for all $k \in \mathbb{Z}$, we have

$$(E \circ R \circ p)\bar{t} - (R \circ p)\bar{t} - p\bar{t} = 0.$$

It follows from (23) that $s\bar{L}\bar{t}=0$, and if k_0 is such that $s(k_0)\neq 0$ then $\bar{L}\bar{t}(k_0)=0$ (i.e., the value of the term $\bar{L}\bar{t}$ is equal to 0 when $k=k_0$). If $s(k_0)=0$, then by $s(k)\perp q(k)$ we have $q(k_0)\neq 0$ and

$$\bar{L}\bar{t}(k_0) = \frac{1}{q(k_0)}Lp(k_0)\bar{t}(k_0) = \frac{1}{q(k_0)}Lt(k_0)$$

as a consequence of (15). However, Lt=0 identically, hence $\bar{L}\bar{t}(k_0)=0$.

If $\bar{L}\bar{t}(k)=0$ for all $k\in\mathbb{Z}$ then (3) is applicable everywhere with $u=(R\circ p)\bar{t}$ by Theorem 5 of [4].

Example 2 In Example 6 from [4] the operator $L = (k-3)(k-2)(k+1)E^2 - (k-3)(k^2-2k-1)E - (k-2)^2$ was considered to demonstrate some sufficient conditions of applicability of the discrete Newton-Leibniz formula. It was shown, in particular, that \mathcal{AS} succeeds on L and returns

$$r = \frac{-1}{(k-2)(k-3)}, \quad R = kE + \frac{1}{k-3}.$$

Apply the criterion from Theorem 1 to L. We get q(k) = (k-2)(k-3), p = k-3, and

$$\bar{L} = (k-1)(k+1)E^2 - (k^2 - 2k - 1)E - (k-2).$$

We have dim $V(\bar{L})=2$, since each of solutions of $\bar{L}\bar{t}=0$ is defined uniquely by $\bar{t}(2)$ and $\bar{t}(3)$ and by the equation $\bar{L}\bar{t}=0$ when k<2 or k>3. The sequences $p(k)\bar{t}_1(k)$, $p(k)\bar{t}_2(k)$ such that $\bar{t}_1(k),\bar{t}_2(k)\in V(\bar{L})$, $\bar{t}_1(2)=0$,

 $\bar{t}_1(3) = 1$, $\bar{t}_2(2) = 1$, $\bar{t}_2(3) = 0$ are linearly independent over \mathbb{C} : while $p(2)\bar{t}_1(2) = p(3)\bar{t}_1(3) = 0$, nevertheless $p(4)\bar{t}_1(4) = -\frac{1}{3}$, $p(4)\bar{t}_2(4) = 0$, and

$$\begin{vmatrix} p(2)\bar{t}_1(2) & p(4)\bar{t}_1(4) \\ p(2)\bar{t}_2(2) & p(4)\bar{t}_2(4) \end{vmatrix} \neq 0.$$

By our criterion, formula (3) is applicable to $t(k) \in V(L)$ iff $t(k) = (k-3)(c_1\bar{t}_1(k) + c_2\bar{t}_2(k))$, $c_1, c_2 \in \mathbb{C}$. Notice that dim V(L) = 3: we can take any t(2), t(3), t(4), t(5) such that

$$(k-3)(k-2)(k+1)t(k+2) - (k-3)(k^2-2k-1)t(k+1) - (k-2)^2t(k) = 0$$

for k = 2,3 (this gives the only constraint t(3) = 0) and define t(k) by the equation Lt = 0 when k < 2 or k > 5.

4 The case ord L=1

In the case of $\operatorname{ord} L=1$ it is possible to prove that \bar{L} and p, defined as in (13), (14), have some additional useful properties. This enables us to simplify the general criterion from Theorem 1.

Proposition 2 Let $\rho = 1$ and \bar{L} be as in (14). If $\bar{L} = \bar{a}_1(k)E + \bar{a}_0(k)$ then $\bar{a}_1(k)|a_1(k), \bar{a}_0(k)|a_0(k)$.

