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Abstract

We propose an algorithm to put linear recurrent systems in a form which is convenient for
using the systems to search for polynomial, power-series, Laurent-series, and other types of solutions
of various linear functional systems (differential, difference and q-difference). Some algorithms to
search for solutions of functional systems are described. None of the proposed algorithms requires
preliminary uncoupling of linear systems.

1 Introduction

Linear recurrences with variable coefficients are of interest for combinatorics and numeric computation.
Additionally they give a useful auxiliary tool for constructing solutions of linear functional equations
(differential, difference and q-difference) in the form of polynomials, power and Laurent series, rational
functions, and so on [4, 8, 7].

Linear recurrent systems are more general and universal instruments. But working with recurrent
systems is more complicated than working with scalar recurrences. When we consider a recurrence

pl(n)zn+l + pl−1(n)zn+l−1 + · · ·+ pt(n)zn+t = bn

with an unknown sequence z = {zn} then in many situations (e.g., if the coefficients of this recurrence
are polynomials) the leading coefficient pl(n) vanishes only for a finite set of values of n. Hence for
almost all n we can compute zn+l using zn+l−1, . . . , zn+t. In a similar manner we can compute zn+t for
almost all n using zn+l, . . . , zn+t+1 if the trailing coefficient pt(n) vanishes only for a finite set of values
n. In contrast, in the case of a recurrent system S of the form

Plzn+l + Pl−1zn+l−1 + · · ·+ Ptzn+t = b,

where z = (z1, . . . , zm)T is the column of unknown sequences, and Pl, . . . , Pt are m ×m-matrices over
K[n] (K is a ground field), the determinants of Pl and/or Pt (the leading and trailing matrices of the
system) can vanish for all n, even though Pl and Pt themselves are nonzero.

Let a recurrence appear in the process of constructing the solutions of a given scalar functional
equation. Then the leading and trailing coefficients of the recurrence are nonzero polynomials in K[n].
These polynomials have a finite number of integer roots, which give the singularities of the recurrence
and the potential degrees of polynomial solutions of the initial scalar equation. In the case of a system,
Pl and Pt can be singular, which prevents us from bounding the degree of the solutions. One faces the
necessity to transform such a recurrent system S into an equivalent system S′ with nonsingular leading
(or analogously, trailing) matrix.

We propose transformations based on a special process of EG-eliminations in the explicit matrix
P = (Pl|Pl−1| . . . |Pt) of the system S. EG-eliminations bear similarities both to Euclidean algorithm
and to Gaussian elimination (E = Euclidean, G = Gaussian), they either allow one to recognize the
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dependency of the recurrences, or lead to a system S′ of the desired form. It is possible that the
transformation of S to S′ additionally results in a finite set of relations for the initial values of each of
the solutions of the new system S′.

For example, using EG-elimination one can prove that the system
(

n− 1 0
−2 0

)
zn +

(
0 0
0 n− 2

)
zn−1 +

(
0 −1
0 0

)
zn−3 = 0

for z = (z1, z2)T, whose leading and trailing matrices are singular, is equivalent to the system
(−2 0

0 n(n− 1)

)
zn +

(
0 n− 2
0 0

)
zn−1 +

(
0 0
0 −2

)
zn−2 = 0 (1)

with the additional relation 2z1
1+z2

0 = 0. EG-eliminations also show that the original system is equivalent
to (

0 0
(n− 5)(n− 2) 0

)
zn−1 +

(−2 0
0 0

)
zn−2 +

(
0 n− 4
−2 0

)
zn−3 = 0 (2)

with the additional relation 3z1
4 − z2

1 = 0. The determinants of the leading matrix of (1) and of the
trailing matrix of (2) are nonzero polynomials.

The problem of computing polynomial and series solutions of linear functional system with polynomial
coefficients can be solved by the EG-generalization of [4, 8, 7]. Computing the rational function solutions
can be done as follows: in the differential case, we can bound the order of the poles of the solutions using
the nonsingular leading matrix of the corresponding system of recurrences, which has to be done at all
the singularities of the given differential system. In the difference case we can use the methods of [3, 20]
instead. The problem is then reduced to computing polynomial solutions of a functional system. In the
q-difference case we can combine the differential and difference approaches.

EG-eliminations as a tool of solving functional systems give an alternative for the method of reducing
such systems to super-irreducible form [19, 12]. Yet, that method is not optimal, because the super-
irreducible form contains more information than necessary for the purpose of computing the indicial
equations of the systems at their singularities. Furthermore, the reduction algorithms are different for
different cases of equations under consideration (differential, difference, q-difference). Moreover, the
EG-method is applicable to systems of equations of arbitrary order (rather than first-order for the
super-irreducible form) and does not require change of variables in the unknowns.

The traditional computer algebra approach to solving those systems is via the cyclic-vector, or some
other similar elimination method [14, 9], that converts the systems to scalar equations (such a procedure
is called uncoupling). Gröbner bases technique also can be used to reduce a recurrent system to the
uncoupled form [16]. The major, and well-known, problem of this approach is the increase in size of
the coefficients of equations which makes those approaches applicable only to systems of very small
dimension.

Direct methods (i.e., methods which work without uncoupling of systems) for solving systems of
linear functional equations are needed to design effective algorithms to compute invariants of Galois
groups of linear ordinary differential equations [22], which in turn would allow the efficient computation
of closed-form (Liouvillian) solutions of those equations [21]. Other applications would include efficient
factoring algorithms for completely reducible linear ordinary differential operators [23]. In addition, such
methods are helpful in designing effective Gröbner bases algorithms in multivariate Ore rings [15, 17].
Those bases are important in generalizing Zeilberger’s definite summation and integration algorithm.

Recurrent systems appear also in combinatorics and in numerical analysis, but their leading and
trailing matrices can be singular, which makes them useless in computing the elements of the solution
sequences. Applying the EG-eliminations allows us to desingularize the leading and trailing matrices,
thereby computing the sequences.
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2 Linear recurrent systems

2.1 Preliminaries

Let K be a field of characteristic zero. For a sequence

c = {cn}n≥k, (3)

k ∈ Z, with elements in K we write ν(c) = k (note that it is possible that ck = 0). If c has the form (3)
and f is a function Z → K then the product fc is equal to {f(n)cn}n≥k. The sum of two sequences c
and c′ is defined elementwise and ν(c+ c′) = max{ν(c), ν(c′)}. The sequences d = Ec and d′ = E−1c are
defined so that ν(d) = ν(c)− 1, ν(d′) = ν(c)+1 with dn = cn+1 for n = ν(d), ν(d)+1, . . . and d′n = cn−1

for n = ν(d′), ν(d′) + 1, . . . We say that c of the form (3) satisfies the equation (the recurrence)

R(z) = 0, (4)

where R is a recurrent operator of the form

pl(n)El + pl−1(n)El−1 + · · ·+ pt(n)Et (5)

(l, t ∈ Z; pt(n), pl(n) 6= 0) if applying R to c gives the sequence {dn}n≥k−l with zero elements. For R of
the form (5) we write

ord ∗(R) = l. (6)

From here on we will assume the coefficients of the recurrent operators to be belonging to a ring I of
functions Z → K such that

I1. The shift operator E is an automorphism of I.
I2. If f(n) ∈ I and f(n) is not equal to zero identically then the equation f(n) = 0 has only finite

set (possibly empty) of integer solutions.
Example 1
a) The ring K[n] of polynomial functions satisfies I1, I2.
b) Let K = K0(q), where q is transcendental over K0, then the ring K[qn], considered as a ring of

functions Z → K, satisfies I1, I2.
In the applications we will mainly consider the case I = K[n]. In the examples of the nearest sections

we assume I to be K[n] and K to be the rational number field Q. An example with I = K[qn] will be
considered in Section 3.6.

The ring of all recurrent operators of the form (5) over I will be denoted by EI .
Let b = {bn}n≥s and let R be an operator of the form (5). A solution of recurrence

R(z) = b (7)

is any sequence of the form (3) such that (R(c))n = bn for n ≥ max{k − t, s}.
We will consider also sequences of the form {cn}n∈Z, ν(c) = −∞. We denote the set of such sequences

by A. For any R of the form (5) and any sequence c ∈ A we have R(c) ∈ A. We will be interested
in the solutions of (7) in the case b ∈ A and especially when bn = 0 for all n < 0 (the set of all such
sequences is denoted by A0). For example, we will consider the problem of looking for solutions in A0

(or, equivalently, A0-solutions) of a recurrence (7) with b ∈ A0. Observe that the last problem can be
reduced to the search for solutions c̃ such that ν(c̃) = t − l and c̃ = 0 for n = −1,−2, . . . , t − l. When
such a sequence c̃ is found one can extend it for n = t− l − 1, t− l − 2, . . . by zero elements.

