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Abstract

The transformation which assigns to a linear operator L the recurrence
satisfied by coefficient sequences of the polynomial series in its kernel, is
shown to be an isomorphism of the corresponding operator algebras. We
use this fact to help factoring q-difference and recurrence operators, and
to find “nice” power series solutions of linear differential equations.

In particular, we characterize generalized hypergeometric series that
solve a linear differential equation with polynomial coefficients at an ordi-
nary point of the equation, and show that these solutions remain hyper-
geometric at any other ordinary point. Therefore to find all generalized
hypergeometric series solutions, it suffices to look at a finite number of
points: all the singular points, and a single, arbitrarily chosen ordinary
point.

We also show that at a point x = a we can have power series solutions
with:
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• polynomial coefficient sequence – only if the equation is singular at
a + 1,

• non-polynomial rational coefficient sequence – only if the equation
is singular at a.

1 Introduction and notation

The method of solving linear differential equations by means of power series has
been known for centuries. Here we look at formal series that are based on other
polynomial sequences besides the powers, and show how they can be used to
reduce questions about operators of different types (e.g., differential, difference,
q-difference) to questions about operators of a single type, namely recurrence
operators.

We consider a transformation RB which assigns to a linear operator L acting
on the polynomial algebra K[x] its induced recurrence operator RBL. The
transformation is defined in Section 2. We show that RB is an isomorphism
of the corresponding operator algebras. This result is applied in Sections 3,
4, and 5 to the cases of q-difference, recurrence, and differential operators. In
particular, we show how transformation RB can help factor these operators.
This is important because although general factorization algorithms are known
[8], they are still highly impractical.

Subsections 5.1, 5.2, and 5.3 are devoted to the search for “nice” power
series solutions in the differential case. We are interested in series with coef-
ficients which are polynomial, rational, or hypergeometric in their subscript,
respectively.

Call a sequence (cn)∞n=0 hypergeometric if there is a rational function R(x)
such that cn+1 = R(n)cn for all large enough n. If cn is hypergeometric and even-
tually nonzero then R(x) is uniquely determined and we call it the consecutive-
term ratio of cn. Obviously, a rational sequence is hypergeometric, and the
product of hypergeometric sequences is hypergeometric.

Two hypergeometric sequences an and bn are similar if there is a rational
function r(x) such that an = r(n)bn for all large enough n. A linear combination
of pairwise similar hypergeometric terms is obviously hypergeometric. Also, if
an is hypergeometric and k a fixed integer, then an+k is similar to an.

A formal power series y =
∑∞
n=0 cnx

n is called a (generalized) hypergeometric
series if the sequence of coefficients (cn)∞n=0 is hypergeometric.

Lemma 1 Let y =
∑∞
n=0 cnx

n be a hypergeometric series, and p(x) a polyno-
mial. Then p(x)y is a hypergeometric series.

Proof: Let p(x) =
∑d
k=0 ukx

k and p(x)y =
∑∞
n=0 bnx

n. Then

p(x)y =
d∑
k=0

∞∑
n=0

cnukx
n+k =

∞∑
n=0

xn
min{n,d}∑
k=0

ukcn−k,
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so bn =
∑d
k=0 ukcn−k for n ≥ d. This is a linear combination of pairwise similar

hypergeometric terms, hence it is hypergeometric. 2

Following [9], we denote the rising and falling factorial powers by

xn =
n−1∏
k=0

(x+ k), xn =
n−1∏
k=0

(x− k),

respectively.
We use IN to denote the set of nonnegative integers. Throughout the paper,

K denotes an arbitrary field of characteristic zero. We denote by E the shift
operator on polynomials and rational functions over K, so that Er(x) = r(x+1),
for any r ∈ K(x). Similarly, we denote by En the shift operator on sequences
over K, so that Enan = an+1 for any sequence 〈an〉∞n=0 or 〈an〉n∈ZZ.

A preliminary version of this paper appeared as [5].