Proof: It follows from (4) (the case $\rho = 1$), i.e., from

$$a_0(k+1)\frac{s(k+1)}{q(k+1)} + a_1(k)\frac{s(k)}{q(k)} = 1,$$

that the denominators of both terms (after reduction) in the left-hand side are equal:

$$\frac{q(k+1)}{\gcd(a_0(k+1), q(k+1))} = \frac{q(k)}{\gcd(a_1(k), q(k))}.$$
 (24)

We can compute p(k) using this. Indeed,

$$E \circ L^* \circ \frac{1}{q} = \frac{a_0(k+1)}{q(k+1)}E + \frac{a_1(k)}{q(k)}.$$

Therefore if $d(k) \in K[k]$ and $B \in K[k, E]$ are such that the coefficients of B are relatively prime and

$$E \circ L^* \circ \frac{1}{q} = \frac{1}{d}B$$

then

$$d(k) = \frac{q(k)}{\gcd(a_1(k), q(k))}$$

and

$$p(k) = d(k-1) = \frac{q(k-1)}{\gcd(a_1(k-1), q(k-1))}.$$
 (25)

By (24), (25) we have

$$L \circ p = a_1(k) \left(\frac{q(k)}{\gcd(a_1(k), q(k))} \right) E + a_0(k) \left(\frac{q(k)}{\gcd(a_0(k), q(k))} \right).$$

The right hand side of this equation can be rewritten as

$$q(k) \left(\frac{a_1(k)}{\gcd(a_1(k), q(k))} E + \frac{a_0(k)}{\gcd(a_0(k), q(k))} \right).$$

Therefore

$$\bar{L} = \frac{a_1(k)}{\gcd(a_1(k), q(k))} E + \frac{a_0(k)}{\gcd(a_0(k), q(k))}.$$
 (26)

Corollary 1 In the case of ordL=1 the coefficients of \bar{L} are relatively prime, and as a consequence, any K-valued sequence \bar{t} such that $\bar{L}\bar{t}=0$ is a hypergeometric term.

By (10) the right-hand side of (25) is equal to the denominator of a rational solution r'(k) of equation (9). We have

Corollary 2 In the case of ord L=1 the polynomial p is the denominator of a rational solution of equation (9). When p is known, \bar{L} can be computed by removing from $L \circ p$ the greatest common polynomial factor of its coefficients.

If ord L=1 and one uses \mathcal{GA} , then Theorem 1 can be reformulated as the following criterion.

Theorem 2 Let L be of type (8), and let $\frac{f}{p}$, $f \perp p$, be a rational solution of Gosper's equation (9). Then the discrete Newton-Leibniz formula is applicable everywhere to t, iff $t = p\bar{t}$ for some hypergeometric term \bar{t} defined everywhere. If such \bar{t} exists, then $u = f\bar{t}$ in (3).

Proof: This follows from Theorem 1 and Corollary 1. \Box

Example 3 (Example 1 continued.) We have $t_2(k) = k\bar{t}_2(k)$, where

$$\bar{t}_2(k) = \begin{cases} \frac{(-1)^k}{(-k-1)!}, & \text{if } k < 0, \\ 0, & \text{if } k \ge 0 \end{cases}$$

is a hypergeometric term defined everywhere. We take $u(k) = \bar{t}_2(k)$ in (3). For the sequence $t_1(k)$ we have $t_1(k) = k\bar{t}_1(k)$, where

$$\bar{t}_1(k) = \begin{cases} 0, & \text{if } k < 0, \\ k!, & \text{if } k > 0. \end{cases}$$

The sequence \bar{t}_1 is not a hypergeometric term for any value of $\bar{t}_1(0)$.

We can summarize Corollaries 1,2 and Theorem 2 as follows:

Corollary 3 If L is of type (8), \mathcal{GA} succeeds on L and returns $R \in K(k)$, den(R) = p, then

$$V_R(L) = p \cdot V(\operatorname{pp}(L \circ p)),$$

where the operator $pp(L \circ p)$ is computed by removing from $L \circ p$ the greatest common polynomial factor of its coefficients.

5 Indefinite summable hypergeometric terms which are definite summable by the discrete Newton-Leibniz formula

If an operator L of the form (8) is such that \mathcal{AS} or \mathcal{GA} succeeds on L, then, using Theorem 1, we can describe the space $V_R(L)$: this is the space of sequences of the form $p\bar{t}$, $\bar{L}\bar{t}=0$.

Proposition 3 Let p, \bar{L} be as in (25), (26). Then there exists a sequence \bar{t} which is defined everywhere and is such that $\bar{L}\bar{t}=0$ for all $k\in\mathbb{Z}$, and that $p\bar{t}$ is a non-zero sequence.