Now we concentrate on recurrent systems of the form

Plzn+l + Pl−1zn+l−1 + · · ·+ Ptzn+t = b (8)

where z = (z1, . . . , zm)T is the column of unknown sequences;

b = (b1, . . . , bv)T (9)
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(the right-hand side) is the column of known sequences; v is a nonnegative integer; Pl, . . . , Pt are v×m-
matrices over I, with non-zero Pl and Pt (the leading and trailing matrices of the system). For a column
b of the form (9) we set ν(b) = max{ν(b1), . . . , ν(bv)}. If ν(b) = −∞ then one can consider bn for any
n, but if ν(b) > −∞ then only for n ≥ ν(b). The substitution of a column c into the left-hand side
of (8) gives a column d such that ν(d) = ν(c) − t. If dn = bn for all n ≥ max{ν(d), ν(b)} (in the case
max{ν(d), ν(b)} > −∞) or for all n (in the case ν(d), ν(b) = −∞), then column (8) is a solution of
recurrent system (8). In the case when b ∈ Av

0 and one is looking for a solution in Am
0 (as in the scalar

case we will call such a solution A0-solution) the problem can be reduced to the search for solutions c̃
such that

ν(c̃) = t− l (10)

and
t− l ≤ n ≤ −1 ⇒ c̃n = 0. (11)

We call the matrix
P = (Pl|Pl−1| . . . |Pt) (12)

the explicit matrix of the system S. The matrix Pl is the leading part of the matrix P , and the matrix
Pt is its trailing part. One can consider the leading and trailing parts of any row of P .

We will say that b ∈ Av is of finite degree if there exists an integer w ≥ −1 such that bn is the zero
column for all n > w. The minimal such w will be denoted by deg b.

Lemma 1 Let v = m in system (8) and the right-hand side of (8) be of finite degree. Let p(n) = det Pt(n)
be a nonzero element of I. Let n0 be the largest integer root of p(n) = 0 if such roots exist and n0 = −1
otherwise. Let c ∈ Am be a solution of (8) of finite degree. Then

deg c ≤ max{n0 + t, deg b + t,−1}. (13)

Proof: Let s = max{n0 + t,−1} and s′ ≥ s. The columns cs′ , cs′+1, . . . allow one to compute the columns
cs+1, cs+2, . . . , cs′−1 (the matrix Pt(n) is an invertible matrix with elements belonging to K for all n > n0,
it lets one use (8) for computing columns cs′−1, cs′−2, . . . , cs+1). If all the columns cn are zero for all
large enough n then cn will be zero for all n > max{s, deg b + t}. Therefore deg c ≤ max{s,deg b + t}
which gives (13). 2

Using this bound one can construct all A0-solution of finite degree of system (8). It can be done by
undetermined coefficient method or by the method from [4].

If the leading part Pl of P is nonsingular (i.e., its determinant is a nonzero element of I) and b ∈ Am
0

then we can describe all A0-solutions of system (8). In the general case the following lemma is useful.

Lemma 2 Let v = m in system (8) and p(n) = det Pl(n) be a nonzero element of I. Let n1 be the
largest integer root of p(n) = 0 if such roots exist and n1 = −1 otherwise. Let c ∈ Am be a solution of
(8) and let cn be known for n ≤ n1 + l. Then cn are uniquely defined for all

n > n1 + l. (14)

Proof: The matrix Pl(n) is an invertible matrix with elements belonging to K for all n > n1, it lets one
use (8) for computing columns cn1+l+1, cn1+l+2, . . .. 2

Therefore it is sufficient to know the set c[0:s] = (c0, . . . , cs), s = n1 + l, to find all other columns of an
A0-solution c of system (8) using recurrent system (8). Such c[0:s] can be considered as an m× (s + 1)-
matrix over K. Thanks to (10) and (14) we can find all c[0:s] as follows. Taking into account (10)
substitute step by step n = −l,−l + 1, . . . , n1 + l into (8). It gives us a system of linear algebraic
equations for the matrix c[0:s]. The method from [4] can be used also to solve this problem. Both
methods allow one to obtain a basis of the affine space of all the matrices c[0:s].

But unfortunately in the case v = m the matrices Pt and Pl are singular very often. The situation is
more difficult in the case v 6= m. In the next section we will describe some transformations which allow
one to get a system with non-singular square Pl or, resp., with non-singular square Pt.
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2.2 Constraints, equivalent transformations and dependence of equations

We start with definitions.
We call a constraint for the sequence (3) any relation of the form

αMcM + αM−1cM−1 + · · ·+ αNcN = σ,

where αM , . . . , αN , σ ∈ K,M ≥ N ≥ k. We stress that M and N are not variables but are concrete
integer numbers. We will also consider constraints for elements of different sequences c1, . . . , cm:

αc1
M + · · ·+ βc1

N + · · ·+ γcm
M + · · ·+ δcm

N = σ.

Any recurrent system is equal to an infinite set of constraints.
System (8) can be rewritten in the form




R11 . . . R1m
...

...
Rv1 . . . Rvm







z1

...
zm


 =




b1

...
bv


 , (15)

Rij ∈ EI , i = 1, . . . , v, j = 1, . . . , m. We will call the equations of this system dependent if there exist
S1, . . . , Sv ∈ EI such that

S1 ◦R1j + · · ·+ Sv ◦Rvj = 0 (16)

for all j = 1, . . . , m. If the last equalities take place but the sequence S1b
1 + · · ·+ Svbv is not zero then

the original recurrent system is not compatible.
Consider the following particular case of the recurrent system: a first order system in the canonical

form:
p1(n)z1

n+1 = a11(n)z1
n + · · ·+ a1m(n)zm

n + b1
n

· · · · · · · · · (17)

pv(n)zv
n+1 = av1(n)z1

n + · · ·+ avm(n)zm
n + bv

n,

v ≤ m; p1(n), . . . , pv(n) 6= 0.

Lemma 3 Equations (17) are independent.

Proof: System (17) can be rewritten in the form (15) with the matrix




p1E − a11 −a12 . . . −a1v . . . −a1m

−a21 p2E − a22 . . . −a2v . . . −a2m
...

...
...

...
−av1 −av2 . . . pvE − avv . . . −avm


 .

If its rows are dependent over EI then there exist S1, . . . , Sv ∈ EI such that

−
v∑

i=1

Si ◦ aij + Sj ◦ pj ◦ E = 0, (18)

j = 1, . . . , v. Choose j such that

ord ∗(Sj) = max{ord ∗(S1), . . . , ord ∗(Sv)} (19)

(see (6)). But equality (18) does not hold for such j because ord ∗(Sj ◦ pj ◦ E) > ord ∗(Si ◦ aij) for
i = 1, . . . , v. 2

From here on we consider only the case when ν(b) = −∞ and the solutions c which we are looking
for are also such that ν(c) = −∞. By equivalent transformations of systems we mean transformations
which preserve these solutions.
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Let’s concentrate on two types of equivalent transformations.
1. Applying Es to the i-th equation of the system, s ∈ Z, 1 ≤ i ≤ v, i.e., going from (15) to




R11 . . . R1m
...

...
Ri−1,1 . . . Ri−1,m

Es ◦Ri1 . . . Es ◦Rim

Ri+1,1 . . . Ri+1,m

...
...

Rv1 . . . Rvm







z1

...

...

...

...
zm




=




b1

...
bi−1

Esbi

bi+1

...
bm




.

This transformation will be called the transformation of type T1 or, simpler, the transformation T1.
The equivalence of this transformation can be proven by considering the sets of constraints which are
equivalent for both systems.

2. Now let g(n) be a nonzero element of I. The multiplication of the i-th equation of the system by
g gives the system 



R11 . . . R1m
...

...
Ri−1,1 . . . Ri−1,m

gRi1 . . . gRim

Ri+1,1 . . . Ri+1,m

...
...

Rv1 . . . Rvm







z1

...

...

...

...
zm




=




b1

...
bi−1

gbi

bi+1

...
bm




.