2 Compatible bases and transformation RB
Let K be a field of characteristic zero. Denote by K[x] the K-algebra of uni-
variate polynomials over K, and by LK[x] the K-algebra of linear operators
L : K[x] → K[x]. Further let B = 〈Pn(x)〉∞n=0 be a sequence of polynomials
from K[x] such that

P1. degPn = n for n ≥ 0,

P2. Pn |Pm for 0 ≤ n < m.

From P1 it follows that {P0, P1, . . .} is a basis of K[x].

Definition 1 A basis B of K[x] satisfying P1, P2, and an operator L ∈ LK[x]

are compatible if there are A,B ∈ IN, and elements αi,n ∈ K for n ≥ 0 and
−A ≤ i ≤ B, such that

LPn =
B∑

i=−A
αi,n Pn+i, (1)

with Pk = 0 when k < 0. 2

In other words, L is compatible with B if the infinite matrix [αi−n,n]i,n∈IN
corresponding to L in basis B is band-diagonal.

Example 1 Let Dp(x) = p′(x) and Ep(x) = p(x + 1). Let P = 〈Pn(x)〉∞n=0 =
〈xn〉∞n=0 be the power basis. Then DPn = nPn−1 and EPn =

∑n
k=0

(
n
k

)
Pk, so P

is compatible with D (take A = 1, B = 0, α−1,n = n, α0,n = 0), but not with
E.

On the other hand, let C = 〈Pn(x)〉∞n=0 = 〈
(
x
n

)
〉∞n=0 be the binomial coefficient

basis. Then EPn = Pn + Pn−1 and DPn =
∑n−1
k=0(−1)n+k/(k − n)Pk, so C is

compatible with E (take A = 1, B = 0, α−1,n = α0,n = 1), but not with D.
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Now let Lp(x) = xp(x), and take any basis B = 〈Pn(x)〉∞n=0 which satisfies
P1 and P2. Then LPn =

∑n+1
k=0 ak(n)Pk for some constants ak(n) ∈ K. Be-

cause of P2,
∑n−1
k=0 ak(n)Pk is divisible by Pn. Being a polynomial of degree at

most n − 1, it must vanish, therefore LPn = an+1(n)Pn+1 + an(n)Pn. So any
basis B satisfying P1, P2 is compatible with multiplication by the independent
variable (take A = 0, B = 1, α0,n = an(n), α1,n = an+1(n)). 2

Let ln : K[x] → K be linear functionals such that ln(Pm) = δmn. Property
P2 implies that ln(PkPm) = 0 when n < max{k,m}. Therefore K[x] naturally
embeds into the algebra K[[B]] of formal series of the form

y =
∞∑
n=0

cnPn(x) (cn ∈ K), (2)

with multiplication defined by( ∞∑
n=0

cnPn(x)

)( ∞∑
n=0

dnPn(x)

)
=

( ∞∑
n=0

enPn(x)

)
where

en =
∑

max{j,k}≤n≤j+k

cjdk ln(PjPk).

If B and L are compatible then L can be extended to K[[B]] by setting

L

∞∑
n=0

cnPn(x) =
∞∑
n=0

B∑
i=−A

αi,n−icn−iPn(x) =
∞∑
n=0

A∑
i=−B

α−i,n+icn+iPn(x) (3)

with A,B and αi,n as in (1), and cn = 0 when n < 0. Clearly, a formal series
y ∈ K[[B]] satisfies Ly = 0 if and only if its coefficient sequence c = 〈cn〉n∈ZZ

satisfies the recurrence
A∑

i=−B
α−i,n+icn+i = 0 (n ≥ 0) (4)

where, again, cn = 0 when n < 0. Thus relative to the basis B, any operator L
compatible with B induces a recurrence operator

RBL =
A∑

i=−B
α−i,n+iE

i
n (5)

where En is the shift operator w.r.t. n (Ekncn = cn+k for k ∈ ZZ).