Proof: By (24), (25) we can write $p(k) = q(k)/\gcd(a_0(k), q(k))$. So by (26), p is relatively prime with both $\bar{a}_1(k-1)$ and $\bar{a}_0(k)$.

If the equation $\bar{a}_1(k-1) = 0$ has integer roots then set k' to be the maximal one. There exists a sequence \bar{t} which is defined everywhere and satisfies $\bar{L}\bar{t} = 0$ for all k, such that $\bar{t}(k') = 1$ (and $\bar{t}(k) = 0$ for all k < k'). Then $p\bar{t}$ is not zero at k' because p is relatively prime with $\bar{a}_1(k-1)$. If

the equation $\bar{a}_0(k)=0$ has integer roots then set k'' to be the minimal one. There exists a sequence \bar{t} which is defined everywhere and satisfies $\bar{L}\bar{t}=0$ for all k, such that $\bar{t}(k'')=1$ (and $\bar{t}(k)=0$ for all k>k''). Then $p\bar{t}$ is not zero at k'' because p is relatively prime with $\bar{a}_0(k)$. If $\bar{a}_1(k-1)\bar{a}_0(k)\neq 0$ for all integer k, then there exists a sequence \bar{t} which is defined everywhere, and satisfies $\bar{L}\bar{t}=0$ and $\bar{t}(k)\neq 0$ for all k. It is evident that $p\bar{t}$ is a non-zero sequence.

As a consequence we get the following theorem.

Theorem 3 Let \mathcal{GA} succeed on an operator L of type (8), and let $r'(k) = \frac{f}{p}$, $f \perp p$, be a rational solution of Gosper's equation (9). Then there exists a hypergeometric term \bar{t} which is defined everywhere, and is such that the hypergeometric term $t = p\bar{t}$ is not zero, satisfies Lt = 0, and formula (3) is valid with $u = f\bar{t}$ for all $v \leq w$.

It is possible to give examples showing that in some cases ordL=1, $\dim V_R(L)>1$.

Example 4 Let $L = 2(k^2 - 4)(k - 9)E - (2k - 3)(k - 1)(k - 8)$. Then \mathcal{GA} succeeds on L and returns

$$r'(k) = -\frac{2(k-3)(k+1)}{k-9}.$$

Here p(k)=k-9 and $\bar{L}=2(k^2-4)E-(2k-3)(k-1)$. Any sequence \bar{t} which satisfies the equation $\bar{L}\bar{t}=0$ has $\bar{t}(k)=0$ for k=2 or $k\leq -2$. The values of $\bar{t}(1)$ and $\bar{t}(3)$ can be chosen arbitrarily, and all the other values are determined uniquely by the recurrence $2(k^2-4)\bar{t}(k+1)=(2k-3)(k-1)\bar{t}(k)$. Hence the solution space of $\bar{L}\bar{t}=0$ has dimension 2; the space of sequences $p\bar{t}, \ \bar{L}\bar{t}=0$, has dimension 2 too, since $p(1), p(3) \neq 0$.

At the same time, the space V(L) of all solutions of Lt=0 is of dimension 3. Indeed, if Lt=0, then t(-2)=t(2)=t(9)=0. The value t(k)=0 from k=-2 propagates to all $k \leq -2$, but on each of the integer intervals [-1,0,1], [3,4,5,6,7,8] and $[10,11,\ldots)$ we can choose one value arbitrarily, and the remaining values on that interval are then determined uniquely. A sequence $t \in V(L)$ belongs to $V_R(L)$ iff 22t(10) - 13t(8) = 0.

Set

$$m = \min(\{\infty\} \cup \{n \in \mathbb{Z} : a_0(n) = 0\}),$$
 (27)

$$M = \max(\{-\infty\} \cup \{n \in \mathbb{Z} : a_1(n-1) = 0\}). \tag{28}$$

If M < m, then pick any integer l such that $M \le l \le m$ and then reset M = m = l. It is clear that any sequence $t \in V(L)$ is uniquely determined by the vector $(t(m), t(m+1), \ldots, t(M))$, whose entries satisfy the system of algebraic linear equations:

$$a_1(m+i)t(m+i+1) + a_0(m+i)t(m+i) = 0, i = 0, ..., M-m-1$$
 (29)

(if m = M then t(m) can be chosen arbitrarily).