The equation
gRi1z

1 + · · ·+ gRimzm = gbi

is equivalent to the original equation

Ri1z
1 + · · ·+ Rimzm = bi (20)

if the equation g(n) = 0 has no integer roots. Otherwise to get equivalence we have to add to the new
recurrent system a finite set of constraints which are obtained by substitution of all the roots of g(n) = 0
for n in (20). If we are interested only in A0-solutions then we can consider only such roots g(n) = 0
that are ≥ −l (see (8)).

In a similar way we can replace the i-th equation of the system by the sum of the product of g(n)
by the i-th equation and the product of h(n) by the j-th equation, 1 ≤ j ≤ v, g(n), h(n) ∈ I, adding
again to the recurrent system the finite set of constraints which are obtained by substitution of all those
integer roots of g(n) which are ≥ −l, for n in (20) (transformation T2).

Example 2 Consider the homogeneous recurrence R(z) = 0, where R = (n + 1)E. Construct
R1 = E ◦ R = (n + 2)E2 (transformation T1). As mentioned above the sets of A0-solutions of the
recurrences R(z) = 0 and R1(z) = 0 are equal. Now construct R2 = (n + 1)R1 (transformation T2). It
is easy to see that l = 2 for R1. We have −1 ≥ −2, and we write down the constraint which is the result
of the substitution of n = −1 into (n+2)zn+2 = 0. It results in z1 = 0. Therefore the set of A0-solutions
of the recurrence

(n + 1)zn+1 = 0 (21)

coincides with the set of A0-solutions of the recurrence

(n + 1)(n + 2)zn+2 = 0, (22)

supplemented by the constraint z1 = 0. This is in accordance with the fact thatA0-solutions of recurrence
(21) are described by the formula

zn =
{

C, if n = 0,
0, otherwise,
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where C is an arbitrary constant. In turn A0-solutions of recurrence (22) are described by the formula

zn =





C0, if n = 0,
C1, if n = 1,
0, otherwise,

where C0, C1 are arbitrary constants.
Now we consider the corresponding transformations of the explicit matrix P of the original recurrent

system. Let the i-th row of the matrix Pt be zero. Then applying E−1 to the i-th equation is equivalent
to the transformation of the i-th row of the matrix P

(pi1(n), . . . , pi,(l−t)m(n), 0, . . . , 0) (23)

to
(0, . . . , 0, pi1(n− 1), . . . , pi,(l−t)m(n− 1)). (24)

We will call this transformation (which is a particular case of T1) transformation t1−. In turn transfor-
mation t1+ can be applied in the case where the i-th row of the matrix Pl is zero. Then applying E to
the i-th equation is equivalent to the transformation of the i-th row of P

(0, . . . , 0, pi,m+1(n), . . . , pi,(l−t+1)m(n)),

to
(pi,m+1(n + 1), . . . , pi,(l−t+1)m(n + 1), 0, . . . , 0).

Therefore transformations t1−, t1+ correspond to applying E−1 or E in the case where this neither
decreases t nor increases l.

Additionally we will consider transformation t2. This replaces the i-th row of P by the sum of the
product of g(n) by the i-th row and the product of h(n) by the j-th row, 1 ≤ j ≤ v, g(n), h(n) ∈ I, g(n) 6=
0, and writing down the constraint

pi1(n0)z1
n0+l + · · ·+ pim(n0)zm

n0+l+

· · · · · · · · · (25)

+pi,(l−t)m+1(n0)z1
n0+t + · · ·+ pi,(l−t+1)m(n0)zm

n0+t = 0

for any integer roots n0 ≥ −l of g(n) = 0. We call t1−, t1+, t2 the elementary transformations. With
any elementary transformation of the explicit matrix P a transformation of the operator matrix R (which
is an m × v-matrix over EI) can be associated. Such a new transformation is the left multiplication of
some v × v-matrix over EI by R. The multiplications by, resp., matrices



1
. . .

1
E

1
. . .

1




,




1
. . .

1
E−1

1
. . .

1




,




1
. . .

1
g(n) h(n)

1
. . .

1




.

are associated with transformations t1+, t1−, t2. The entries E and E−1 of the first and the second
matrices have indices (i, i), the entries g(n) and h(n) of the third matrix have indices (i, i) and (i, j)
respectively. We will call the matrices of such kind also elementary.

We consider additionally the elementary transformation t3, which interchanges the i-th and the j-th
rows of the explicit matrix P (though this transformation can be reduced to t2, it is more convenient to

7



use itself). The corresponding elementary matrix is of the form




1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1




.

The non-diagonal unity entries have indices (i, j) and (j, i).
The right-hand side of a recurrent system under an elementary transformation is multiplied by the

corresponding elementary matrix.
Now we consider the problem of reducing the explicit matrix P of the given recurrent system to a

matrix P ′ with the trailing matrix in the trapezoidal form during which if the trailing part of a row of
P ′ is zero then the row will be completely zero (this is the t-problem of reducing the explicit matrix).
It will be done by elementary transformations t1−, t2, t3, i.e., by t1− and by some “delicate” Gaussian
eliminations. We also consider the similar problem of reducing the explicit matrix P to a matrix P ′′

with the leading matrix in the trapezoidal form during which if the leading part of a row of P ′′ is zero
then the row will be completely zero (the l-problem of reducing the explicit matrix). It will be done by
elementary transformations t1+, t2, t3, i.e., by t1+ and again by some “delicate” Gaussian eliminations.
It is obvious that if zero rows appeared in the process of solving the t- or l-problem then the equations
of the original recurrent system are dependent; the corresponding row of the product of the elementary
matrices involved gives S1, . . . , Sv from (16).

Observe that adding t1− to the “usual” Gaussian eliminations often allows one to solve the t-problem
of reducing a given matrix.

Example 3 Consider the following recurrent system
(

(n + 1)E − 1 −1
−1 (n + 1)E − 1

)(
z1

z2

)
=

(
0
0

)
(26)

or

(n + 1)z1
n+1 − z1

n − z2
n = 0

−z1
n + (n + 1)z2

n+1 − z2
n = 0.

(27)

The explicit matrix of this system is of the form
(

n + 1 0 −1 −1
0 n + 1 −1 −1

)
,

where the first two columns form the leading part and the last two ones form the trailing part of the
explicit matrix. Transform the explicit matrix:

(
n + 1 0 −1 −1

0 n + 1 −1 −1

)
−→1

(
n + 1 0 −1 −1
−n− 1 n + 1 0 0

)
−→2

(
n + 1 0 −1 −1

0 0 −n n

)
−→3

(
n + 1 0 −1 −1

−n(n + 1) 0 0 2n

)
.

Here −→1 and −→3 are transformations t2; −→2 is transformation t1−. As in −→1 ,−→3 the changed row
is multiplied by 1, we write down no additional constraints. The determinant of the trailing part of the
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last matrix is equal to −2n, the equation −2n = 0 has the only nonnegative integer root n0 = 0. By
(13) this means that if there exists a finite degree A0-solution of the original system then its degree is 0.
It is easy to see that such a solution really exists:

z1
n =

{
C, if n = 0,
0, otherwise,

z2 = −z1,

where C is an arbitrary constant. We can construct the system whose explicit matrix is equal to the
matrix which we got as the result of transformation −→3 :

(n + 1)z1
n+1 − z1

n − z2
n = 0

−n(n + 1)z1
n+1 − 2nz2

n = 0,

or (
(n + 1)E − 1 −1
−n(n + 1)E −2n

)(
z1

z2

)
=

(
0
0

)
. (28)

But sometimes this approach does not lead to the desired result.
Example 4 Consider the following system of two recurrences with one unknown sequence z:

(
E + 1
E + 2

)
( z ) =

(
0
0

)
.

The explicit matrix of this system is (
1 1
1 2

)
, (29)

its leading and, resp., trailing parts are (
1
1

)
and

(
1
2

)
.

Gaussian eliminations in the second row of (29) and shifts of this row give
(

1 1
1 2

)
−→

(
1 1
−1 0

)
−→

(
1 1
0 −1

)
−→

(
1 1
1 0

)
−→

(
1 1
0 1

)
−→

(
1 1
−1 0

)
−→· · ·

There are nonzero elements in the second row of all these matrices although the two equations are
obviously dependent. One has to use some “delicate” Gaussian eliminations.

2.3 EG-eliminations

The Euclidean algorithm suggests a way out. In this algorithm the degree or the order of the divisor
(i.e., the polynomial or the operator by which one eliminates something) does not exceed the degree or
the order of the dividend (i.e., the polynomial or the operator in which one eliminates something). We
will use a matrix analog of the rule, introducing for this purpose the notion of the width of a row and the
notion of EG-elimination (E=Euclidean, G=Gaussian). The width of a row is an analog of the degree
of a polynomial and of the order of an operator. Strictly speaking we will use two types of the width,
namely l-width and t-width.