Example 2 Using (5) and Example 1 we find that

RPD = (n+ 1)En,
RCE = En + 1.
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Also, since x · xn = xn+1 and x ·
(
x
n

)
= (n+ 1)

(
x
n+1

)
+ n

(
x
n

)
, we find that

RPx = E−1
n ,

RCx = n(E−1
n + 1). 2

Now fix a basis B = 〈Pn(x)〉∞n=0 of K[x] having properties P1, P2, and
denote by LB the set of operators L ∈ LK[x] compatible with B.

Proposition 1 Let σ : K[[B]] → KZZ be the mapping assigning to the formal
series y =

∑∞
n=0 cnPn its coefficient sequence c = 〈cn〉n∈ZZ extended by taking

cn = 0 whenever n < 0. Then for any L ∈ LB,

σ Ly = (RBL)σy.

In other words, the following diagram commutes:

K[[B]] L−→ K[[B]]

σ ↓ ↓ σ

KZZ RBL−→ KZZ.

Proof: Let y =
∑∞
n=0 cnPn(x). Then σ Ly =

〈∑A
i=−B α−i,n+icn+i

〉
n∈ZZ

=〈∑B
i=−A αi,n−icn−i

〉
n∈ZZ

= (RBL)σy. Here the first and last equalities follow

from (5) and (3), respectively. 2

Corollary 1 For L ∈ LB and y =
∑∞
n=0 cnPn ∈ K[[B]], we have

L
∑∞
n=0 cnPn =

∑∞
n=0((RBL)c)nPn.

Proof: L
∑∞
n=0 cnPn = Ly =

∑∞
n=0 σ(Ly)nPn =

∑∞
n=0((RBL)σy)nPn =∑∞

n=0((RBL)c)nPn. 2

Proposition 2 LB is a K-algebra.

Proof: Let λ1, λ2 ∈ K, L1, L2 ∈ LB, and

L1Pn =
B1∑

i=−A1

αi,nPn+i, L2Pn =
B2∑

j=−A2

βj,nPn+j . (6)

Then λ1L1 + λ2L2 is clearly compatible with B (take A = max{A1, A2}, B =
max{B1, B2}), hence it belongs to LB. Also,

(L2L1)Pn =
B1∑

i=−A1

αi,nL2Pn+i =
B1∑

i=−A1

B2∑
j=−A2

αi,nβj,n+iPn+i+j =
B1+B2∑

k=−A1−A2

γk,nPn+k

(7)
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where
γk,n =

∑
i

αi,nβk−i,n+i. (8)

Here αi,n and βj,n are considered zero, unless −A1 ≤ i ≤ B1 and −A2 ≤ j ≤ B2.
So L2L1 is compatible with B (take A = A1 + A2 and B = B1 + B2). Hence
L2L1 ∈ LB. 2

Definition 2 E denotes the K-algebra of recurrence operators of the form

M =
r∑

i=−s
ai(n)Ein (9)

with r, s ∈ IN and ai : ZZ → K for −s ≤ i ≤ r. We regard these operators as
acting on the K-algebra of two-way infinite sequences KZZ. 2

Theorem 1 The transformation

RB : LB → E

defined in (5), is an isomorphism of K-algebras.

Proof: First we show that RB is a K-algebra homomorphism. Clearly
RB(λ1L1 + λ2L2) = λ1RBL1 + λ2RBL2. Using (5), (7) and (8) we find that

RB(L2L1) =
A1+A2∑

k=−B1−B2

γ−k,n+kE
k
n =

∑
i,k

αi,n+kβ−k−i,n+k+iE
k
n. (10)

On the other hand, using (5) and (6),

(RBL2)(RBL1) =

 B2∑
j=−A2

β−j,n+jE
j
n

( B1∑
i=−A1

α−i,n+iE
i
n

)

=
∑
i,j

β−j,n+jα−i,n+i+jE
i+j
n =

∑
i,k

α−i,n+kβi−k,n+k−iE
k
n

which turns into (10) after replacing i by −i. Hence RB(L2L1) =
(RBL2)(RBL1).