Using the values m, M we can present a more formal description of our algorithm for constructing a basis of $V_R(L)$, where L of type (8) is such that \mathcal{GA} succeeds on L and returns R. The algorithm starts with computing m, M as above, and $\bar{L} = \bar{a}_1(k) + \bar{a}_0(k)$, p(k) as in Corollaries 2, 3. Then the system of algebraic linear equations with the unknowns $z_m, z_{m+1}, \ldots, z_M$:

$$\bar{a}_1(m+i)z_{m+i+1} + \bar{a}_0(m+i)z_{m+i} = 0, \quad i = 0, \dots, M-m-1$$
 (30)

has to be solved. (Notice that if the vector $(z_m, z_{m+1}, \ldots, z_M)$ satisfies (30), then the vector $(t(m), t(m+1), \ldots, t(M))$, such that $t(m+i) = p(m+i)z_{m+i}$, $i = 0, \ldots, M-m-1$, satisfies (29).) Let the dimension of the solution space of (30) be λ ,

$$(z_{1,m},\ldots,z_{1,M}), \ldots, (z_{\lambda,m},\ldots,z_{\lambda,M})$$

be a basis of this space, and the space generated by the vectors

$$(p(m)z_{1,m},\ldots,p(M)z_{1,M}),\ldots,(p(m)z_{\lambda,m},\ldots,p(M)z_{\lambda,M})$$

be of dimension $\mu \leq \lambda$ (if p has no root among the numbers $m, m+1, \ldots, M$, then $\mu = \lambda$). W.l.g. we can assume that the vectors

$$(p(m)z_{1,m},\ldots,p(M)z_{1,M}), \ldots, (p(m)z_{\mu,m},\ldots,p(M)z_{\mu,M})$$

are linearly independent. Then we get a basis $p\bar{t}_1,\ldots,p\bar{t}_\mu$ of $V_R(L)$, where the sequence \bar{t}_i is defined by

$$\bar{t}_i(m) = z_{i,m}, \ \bar{t}_i(m+1) = z_{i,m+1}, \ldots, \ \bar{t}_i(M) = z_{i,M},$$

and by the equation $\bar{L}\bar{t} = 0$ when k < m or k > M.

We finish with the following remark. If we are interested in the applicability of (3) only for the case $k \geq k_0$, where k_0 is a given integer, then we change (27), 28 by

$$m = \min(\{\infty\} \cup \{n \in \mathbb{Z}, n \ge k_0 \ : \ a_0(n) = 0\}),$$

$$M = \max(\{k_0\} \cup \{n \in \mathbb{Z} : a_1(n-1) = 0\}).$$

If M < m, then reset m = M. Respectively, if we are interested only in the case $k \le k_0$, then

$$m = \min(\{k_0\} \cup \{n \in \mathbb{Z} : a_0(n) = 0\}),$$

$$M = \max(\{-\infty\} \cup \{n \in \mathbb{Z}, n \le k_0 : a_1(n-1) = 0\}),$$

and if M < m, then reset M = m.

If in Examples 1, 3 we are interested only in the case $k \geq 0$, then we get, e.g., that (3) is applicable to $t_1(k)$ when $w \geq v \geq k_0 = 0$ with u(k) = k!.

References

- [1] S. A. Abramov, Rational solutions of linear difference and differential equations with polynomial coefficients, *USSR Comput. Math. Phys.* **29** (1989), 7–12. Transl. from *Zh. vychisl. mat. mat. fyz.* **29** (1989), 1611–1620.
- [2] S. A. Abramov, Rational solutions of linear difference and q-difference equations with polynomial coefficients, *Programming and Comput. Software* **21** (1995), 273–278. Transl. from *Programmirovanie* **21** (1995), 3–11.
- [3] S. A. Abramov, M. van Hoeij, Integration of solutions of linear functional equations, *Integral transforms and Special Functions* 8 (1999), 3–12.
- [4] S. A. Abramov and M. Petkovšek, Gosper's Algorithm, Accurate Summation, and the discrete Newton-Leibniz formula, *Proc. ISSA C'05*, ACM Press (2005), 5–12.
- [5] R. W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation, *Proc. Natl. Acad. Sci. USA* **75** (1978), 40–42.