Let as usual the original system have the form (8). If the i-th row of the explicit matrix P is zero then
its l-width and t-width are both equal to 0. Let in (8) the i-th rows of all the matrices Pl, Pl−1, . . . , Ps+1

be zero, while the i-th row of Ps is nonzero. Then s− t+1 is the t-width of the i-th row of P . Similarly,
let the i-th rows of Pt, Pt+1, . . . , Ps−1 be zero, while the i-th row of Ps is nonzero. Then l − s + 1 is the
l-width of the i-th row of P .

We will consider two versions of EG-eliminations:

9



a) EGt-eliminations which are based on the notion of t-width and can be used for reducing P to a
matrix with the trailing matrix in the trapezoidal form,

b) EGl-eliminations which are based on the notion of l-width and can be used for reducing P to a
matrix with the leading matrix in the trapezoidal form.
We will detail EGt-eliminations. As for EGl-eliminations, they can be described in a similar way.

EGt-elimination of pik in P by the j-th row is possible in the case where j < i and pjk 6= 0. If pik = 0
then P will not be changed. If pik 6= 0 then:

1. Compare the t-width of the j-th row with the t-width of the i-th row. If the first value is bigger
than the second one then interchange the i-th and the j-th rows.

2. Now the t-width of the j-th row does not exceed the t-width of the i-th row and pjk 6= 0. Eliminate
pik by the j-th row: find g, h ∈ I such that gpik + hqjk = 0 and replace the i-th row by the sum of the
product of g by the i-th row and the product of h by the j-th row. Write down the constraint (25) for
every integer root n0 of g(n) = 0 such that n0 ≥ −l.
It is easy to see that any EGt-elimination is a chain of elementary transformations.

Reducing P to a matrix with the trailing part in the trapezoidal form can be done in v steps (as
above v is the number of the system equations or, equivalently, the number of the rows of P ). The w-th
step results in the integer numbers w1, w2 such that w1 + w2 = w (initially w1 = w2 = 0) during which
the matrix P will be transformed by elementary transformations in such a way that

• the first w1 rows of the trailing part form a trapezoidal matrix;

• the last w2 rows of matrix P are zero.

It is clear that if all v steps are performed then the matrix P will be reduced to the desirable form.
Assume that the steps with numbers ≤ w have been performed (at the beginning w = w1 = w2 = 0).

Then the algorithm for step no. w + 1 is as follows:
1) Use EGt-eliminations by the rows with numbers 1, . . . , w1 to eliminate the first w1 entries of

the trailing part of the (w1 + 1)-st row (interchanging the rows when the t-width of the row by which
elimination is done exceeds that of row w1 + 1).

2) If there is a nonzero entry in the trailing part of the (w1 +1)-th row of P then change enumeration
of the unknowns zw1+1, . . . , zm in such a way that this entry (or one of such entries) will have position no.
w1 + 1 in the trailing part. All entries in positions 1, . . . , w1 are zero. The step is finished by increasing
w1 by 1.

3) If the (w1 + 1)-st row of P is completely zero then interchange this row and the row with number
v − w2. The step is finished by increasing w2 by 1.

4) If the (w1 + 1)-st row of P is non-zero but at the same time the trailing part of this row has only
zero entries then apply t1− to the (w1 + 1)-st row of P and go to 1).

The step no. w + 1 is now completely described.

Theorem 1 The above procedure implementing step no. w + 1 always terminates.

Proof: The algorithm terminates when it reaches cases 2) or 3). In case 4) the (w1 + 1)-st row of P
is non-zero but with zero trailing part. Consider the integer vector (s1, . . . , sw1+1), where sj is equal
to the t-width of the j-th row before EGt-eliminations in the (w1 + 1)-st row. Let this vector be
transformed into (s′1, . . . , s

′
w1+1) as the result of EGt-eliminations in the (w1 + 1)st row and of applying

t1− to this row. Then it is easy to see that s′1 ≤ s1, . . . , s
′
w1
≤ sw1 and if s′1 = s1, . . . , s

′
w1

= sw1 then
s′w1+1 < sw1+1. Therefore (s′1, . . . , s

′
w1+1) <lex (s1, . . . , sw1+1), where <lex is the natural lexicographic

order. The components of the vectors under consideration are nonnegative integers and the theorem
follows. 2

EGt-eliminations allow one to solve the problem formulated in Example 4:
(

1 1
1 2

)
−→

(
1 1
−1 0

)
−→

(
1 1
0 −1

)
−→

(
0 −1
1 1

)
−→

(
0 −1
1 0

)
−→

(
0 −1
0 1

)
−→

(
0 −1
0 0

)
.
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We get the matrix with a zero row and a zero column. By deleting them we obtain the explicit matrix
of the system which consists of one recurrence −zn = 0. The only solution of this recurrence is the zero
sequence. The zero row appearance means that the rows of matrix (29) are dependent over EI . In our case
this fact is trivial. But the given approach allows one to recognize dependency (or independency) of the
rows of the explicit matrix of any system. The additional computation of the product of the corresponding
elementary matrices allows (as was mentioned) to find a relationship (16) for the original operator matrix.
It allows also to construct the right-hand sides of the new system in the non-homogeneous case. In
practice, of course, we can transform the right-hand side together with the row of the explicit matrix of
the system.

Example 5 The recurrent system

n(n + 1)z1
n+1 + z1

n + z2
n = 0

n(n + 1)z1
n+1 − (n + 1)z2

n = −δn2

z1
n+1 + (n + 3)z2

n+1 = δn1,

has the explicit matrix 


n(n + 1) 0 1 1
n(n + 1) 0 0 −n− 1

1 n + 3 0 0


 .

We extend this matrix by the right-hand side column and perform EGl-eliminations:



n(n + 1) 0 1 1 0
n(n + 1) 0 0 −n− 1 −δn2

1 n + 3 0 0 δn1


−→




1 n + 3 0 0 δn1

n(n + 1) 0 1 1 0
n(n + 1) 0 0 −n− 1 −δn2


−→




1 n + 3 0 0 δn1

0 −n(n + 1)(n + 3) 1 1 −2δn1

0 −n(n + 1)(n + 3) 0 −n− 1 −δn2 − 2δn1


−→




1 n + 3 0 0 δn1

0 −n(n + 1)(n + 3) 1 1 −2δn1

0 0 −1 −n− 2 −δn2


−→




1 n + 3 0 0 δn1

0 −n(n + 1)(n + 3) 1 1 −2δn1

−1 −n− 3 0 0 −δn1


−→




1 n + 3 0 0 δn1

0 −n(n + 1)(n + 3) 1 1 −2δn1

0 0 0 0 0


 .

We have reduced the original system to an equivalent one:

z1
n+1 + (n + 3)z2

n+1 = δn1

−n(n + 1)(n + 3)z2
n+1 + z1

n + z2
n = −2δn1,

which can be rewritten in the form
(

1 n + 3
0 −n(n + 1)(n + 3)

)(
z1
n+1

z2
n+1

)
+

(
0 0
1 1

)(
z1
n

z2
n

)
=

(
δn1

−2δn1

)
. (30)

The largest nonnegative integer root of the determinant of the leading matrix is 0; in correspondence
with (14) it is sufficient to find

z1
0 , z2

0 , z1
1 , z2

1 , (31)

and all other elements of A0-solutions will be found by recurrence (30). The values (31) together with
z1
−1 = z2

−1 = 0 have to satisfy (30) when n = −1, 0; this gives the linear algebraic equations

z1
0 + 2z2

0 = 0, z1
1 + 3z2

1 = 0, z1
0 + z2

0 = 0. (32)
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We get z1
0 = z2

0 = 0, z1
1 = −3C, z2

1 = C where C is an arbitrary constant. Taking into account that for
n > 1 the right-hand side of (30) is zero, we consider the case n = 1 separately: z1

2 = C, z2
2 = 1−C

4 . Due
to (

1 n + 3
0 −n(n + 1)(n + 3)

)−1

=
( 1 1

n(n+1)

0 −1
n(n+1)(n+3)

)
,

we have for n = 2, 3, . . .
(

z1
n+1

z2
n+1

)
=

( −1
n(n+1)

−1
n(n+1)

1
n(n+1)(n+3)

1
n(n+1)(n+3)

) (
z1
n

z2
n

)
.