Consider the mapping SB : E → LB defined as follows. For M ∈ E as given
in (9), let SBM = L ∈ LB where

LPn =
s∑

i=−r
a−i(n+ i)Pn+i (n ≥ 0), (11)

with Pk = 0 for k < 0. It is easy to see that SB is the inverse of RB. This
proves that RB is one-to-one and onto, and hence a K-algebra isomorphism. 2

In the next three sections, we apply these results to the cases of q-difference,
recurrence, and differential operators, respectively.
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3 q-Difference operators

Let q ∈ K \ {0} be such that qn 6= 1 for all n ∈ IN \ {0}. Define Q ∈ LK[x] by
Qp(x) = p(qx), and consider operators of the form

L =
r∑

k=0

pk(x)Qk (12)

where r ∈ IN, pk ∈ K[x], and pr 6= 0. They form the skew polynomial algebra
K[x,Q] with commutation rule Qx = qxQ. As Qxn = qnxn, operator Q is
compatible with the power basis P = 〈xn〉∞n=0 (take A = B = 0, α0,n = qn).
To describe transformation RP on K[x,Q], it suffices to give it on the two
generators Q and x. Using (5) we have

RP : Q 7→ qn (termwise multiplication by qn),
x 7→ E−1

n (back-one shift).

Thus RP maps K[x,Q] into K[qn, E−1
n ]. For symmetry, write x = qn. Then

Enq
n = qn+1 = qx = Qx. As the coefficients of RPL do not depend on n

directly but only on qn, the transformation qn 7→ x, En 7→ Q embeds RPL into
K[x,Q,Q−1]. Now extend RP to a mapping of the skew Laurent-polynomial
algebra K[x, x−1, Q,Q−1] into itself by

RP : Q 7→ x, Q−1 7→ x−1,

x 7→ Q−1, x−1 7→ Q.

In four steps

RP : Q 7→ x 7→ Q−1 7→ x−1 7→ Q,

x 7→ Q−1 7→ x−1 7→ Q 7→ x,

we are back to where we started, soRP is an automorphism of K[x, x−1, Q,Q−1]
of order 4.

Write L ∈ K[x, x−1, Q,Q−1] \ {0} as

L =
∑
i,k

ci,k x
iQk. (13)

Then
RPL =

∑
i,k

ci,kQ
−ixk =

∑
i,k

ci,kq
−ikxkQ−i =

∑
i,k

c̃i,kx
iQk (14)

where c̃i,k = c−k,iq
ik. From (14) we see that for q-difference operators of the

form (13) transformation RP has a simple geometric description. Apart from
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multiplication by certain powers of q, it corresponds to counter-clockwise rota-
tion of the coefficient array ci,k around c0,0 by 90◦:

ci,k . . . Q−1 Q0 Q1 . . .
...

...
...

...
x−1 . . . c−1,−1 c−1,0 c−1,1 . . .
x0 . . . c0,−1 c0,0 c0,1 . . .
x1 . . . c1,−1 c1,0 c1,1 . . .
...

...
...

...

RP−→

c̃i,k . . . Q−1 Q0 Q1 . . .
...

...
...

...
x−1 . . . c−1,1q c0,1 c1,1q

−1 . . .
x0 . . . c−1,0 c0,0 c1,0 . . .
x1 . . . c−1,−1q

−1 c0,−1 c1,−1q . . .
...

...
...

...

Definition 3 The effective order of L is

ρ(L) = max{k ∈ ZZ; ci,k 6= 0 for some i} −min{k ∈ ZZ; ci,k 6= 0 for some i},

and the effective degree of L is

δ(L) = max{i ∈ ZZ; ci,k 6= 0 for some k} −min{i ∈ ZZ; ci,k 6= 0 for some k}.

2

Obviously, ρ(RPL) = δ(L) and δ(RPL) = ρ(L).