It is possible that the leading part after EGl-eliminations will have the non-triangular trapezoidal
form. Let the part have the size k × v, k < v. The unknowns zk+1, . . . , zv, in contrast to the case
of linear algebraic systems, cannot be taken arbitrary in the general situation. The obtained linear
algebraic equalities for the initial values (like equalities (32)) can keep the initial values of the sequences
zk+1, . . . , zv from being arbitrary.

Now the last remark of the section. Let b be in Av
0 in the original system. After the performance

of EGt-eliminations we can get the new right-hand side b̂ = (b̂1, . . . , b̂v)T, b̂ /∈ Av
0. But there exists a

negative integer k such that we have
n < k ⇒ b̂i

n = 0

for all i = 1, . . . , v. We can apply Ek to any equation of the new system. It gives a system whose
right-hand side is Ek b̂ = (Ek b̂1, . . . , Ek b̂v)T ∈ Av

0.

2.4 Three computing remarks

2.4.1 Ccancelling common factors from rows

When we perform EG-eliminations it is desirable to cancel common factors from the rows of the explicit
matrices P . But linear recurrences can lose solutions due to such cancelling. The simplest example is
the recurrence nzn = 0 of order zero. Its A0-solutions have the form

zn =
{

0, if n 6= 0
C, if n = 0,

where C is an arbitrary constant. After cancelling, the recurrence zn = 0 has only the zero solution.
From here on we will follow the principle that if the factor p(n) ∈ I with an integer root n0, n0 ≥ −l, was
cancelled from a recurrence and if we use the obtained recurrence with n = n0 then we have to assume
all the recurrence coefficients to be zero.

Working with the explicit matrix P we will store a finite set (possible empty) A of pairwise different
integers ≥ −l together with each of its rows. Such a row will be called a row with a removed factor. Let
us have two rows with removed factors:

A, (a1(n), a2(n), . . .), (33)

where a1(n) 6= 0, and
Ã, (ã1(n), ã2(n), . . .). (34)

Let in the row
(ã1(n), ã2(n), . . .) (35)

an entry (e.g., ã1(n)) be eliminated by the help of the row

(a1(n), a2(n), . . .). (36)

To do this the rows were multiplied by factors f(n), f̃(n) ∈ I such that f(n)a1(n) = −f̃(n)ã1(n), and
added together. Let the result be (0, ˜̃a2(n), ˜̃a3(n), . . .). This means that if elimination is performed in
the row (34) with the help of (33) then we will get

A ∪ Ã, (0, ˜̃a2(n), ˜̃a3(n), . . .),
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and new constraints can appear here. These constraints are generated by the recurrence corresponding
to the row (35) and by values n belonging to the set (A\ Ã)∪F , where F is the set of integer roots ≥ −l
of f(n) = 0.

Applying t1−, t1+ to (33) changes the row (a1(n), a2(n), . . .) in the usual way, while each of the
elements of the set A either increases (in the case t1−) or decreases (in the case t1+) by 1.

2.4.2 G-steps

Here we suppose the coefficient ring I to be equal to K[n] or K[qn] (see Example 1) and will call the
elements of I polynomials. One can eliminate elements of the explicit matrix by, e.g., the Bareiss’ method,
which gives an opportunity to factor out some polynomials from the matrix rows [11, 18]. But in the
version of the EG-method described above the choice of the eliminating row is based on its width, not
on the degree of its element in the corresponding column.

In fact the process of reducing the explicit matrix to the desired form (e.g., with a trapezoidal leading
matrix which has no zero row) can be organized by alternating EGl-steps (where one needs to consider
the width of the rows) with G-steps (i.e., usual Gaussian elimination steps where one does not need to
do that).

The process starts with a G-step. By Gaussian eliminations one transforms the explicit matrix P
(having v rows) to P ′ such that its leading part P ′l has the trapezoidal form, but its last rows can be
zero. Suppose that in P ′l the zero rows have numbers k + 1, . . . , v, k ≤ v. We assume these last rows are
not completely zero in the matrix P (otherwise one can drop these rows, decreasing v).

Then perform an EGl-step. Apply to each of the rows with numbers k +1, . . . , v transformation t1+

until a nonzero element appears in the leading part of the row. Then by EGl-eliminations (i.e., being
careful with the l-widths of the rows) get the matrix whose leading matrix is such that its rows with the
numbers 1, . . . , k make up again a trapezoidal form matrix while succeeding rows do not have nonzero
elements in the columns with the numbers 1, . . . , k + 1. If a row of this matrix is completely zero then
drop the row decreasing v. If a row of the matrix has zero leading part, then apply t1+ to the row and
EGl-eliminate all the elements of the row that have numbers 1, . . . , k + 1 and so on. By Theorem 1 this
leads to a matrix P ′′ whose leading part P ′′l is such that

1) the matrix P ′′l has no zero row;
2) the first k + 1 rows of P ′′l make up a matrix of the trapezoidal form;
3) if i ≥ k + 1 and j ≤ k + 1 then p′′ij(n) = 0.
Then again perform a G-step. One has to apply it to the rows with the numbers that are > k + 1.

By this strategy we increase the number of the rows of the trapezoidal part of the leading matrix. Then
again perform an EGl-step and so on.

We can extend some of the G-steps. Let’s mark the rows which have only zero elements in the
leading part after a G-step. If such a row was not marked before then after applying t1+ we use
Gaussian eliminations in its leading part (it is an extension of the G-step). But if the row has been
marked before then we use EG-eliminations. (This extension is optional.)

2.4.3 Sharpening the degree bound for A0-solutions

Now we return to finding an upper bound for the degree of A0-solutions of a recurrent system. If
the trailing part is triangular with nonzero diagonal entries from the outset then we consider integer
roots and use formula (13). But if the triangular form was obtained by a sequence of transformations
t1−, t2, t3 then it makes sense to invoke some additional reasoning. First some of the explicit matrix
rows can have removed factors, i.e., be of the form (33), (34), and so on. Then the elements of the set
A ∪ Ã ∪ . . . should be considered together with the integer roots of the determinant of the trailing part
of the explicit matrix. It gives us a set U = {u1, . . . , uτ}, u1 > u2 > · · · > uτ ≥ 0. Set n0 = −1 if U
is empty and n0 = u1 otherwise. Now formula (13) can be used. But the bound given by (13) can be
excessive. The reason is the following. Let U be nonempty. Then the substitution n = n0 = u1 into the
recurrent system transforms it into a system Sn0 of linear algebraic equations for z1

n0+t, . . . , z
m
n0+t. If the

rank of the system is < m then we cannot uniquely determine z1
n0+t, . . . , z

m
n0+t via z1, . . . , zm with larger

indices using Sn0 . Add to Sn0 the constraints that were obtained in the process of the transformation of
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the trailing part into the triangular form. This gives a linear algebraic system S′n0
. We substitute into

S′n0
zeros for all z1, . . . , zm with the indices > n0 + t. If the rank of the trailing part of the new system

S′′n0
is equal to m then u1 can be deleted from U . Then we can set n0 = u2 and so on until the moment

when we either exhaust all elements of U which are > max{deg b+ t,−1} or obtain a system whose rank
is < m. In the first two cases the original recurrent system has no A0-solution. In the third case we can
use (13) with n0 = uλ to find an upper bound.

Example 6
(n− 1)z1

n − z2
n−3 = 0

−2z1
n + (n− 2)z2

n−1 = 0.
(37)

The trailing part of the explicit matrix of the system
(

n− 1 0 0 0 0 0 0 −1
−2 0 0 n− 2 0 0 0 0

)

is equal to (
0 −1
0 0

)
.

Put the trailing part into triangular form by EGt-eliminations:
(

n− 1 0 0 0 0 0 0 −1
−2 0 0 n− 2 0 0 0 0

)
−→1

(
n− 1 0 0 0 0 0 0 −1

0 0 0 0 −2 0 0 n− 4

)
−→2

(
0 0 0 0 −2 0 0 n− 4

n− 1 0 0 0 0 0 0 −1

)
−→3

(
0 0 0 0 −2 0 0 n− 4

(n− 4)(n− 1) 0 0 0 0 0 0 −n + 4

)
−→4

(
0 0 0 0 −2 0 0 n− 4
0 0 (n− 5)(n− 2) 0 0 0 −2 0

)
.

The determinant of the trailing part vanishes when n = 4 and therefore U = {4}. But the step −→3 used
the multiplication of the second row by n − 4. This gives the constraint 3z1

4 − z2
1 = 0. We can add the

row (0 − 1) to the matrix (
0 n− 4
−2 0

)

n=4

.

It gives the matrix 


0 0
−2 0
0 −1




whose rank is equal to 2. We exclude the integer 4 from U . Now U is empty and formula (13) says that
(37) has no A0-solution of finite degree.

2.5 Right-hand sides in the form of sequences with nonnegative indices

To this point the assumption has been made that the right-hand sides bi are double-sided sequences:
bi = {bi

n}n∈Z ∈ A0, ν(bi) = −∞. Recurrent relations are supposed to be satisfied for all n ∈ Z (or at
least for almost all n as in the case (33)). In what follows we will consider the case ν(bi) = 0 as well. In
such a case transformation T1 (respectively transformations t1+, t1−) is not, in general, an equivalent
transformation: let a recurrence

Ri1z
1 + · · ·+ Rimzm = bi (38)

belonging to system (15) be satisfied for n ≥ 0 and let E be applied to (38). For the new system to
be equivalent to (15), the constraint which one gets after the substitution n = −1 into (38) must be
supplied (if the i-th row of the explicit matrix of the new system has the form (33) and −1 ∈ A then
replace A by A \ {−1}). Similarly, if E−1 was applied to (37) then there is a need to exclude the value
n = 0 for the new recurrence (if the i-th row of the explicit matrix of the new system has the form (33)
then replace A by A ∪ {0}) otherwise set A = {0} for the new row).

An approach to find an upper bound for the solution degree in the case where EGt-eliminations gave
the explicit matrix with the rows of the form (33) has been demonstrated in Section 2.4.3.
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3 Solving systems of linear functional equations

3.1 Compatible bases

The methods described in the previous sections can be used for the investigation of linear functional
equation systems and for finding their solutions in the form of polynomials and series. We mean in
particular systems of linear differential, difference and q-difference equations with polynomial coefficients
and solutions in the form of series in the bases such as

P = {xn}n≥0, (39)

C = {
(

x

n

)
}n≥0. (40)

We will use the general notion of the compatibility of an operator and a basis which was introduced in
[4, 8]. In this section we briefly outline the needed facts concerning this theory (see [4, 8] for details).

Denote by LK[x] the ring (the K-algebra) of linear operators L : K[x] → K[x]. Let B = {Jn(x)}n≥0

be a sequence of polynomials from K[x] such that

P1. deg Jn = n,

P2. Jn | Jm for 0 ≤ n < m.

From P1 it follows that {J0, J1, . . .} is a basis of K[x]. A basis B of K[x] satisfying P1, P2, and an
operator L ∈ LK[x] are compatible if there are nonnegative integers A,B, and elements αi,n ∈ K for
n ≥ 0 and −A ≤ i ≤ B, such that

LJn =
B∑

i=−A

αi,n Jn+i, (41)

with Jk = 0 when k < 0.
We fix a basis B = {Jn(x)}n≥0 of K[x] having properties P1, P2. Any such a basis is compatible

with multiplication by the independent variable.
If an operator L is compatible with B then L can be extended to K[[B]] i.e., to the space of formal

series of the form
c0J0(x) + c1J1(x) + · · · . (42)

Denote by LB the set of operators L compatible with B. This set is a ring. Any L ∈ LB induces a recurrent
operator RBL ∈ E , where E is the ring of the linear operators of the form (5), whose coefficients are
arbitrary functions pi(n) : Z → K. The operator RBL is such that if y, f ∈ K[[B]] and y has the form
(42) while f is a series

b0J0(x) + b1J1(x) + · · · , (43)

then Ly = f iff
RBL({cn}n∈Z) = {bn}n≥0,

where {cn}n∈Z is the sequence {cn}n≥0 extended by taking cn = 0 for all n < 0 (therefore {cn}n∈Z ∈ A0).
In this case the map

RB : LB → E
is a ring isomorphism.

Of the operators D,Ex, Q:

Dp(x) =
d

dx
p(x), Exp(x) = p(x + 1), Qp(x) = p(qx),

the first and the third are compatible with P while the second one is compatible with C (see (39), (40)).
Considering operator Q we assume K to be having a subfield K0 and an element q transcendental over K0

such that K = K0(q). Let’s consider the rings K[x,D], K[x,Ex] and K[x, Q] i.e, the rings of differential,
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difference and q-difference operators with polynomial coefficients. To describe transformation RP on
K[x,Q], it suffices to give it on the two generators Q and x. It can be shown that

RPQ = qn, RPx = E−1, (44)

and, resp.,
R−1
P qn = Q, R−1

P E−1 = x.

Therefore RP is an isomorphism K[x,Q] onto K[qn, E−1]. It is convenient pass from K[x,D] to
K[x, x−1, D] because RP is an isomorphism K[x, x−1, D] onto K[n,E,E−1]. The complete list of for-
mulas is the following:

RPx = E−1, RPx−1 = E, RPD = (n + 1)E,

R−1
P n = xD, R−1

P E = x−1, R−1
P E−1 = x.

It is easy to see that Q and D are not compatible with C. In turn Ex is not compatible with P but it is
compatible with C. We have

RCEx = E + 1, RCx = n(1 + E−1);

E−1
x and C are not compatible, but we can easily find R−1

C M ∈ K[x,Ex, E−1
x ] if M ∈ K[n,E], using

R−1
C E = Ex − 1, R−1

C n = x(1− E−1
x ).

3.2 Functional equations systems

The papers [4, 8] were devoted to the case of a scalar equation, i.e., to the case of a single equation
Ly = b with one unknown y. But similarly to the scalar case the following theorem can be easily proven

Theorem 2 Let L1, . . . , Lm ∈ LB and b, y1, . . . , yn ∈ K[[B]]. Let b be of the form (43) and

yi = zi
0J0(x) + zi

1J1(x) + · · · , (45)

i = 1, . . . , m. Then
L1y1 + · · ·+ Lmym = b (46)

iff
RBL1({z1

n}n∈Z) + · · ·+RBLm({zm
n }n∈Z) = {bn}n≥0, (47)

where {zi
n}n∈Z are the sequences {zi

n}n≥0 extended by taking zi
n = 0 for all n < 0 (therefore {zi

n}n∈Z ∈
A0, for i = 1, . . . , m).

The proof, similarly to the scalar case, is based on the observation that if L ∈ LB and yi =
∑∞

n=0 zi
njn ∈

K[[B]] then the equality

L

∞∑
n=0

zi
nJn =

∞∑
n=0

((RBL)zi)nJn

takes place.
The equivalence of (46) and (47) implies that if Lij ∈ LB ,

fi =
∞∑

n=0

bi
nJn, yj =

∞∑
n=0

zj
nJn,

i = 1, . . . , v, j = 1, . . . ,m, then




L11 . . . L1m
...

...
Lv1 . . . Lvm







y1

...
ym


 =




f1

...
fv


 , (48)
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iff 


R11 . . . R1m
...

...
Rv1 . . . Rvm







z1

...
zm


 =




b1

...
bv


 , (49)

where Rij = RBLij and zj = {zj
n}n∈Z, bi = {bi

n}n≥0, zj ∈ A0.
We reduce in this way the problem of solving a system of linear functional equations in the class of

series to the problem of solving a recurrent system. If we consider differential and difference operators
with coefficients from K[x] then we get recurrences with coefficients from I = K[n]. In turn q-difference
operators give recurrences with coefficients from I = K[qn].

We point out an essential distinction between the differential and q-difference cases on the one hand
and the difference case on the other. In the differential and q-difference cases we use the basis P to which
the negative powers of x can be added: J−1 = x−1, J−2 = x−2, . . . Correspondingly, the right-hand sides
of the original systems and solutions of the systems can be assumed to belong to the class of double-sided
power series of the form

· · ·+ z−2x
−2 + z−1x

−1 + z0 + z1x + z2x
2 + · · · (50)

This leads to the same recurrent systems of the form (49) but with ν(bj) = −∞, j = 1, . . . , v. The
recurrences of such systems are satisfied for all n ∈ Z (or for almost all if the rows of the explicit matrix
have the form (33)). Let bj , zj ∈ A0, j = 1, . . . , v. Apply E−1 to a recurrence of the system (or t1− to a
row of the explicit matrix). Then it is possible not to exclude the case n = 0 for the new recurrence (i.e.,
not to add n to A in (33)). The reason is that if we do not exclude it then we in fact add a constraint
to our system, but this constraint is necessarily true.