The fact that RP is an automorphism of K[x, x−1, Q,Q−1] can be ex-
ploited to find factors of degree 0 and 1 (and any order) for operators in
K[x, x−1, Q,Q−1].

Proposition 3 A q-difference operator L ∈ K[x, x−1, Q,Q−1] has a non-trivial
left (resp. right) factor L1 ∈ K[x, x−1, Q,Q−1] of effective degree d, if and only
if the induced operator RPL has a non-trivial left (resp. right) factor M1 ∈
K[x, x−1, Q,Q−1] of effective order d.

Proof: If L = L1L2 with δ(L1) = d then RPL = (RPL1)(RPL2) and
ρ(RPL1) = δ(L1) = d. Conversely, if RPL = M1M2 with ρ(M1) = d then
L = (R−1

P M1)(R−1
P M2) and δ(R−1

P M1) = ρ(RP(R−1
P M1)) = ρ(M1) = d. For

right factors the proof is analogous. 2

To find factors of L of effective degree 0, find factors of RPL of effective
order 0. Write RPL = x−aMQ−b where M =

∑r
k=0 pk(x)Qk and pk(x) are

polynomials. For left factors of effective order 0, compute gcd0≤k≤r pk(x). For
right factors of effective order 0, compute gcd0≤k≤r pk(q−kx).

Example 3 Let

L1 = Q2 − (qx2 + 1)Q+ qx2, L2 = Q2 − (q3x2 + 1)Q+ qx2.

Then

RPL1 = x2−(qQ−2 +1)x+qQ−2 = (x2−x)−qQ−2(x−1) = (x−qQ−2)(x−1),
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RPL2 = x2−(q3Q−2+1)x+qQ−2 = (x2−x)−q(x−1)Q−2 = (x−1)(x−qQ−2),

giving factorizations

L1 = (Q− qx2)(Q− 1), L2 = (Q− 1)(Q− qx2).

2

To find factors of L of effective degree 1, find factors of RPL of effective
order 1 using algorithm qHyper of [4].

4 Recurrence operators

Let E ∈ LK[x] be defined by Ep(x) = p(x + 1), and consider operators of the
form

L =
r∑

k=0

pk(x)Ek (15)

where r ∈ IN, pk ∈ K[x], and pr 6= 0. They form the skew polynomial algebra
K[x,E] with commutation rule Ex = (x + 1)E. As noted in Example 1, the
operator E, and hence every operator from K[x,E], is compatible with the
binomial coefficient basis C = 〈

(
x
n

)
〉∞n=0. To describe RC on K[x,E], it suffices

to give it on the two generators E and x. Using (5) we have

RC : E 7→ En + 1,
x 7→ n(1 + E−1

n ).

Thus RC maps K[x,E] into K[n,En, E−1
n ]. To compute R−1

C on RC(K[x,E]),
write L ∈ K[x,E] as

L =
∑
i,k

ci,k

(
x

i

)
Ek. (16)

Note that
(
x
i

)
E−iPn(x) =

(
x
i

)(
x−i
n

)
=
(
n+i
i

)(
x
n+i

)
=
(
n+i
i

)
Pn+i(x), which to-

gether with (5) gives

RC :
(
x

i

)
E−i 7→

(
n

i

)
E−in .

As RCEi = (En + 1)i, we have RC :
(
x
i

)
7→
(
n
i

)
(1 + E−1

n )i, therefore

RCL =
∑
i,k

ci,k

(
n

i

)
(1 + E−1

n )i(1 + En)k =
∑
i

(
n

i

)
(1 + E−1

n )iri(En)

where ri(En) =
∑
k ci,k(1 + En)k. So, if M ∈ E and M =

∑
i

(
n
i

)
(1 +

E−1
n )iri(En), then R−1

C M =
∑
i

(
x
i

)
ri(E − 1).

For symmetry, we could identify x with n and E with En. However, we
cannot extend RC to K[x,E,E−1] because E−1 is not compatible with C:
E−1

(
x
n

)
=
(
x−1
n

)
=
∑n
k=0(−1)n−k

(
x
k

)
.
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It may happen that factoring RCL ∈ K[n,En, E−1
n ] ⊂ E is easier than

factoring L ∈ K[x,E]. If RCL = M2M1 then L = L2L1 (where Li = R−1
C Mi,

for i = 1, 2) is a factorization of L in LC . But K[n,En, E−1
n ] is larger than

RC(K[x,E]), so L1, L2 will not necessarily belong to K[x,E]. In fact, they
need not even belong to K[x,E,E−1].

Example 4 Let L = R−1
C E−1

n . Then, using (11), we have LPn = Pn+1. As∑x−1
k=0 Pn(k) = Pn+1(x), we see that L acts as the summation operator Lp(x) =∑x−1
k=0 p(k). Also, (E − 1)LPn = (E − 1)Pn+1 = Pn, so (E − 1)L − 1 acts

as the zero operator on K[x]. If L ∈ K[x,E,E−1] then it is not hard to see
that (E − 1)L − 1 ∈ K[x,E,E−1] \ {0}, and, consequently, that its kernel is
finite-dimensional. Therefore L /∈ K[x,E,E−1]. 2

When L1, L2 do belong to K[x,E,E−1], we can factor L for the cost of
factoring RCL. In this case the following formulæ are useful to compute the
inverse transformation:

R−1
C : En 7→ E − 1,

n 7→ x(1− E−1),(
n

i

)
E−in 7→

(
x

i

)
E−i.

Example 5 Let L = (x + 4)E4 − (7x + 24)E3 − (x2 − 8x − 28)E2 + (6x2 +
10x − 1)E − 5(x + 1)2. Algorithm Hyper of [10] shows that L has no right or
left first-order factors in K(x)[E] where K is any field of characteristic 0, so
the full factorization algorithm of [8] needs to be used to check for existence of
second-order factors. Instead, we compute here the induced recurrence operator

RCL = (n+4)E4
n−(2n+8)E3

n−(n2+10n+20)E2
n+(2n2+3n−1)En+(7n2+8n+2)+2n(2n−1)E−1

n ,

for which Hyper finds the factorization

En(RCL) = M2M1

where M2 = E4
n+2E3

n− (n+1)E2
n− (2n+3)En− (n+1) and M1 = (n+1)En−

2(2n+ 1). Thus
L = R−1

C (E−1
n M2)R−1

C M1.

Luckily, both R−1
C (E−1

n M2) and R−1
C M1 belong to K[x,E,E−1], namely

R−1
C (E−1

n M2) = E3 − E2 − (x+ 1)E = (E2 − E − (x+ 1))E,
R−1
C M1 = (x+ 1)E − 3(2x+ 1) + 5xE−1,

so we have found a factorization L = L2L1 where

L2 = E2 − E − (x+ 1), L1 = (x+ 2)E2 − 3(2x+ 3)E + 5(x+ 1). 2
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5 Differential operators

Let D ∈ LK[x] be defined by Dp(x) = d
dxp(x), and consider operators of the

form

L =
r∑

k=0

pk(x)Dk (17)

where r ∈ IN, pk ∈ K[x], and pr 6= 0. They form the Weyl algebra K[x,D]
with commutation rule Dx = 1 + xD. As noted in Example 1, the operator
D, and hence every operator from K[x,D], is compatible with the power basis
P = 〈xn〉∞n=0. To describe RP on K[x,D], it suffices to give it on the two
generators D and x. Using (5) we have

RP : D 7→ (n+ 1)En, (18)
x 7→ E−1

n .

For symmetry, we extend RP to the skew Laurent-polynomial ring K[x, x−1, D]
by letting RPxk = E−kn , for all k ∈ ZZ. Then RP becomes an isomorphism of
K[x, x−1, D] onto K[n,En, E−1

n ], the inverse being given by

R−1
P : n 7→ xD,

Ekn 7→ x−k, for k ∈ ZZ.