The simple example
y(x + 1)− y(x) = 0 (51)

shows that the difference case is not so nice. The recurrence for coefficients of a series

z0 + z1x + z2
x(x− 1)

2
+ · · ·

satisfying (51) is zn+1 = 0. This recurrence has to be satisfied for n = 0, 1, . . . The general solution is

zn =
{

C, if n = 0,
0, otherwise,

where C is an arbitrary constant. But we cannot consider the recurrence for all n because in such a case
we have only the identically zero solution.

3.3 Independence of equations

Lemma 4 If the recurrences corresponding to a linear differential, difference or q-difference system with
polynomial coefficients are dependent over EI (I = K[n] in the differential and difference cases and
I = K[qn] in the q-difference case) then the equations of the original system are dependent over, resp.,
K[x, x−1, D],K[x,Ex, E−1

x ] or K[x, Q].

Proof : trivial in the differential and q-difference cases since if (16) together with Rij = RPLij hold then
applying R−1

P to all Si we will obtain S̃i such that

S̃1 ◦ L1j + · · ·+ S̃v ◦ Lvj = 0, (52)

j = 1, . . . , m. In the difference case we deal with RC ; we know that R−1
C Si is not necessary a difference

operator because we can face with E with a negative exponent in Si. Let w be the lowest exponent of
E in S1, . . . , Sv. We obtain

E−w ◦ S1 ◦R1j + · · ·+ E−w ◦ Sv ◦R1v = 0,

17



j = 1, . . . , m. If we now set S̃i = R−1
C (E−w ◦ Si) (a difference operator) then we get (52). 2

We proved earlier Lemma 3 which claims that the equations of recurrent system (17) are independent
over EI . An analogous proposition can be proven for systems of the form

p1(x)y′1(x) = a11(x)y1(x) + · · ·+ a1m(x)ym(x) + b1(x)

· · · · · · · · · · · · (53)

pv(x)y′v(x) = av1(x)y1(x) + · · ·+ avm(x)ym(x) + bv(x),

p1(x)y1(x + 1) = a11(x)y1(x) + · · ·+ a1m(x)ym(x) + b1(x)

· · · · · · · · · · · · (54)

pv(x)yv(x + 1) = av1(x)y1(x) + · · ·+ avm(x)ym(x) + bv(x),

p1(x)y1(qx) = a11(x)y1(x) + · · ·+ a1m(x)ym(x) + b1(x)

· · · · · · · · · · · · (55)

pv(x)yv(qx) = av1(x)y1(x) + · · ·+ avm(x)ym(x) + bv(x),

where v ≤ m and p1, . . . , pv 6= 0, using the same approach as in Lemma 3 (where in differential and
q-difference cases ord must be used instead of ord ∗). We have therefore

Theorem 3 Let a linear recurrent, differential, difference or q-difference system of the first order with
polynomial coefficients be given. Let the system be in the canonical form, resp., (17), (53), (54) or (55).
Let the number of the equations in this system do not exceed the number of the unknowns. Then the
equations of the system are independent over, resp., EI , K[x, x−1, D], K[x,Ex, E−1

x ] or K[x,Q].

Theorem 3 and Lemma 4 show that if we apply EG-eliminations to solve a system of the form (53),
(54) or (55) then it is not possible to get zero rows in the explicit matrix; if additionally the number of
the equations in this system is equal to the number of the unknowns then we can find an upper bound
for the degrees of polynomial solutions of each of the systems. We can also construct all the polynomial
solutions and describe the set of all solutions in the form of series in the basis P (the differential and
q-difference case) or in the basis C (the difference case).

3.4 Laurent series; rational solutions of differential systems

Considering recurrent systems we discussed the existence of their solutions in A0. We can consider
together with A0 the classes A−1,A−2, . . . :

c ∈ Ak ⇔ (ci 6= 0 ⇒ i ≥ k),

k = 0,−1,−2, . . . (we have noted that in the differential and q-difference cases we can consider the
recurrences of system (49) for all n). It is obvious that A0 ⊂ A−1 ⊂ A−2 ⊂ · · ·. Set A≤0 = A0 ∪ A−1 ∪
A−2 ∪ . . . All constructive processes described above for A0 can be performed for A−1,A−2, . . . (but if
we deal with A−k and consider the integer roots of the determinant of the trailing part of the explicit
matrix then we have to take into account all the roots ≥ −k− l instead of the roots ≥ −l as in the case
of A0). The only question which must be previously answered is: let system (8) have the right-hand side
in Am

k , where k is a fixed non-positive integer; how to find a non-positive k0 such that if the system has
a solution in Am

≤0, then this solution is in Am
k0

? If the leading part of the explicit matrix of (8) is square
and non-singular then the question can be answered similarly to the question on the upper bound of the
degree of solution (considered in Section 2.1). Similarly to Lemma 1 the following lemma can be proven:
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Lemma 5 Let v = m in system (8) and the right-hand side of (8) is in As, s ≤ 0. Let p(n) = det Pl(n)
be a nonzero element of I. Let n1 be the lowest integer root of p(n) = 0 if such roots exist and n1 = 1
otherwise. Let c ∈ Am

≤0 be a solution of (8). Then c ∈ Am
k0

, where k0 ≥ min{n1 + l, s + l, 0}.
If the leading part of the explicit matrix is singular then we use EGl-eliminations to make it nonsin-

gular. We can use the approach described in 2.4.3 to compute a bound more accurately. Of course, we
have to deal with the leading part instead of the trailing one.

The basis P can be extended by negative powers of x, and the approach just mentioned can be applied
to search for Laurent series solutions of the differential and q-difference systems (near zero). The problem
of finding Laurent or Taylor series solutions near a fixed point a can be reduced in the differential case
to that at the point 0 by changing any operators

Lij = pijd(x)Dd + · · ·+ pij0(x)

of (16) by
La

ij = pijd(x + a)Dd + · · ·+ pij0(x + a) (56)

and, resp., taking fi(x + a) instead of fi(x) in the right-hand side, i = 1, . . . , v; j = 1, . . . ,m. It gives
in particular rational function solutions of a linear differential system with polynomial coefficients and
polynomial right-hand sides if we know all the singularities of the system. The set of the singularities of a
first order system written in the canonical form (53) is a subset of the set of the roots of the polynomials
p1(x), . . . , pv(x). For every of these roots we can find (as was explained above) an upper bound for
the order of the pole at this point. It allows one to obtain a common denominator U(x) of all rational
function solutions of the system. Then one can substitute

yi(x) =
ỹi(x)
U(x)

, (57)

i = 1, . . . , m, into (16) and find the polynomial solutions of the obtained system.

3.5 Rational solutions of difference and q-difference systems

The search for rational solutions of difference system has been considered in [3, 20]. As in the differential
case one can construct a universal denominator U(x) and then reduce the search to the problem of finding
polynomial solutions. The last problem can be solved using EGt-eliminations (in [3, 20] the usage of the
super-irreducible form of the given system was considered).

The methods [3, 20] are applicable to the q-difference case, excepting the situation where the de-
nominators of some of yi(x) are divisible by x, and, consequently, U(x) also has to be divisible by
x.

The general case was considered in [2], where the difference approach was combined with the search
for an upper bound for the pole order at x = 0. EGl-eliminations allow one to find such a bound.

3.6 Examples of correspondence of functional equation systems and recur-
rent systems

Those examples of recurrent systems that we considered above can be interpreted as corresponding to
linear systems of differential and difference equations with polynomial coefficients (in the differential case
the polynomial can be Laurentian).

Example 7 The recurrent system (26) corresponds to the differential system

y′1 = y1 + y2

y′2 = y1 + y2

and to the difference system

xy1(x + 1)− (2x + 1)y1(x)− y2(x) + xy1(x− 1) = 0
xy2(x + 1)− y1(x)− (2x + 1)y2(x) + xy2(x− 1) = 0.
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The reasoning given in Example 3 shows that the polynomial solutions of these systems are y1(x) =
−y2(x) = C, where C is an arbitrary constant. Note that in the difference case we have to pay attention
to transformation −→2 in Example 3. It is transformation t1− and the value n = 0 should be considered
as a candidate for the solution degree. But the determinant of the trailing part of the matrix after
transformation −→3 has the root 0 and therefore this value is already under consideration as a possible
solution degree.

In a similar manner, the recurrent systems in Examples 4 and 5 can be considered as corresponding
to some differential and difference systems. The correspondence to difference systems is possible since
these systems can be written without the operator E with a negative exponent.