Example 6 Let ϑ = xD. Then RPϑ = E−1
n (n + 1)En = n, hence for any

polynomial p ∈ K[x] we have RP : p(ϑ) 7→ p(n). Therefore

p(ϑ)
∞∑
n=0

cnx
n =

∞∑
n=0

p(n)cnxn, (19)

by Corollary 1. 2

In the rest of the section we consider the problem of finding “nice” power
series solutions of linear differential equations. Note that for any a ∈ K, the
shifted power basis Pa = 〈(x − a)n〉∞n=0 is also compatible with operators from
K[x,D]. If

y =
∞∑
n=0

cnx
n ∈ K[[P]] (20)

is a formal series in basis P, then for any a ∈ K we denote by ya the corre-
sponding formal series having identical coefficients as y, but in basis Pa:

ya =
∞∑
n=0

cn(x− a)n ∈ K[[Pa]]. (21)

Our goal is to find all a ∈ K and all formal power series which satisfy Lya = 0,
and whose coefficients cn have a “nice” explicit representation in terms of n.
Let

La =
r∑

k=0

pk(x+ a)Dk. (22)

The following lemma allows us to consider only the basis P0 = P.

11



Lemma 2 Let L, ya, La, and y be as in (17), (21), (22), and (20), respectively.
Then Lya = 0 if and only if Lay = 0.

Proof: Write qi(x) = pi(x+ a). Then

L (x− a)n =
∑
i

nipi(x)(x− a)n−i =
∑
i

niqi(x− a)(x− a)n−i

and
Lax

n =
∑
i

nipi(x+ a)xn−i =
∑
i

niqi(x)xn−i.

Comparing these two expressions we see that the infinite matrix representing
L in basis Pa agrees with that representing La in basis P. Therefore RPa

L =
RPLa, hence

Lya = 0 ⇔ (RPa
L) c = 0 ⇔ (RPLa) c = 0 ⇔ Lay = 0. 2

Write

pk(x+ a) =
d∑
i=0

ui,kx
i (0 ≤ k ≤ r) (23)

where d and r are chosen so that some ud,k and some ui,r are nonzero. Define
ui,k = 0 whenever i < 0, i > d, k < 0, or k > r. Then, using (18), we obtain
the corresponding recurrence operator

Ra = RPLa =
∑
i,k

ui,kRPxiDk =
∑
i,k

ui,kE
−i
n ((n+ 1)En)k =

∑
i,k

ui,kE
−i
n (n+ 1)kEkn

=
∑
i,k

ui,k(n− i+ 1)kEk−in =
∑
j,k

uk−j,k(n+ j)kEjn. (24)

Lemma 3 Let La and y be as in (22) and (20), respectively. Then Lay = 0 if
and only if the recurrence∑

j,k

uk−j,k(n+ j)kcn+j = 0 (25)

holds for all n ∈ ZZ.

Proof: By (4), (5), and (24), Lay = 0 if and only if (25) holds for all n ≥ 0.
Now assume that n < 0, and consider the nonzero terms in the sum in (25).
They must have k ≥ j and n + j ≥ 0 lest uk−j,k or cn+j should vanish. But
then n+ j + 1 ≤ j ≤ k, so

n+ j − k + 1 ≤ 0 ≤ n+ j,

implying that (n+ j)k = 0. Thus (25) holds trivially when n < 0. 2

12



Example 7 Let 〈Fn〉∞n=0 be the sequence of Fibonacci numbers defined by F0 =
F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. To find a homogeneous linear differential
equation satisfied by their generating function f(x) =

∑∞
n=0 Fnx

n, applyR−1
P to

a recurrence operator R which annihilates the sequence 〈Fn〉n∈ZZ where Fn = 0
for n < 0. Note that the operator 1−E−1

n −E−2
n won’t do because F0 = 1 while

F−1 + F−2 = 0. However, R = n(1 − E−1
n − E−2

n ) does annihilate 〈Fn〉n∈ZZ,
and R−1

P R = xD(1− x− x2) = x(1− x− x2)D − x(1 + 2x) indeed annihilates
f(x) = 1/(1− x− x2). 2

To avoid negative powers of En, multiply Ra on the left by Ebn where −b is
the least exponent of En appearing in Ra:

b = − min
ui,k 6=0

(k − i) = − min
0≤k≤r

(k − deg pk) = max
0≤k≤r

(deg pk − k) .