Example 8 The recurrent system considered in Example 6 uses E−1 and E−3. We can consider it
as corresponding to the differential system

xy′1 − y1 − x3y2 = 0
x2y′2 − 2y1 − xy2 = 0.

(58)

This system was considered by M.A.Barkatou [13] and was reduced to the super-irreducible form
(this form is convenient, e.g., for recognizing existence of polynomial solutions) by a special change of
independent variables y1, y2. In Example 6 we established the non-existence of polynomial solutions by
EGt-eliminations. When looking for power series solutions of (58) one can use the EGl-eliminations and
transform the leading part of the explicit matrix to the triangular form:

(
n− 1 0 0 0 0 0 0 −1
−2 0 0 n− 2 0 0 0 0

)
−→

( −2 0 0 n− 2 0 0 0 0
n− 1 0 0 0 0 0 0 −1

)
−→

(−2 0 0 n− 2 0 0 0 0
0 0 0 (n− 1)(n− 2) 0 0 0 −2

)
−→

(−2 0 0 n− 2 0 0 0 0
0 n(n− 1) 0 0 0 −2 0 0

)
.

Using the obtained matrix we can write down the recurrent system in the form
(−2 0

0 n(n− 1)

)(
z1
n

z2
n

)
+

(
0 n− 2
0 0

)(
z1
n−1

z2
n−1

)
+

(
0 0
0 −2

) (
z1
n−2

z2
n−2

)
=

(
0
0

)
. (59)

The largest integer root of the determinant of the leading part of the explicit matrix is equal to 1, it is
sufficient to find z1

0 , z2
0 , z1

1 , z2
1 . The substitution z1

−2 = z2
−2 = z1

−1 = z2
−1 = 0 into (59) with n = 0, 1 gives

−2z1
0 = 0, −2z1

1 = z2
0 . Therefore z1

1 , z2
1 can be taken arbitrary, while z1

0 = 0, z2
0 = 2z1

1 . The successive
coefficients of the series

y1 = z1
0 + z1

1x + z1
2x2 + · · · , y2 = z2

0 + z2
1x + z2

2x2 + · · ·
can be computed by (59). Due to

(−2 0
0 n(n− 1)

)−1

=
(− 1

2 0
0 1

n(n−1)

)

we have the formula
(

z1
n

z2
n

)
=

(
0 n−2

2
0 0

)(
z1
n−1

z2
n−1

)
+

(
0 0
0 2

n(n−1)

) (
z1
n−2

z2
n−2

)

or
z1
n =

n− 2
2

z2
n−1, z2

n =
2

n(n− 1)
z2
n−2

for n = 2, 3, . . .
Example 9 Consider now the q-difference system

qxG0(q3x) = G0(x)−G1(x)
qx2G1(q3x) = G1(x)−G2(x)
qx3G3(q3x) = G2(x)−G3(x)
G0(q3x) = G3(x).

(60)
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which was originally considered in [10] in connection with a partitions theory problem. The rewriting of
the system in the operator form (48) leads to




qxQ3 − 1 1 0 0
0 qx2Q3 − 1 1 0
0 0 −1 qx3Q3 + 1

Q3 0 0 −1







G0

G1

G2

G3


 =




0
0
0
0


 .

Applying RP to the operator matrix gives



q3n−2E−1 − 1 1 0 0
0 q3n−5E−2 − 1 1 0
0 0 −1 q3n−8E−3 + 1

q3n 0 0 −1


 .

The explicit matrix is


−1 1 0 0 q3n−2 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 q3n−5 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 q3n−8

q3n 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0


 . (61)

Let’s investigate the existence of polynomial solutions of this system. The determinant of the trailing
part of (61) is zero. EGt-eliminations give us




0 0 0 0 0 0 0 0 0 0 0 0 q3n−9 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −q3n−9 1 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 q 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 q3n−8




The determinant of the trailing part of the last matrix is −q9n−25. The equation q9n−25 = 0 has no
integer root. Therefore the system (60) has no polynomial solution. Observe that the determinant of
the leading part of (61) is 1 − q3n with integer root n = 0. This and the equalities l = 0, t = −2 show
that (60) has a power series solution. This solution is unique up to a constant factor since the rank of
the leading part of (61) is equal to 3 when n = 0. This solution was found in a different way (by using
the “right” substitution) in [10].

Example 10 Now we construct all rational solutions of the differential system:

(x2 − 100)y′1 + 4xy1 + 2y2 = 0
y′2 − y1 = 0 (62)

with singularities −10, 10. This system transformed by means of (56) with a = −10 looks like the
following:

(x2 − 20x)y′1 + (4x− 40)y1 + 2y2 = 0
y′2 − y1 = 0.

The corresponding recurrent system has the explicit matrix
(

0 0 −20 n− 40 2 n + 3 0
0 n + 1 −1 0 0 0

)

with l = 1, t = −1. EGl-eliminations give
(

0 n + 1 −1 0 0 0
−20 n− 60 2 n + 4 0 0 0

)
.

The equation (n + 1)(−20n − 60) = 0 has roots −3,−1, and since −3 + l = −3 + 1 = −2 the order of
the solution pole at a = −10 is bounded by 2.
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Analogously the same bound can be obtained in the case a = 10. We have the common denominator
U(x) = (x−10)2(x+10)2 for all rational solutions of (62). Substitution (57) gives the differential system

(x2 − 100)ỹ′1 + 2ỹ2 = 0
(x2 − 100)ỹ′2 + (x2 − 100)ỹ1 − 4xỹ2 = 0.

(63)

The corresponding recurrent system has the explicit matrix
( −100 n− 100 0 0 2 n− 1 0 0 0

0 −100 n− 100 100 0 0 n− 5 −1 0

)

with l = 1, t = −2. EGt-eliminations give
(

0 0 −100 n 0 0 2 n− 2 0
0 0 0 100 (n− 3)n 200 0 0 −n2 + 9n− 20

)

with the additional constraint in the case n = 2:

−300z2
3 + 100z1

2 − 3z2
1 − z1

0 = 0.

The equation (−n2 + 9n− 20)(n− 2) = 0 has the roots 2, 4, 5. So the degree of any polynomial solution
of the system is bounded by 5 + t = 5 + (−2) = 3.

The original explicit matrix of the system has the leading part already in the triangular form and
could be used for computing coefficients of the polynomial solutions. It leads to the following general
polynomial solution of (63):

[
− C1

100
x3 − C2

2
x2 + C1x + 50C2,

C1

100
x2 + C2x + C1

]
,

and correspondingly to the following general rational solution of (62):
[
− 1

100
C1x + 50C2

(x + 10) (x− 10)
,

1
100

C1x
2 + 100C2x + 100C1

(x− 10)2 (x + 10)2

]

where C1 and C2 are arbitrary constants.

4 Shifts of unknown sequences in recurrent systems

Let the i-th column of the leading matrix of a linear recurrent system (8) be zero, 1 ≤ i ≤ m. Then one
can substitute zi = Ez̃i without increasing l or decreasing t in the system. Similarly if the i-th column
of the trailing matrix of the system is zero then one can substitute zi = E−1z̃i. Going back to Example
6 we see that it is possible to set instantaneously z1 = E−3z̃1 (thus z1

n = z̃1
n−3). The system (37) will be

rewritten in the form
(n− 1)z̃1

n−3 − z2
n−3 = 0

−2z̃1
n−3 + (n− 2)z2

n−1 = 0,

and the explicit matrix will be equal to
(

0 0 0 0 n− 1 −1
0 n− 2 0 0 −2 0

)
,

l = −1, t = −3. The determinant of the trailing part of the explicit matrix is equal to −2. In particular
this means that the original system has no polynomial solutions.

Now consider the leading part of the explicit matrix of system (37). After substitution z2 = Ez̃2,
i.e., z2

n = z̃2
n+1, the system (37) will be rewritten in the form

(n− 1)z1
n − z̃2

n−2 = 0
−2z1

n + (n− 2)z̃2
n = 0,
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and the explicit matrix will be equal to
(

n− 1 0 0 0 0 −1
−2 n− 2 0 0 0 0

)
,

l = 0, t = −2. The leading part of the explicit matrix is a non-singular matrix.
Certainly such transformations of the explicit matrix can be done without rewriting the original

system.
In the examples given in this section we did not use EG-eliminations at all. In general, the combi-

nation of shifts and EG-eliminations seems to be useful.
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