Then (25) is equivalent to

r+b∑
j=0

qj(n)cn+j = 0 (n ∈ ZZ) (26)

where qj(n) =
∑
k uk−j+b,k(n + j)k. Note that by the definition of b, the

coefficient of cn in (26) is nonzero.

Thus the problem of finding “nice” power series solutions of Lya = 0 splits
into two steps:

S1 Find all candidate values of a for which Lya = 0 may have solutions of
the form (21) with “nice” cn.

S2 For each candidate value of a, find “nice” solutions c = 〈cn〉∞n=0 of the
corresponding recurrence (26).

Once S1 has been solved and the candidate expansion points a have been
found, the algorithms of [2], [1], and [10], resp., can be used at each a (assuming
there are finitely many of them) to find all polynomial, rational, resp. hyperge-
ometric solutions of the corresponding recurrence (26). In particular, a detailed
description of an algorithm to find all hypergeometric series solutions of Lya = 0
given the expansion point a is presented in [11]. This solves S2.

A short discussion of S1 in the case of hypergeometric coefficients is given
in [11, Sec. 3.2], but a completely satisfactory solution has not been provided
yet. Here we show how to find all a ∈ K and all solutions (21) of Lya = 0 for
which there exists:

1. a polynomial p ∈ K[x] such that cn = p(n) for all large enough n (subsec-
tion 5.1),

2. a rational function r ∈ K(x) such that cn = r(n) for all n ≥ 0 (subsection
5.2),

13



3. a rational function R ∈ K(x) such that cn+1 = R(n)cn for all large enough
n (subsection 5.3).

Of course, the first two problems are special cases of the last one, but they
are sufficiently interesting to warrant individual treatment. We also show that
existence of a power series solution with rational coefficients implies existence
of a solution with rational logarithmic derivative.

Let L be as in (17), and a ∈ K. If pr(a) = 0 then L is singular at x = a,
and a is a singular point of L. Otherwise a is an ordinary point of L.

If f(x) and g(x) are two formal power series such that f(x)− g(x) is a poly-
nomial, we write f(x) ∼ g(x). In particular, f(x) ∼ 0 iff f(x) is a polynomial.

5.1 Solutions with polynomial coefficients

Let cn = p(n) for some polynomial p ∈ K[x] and for all large enough n. Then,
as it is well known, cn satisfies a linear recurrence with constant coefficients,
and its generating function (20) is a rational function of x, of the form

y ∼
∞∑
n=0

p(n)xn = p(ϑ)
∞∑
n=0

xn = p(ϑ)
1

1− x
=

P (x)
(1− x)s+1

(27)

where ϑ is as in Example 6, P is a polynomial, P (1) 6= 0, and degP = s = deg p.
By Lemma 4 given in Section 5.3 below, Lay = 0 implies that La is singular at
x = 1, so L is singular at x = a+ 1. Thus we have

Theorem 2 Let L be a linear differential operator with polynomial coefficients,
and cn a polynomial function of n. If a series ya ∼

∑∞
n=0 cn(x − a)n satisfies

Lya = 0, then L is singular at x = a+ 1.

Therefore to find solutions (21) of Lya = 0 with polynomial coefficients cn,
it suffices to consider all the roots of pr(x+1) = 0 as candidate expansion points
a, and to use the algorithm of [2] at each of them to find polynomial solutions
of the corresponding recurrence (26).

5.2 Solutions with rational coefficients

Next we look for rational solutions cn of (26). We request here that there is a
rational function r ∈ K(x) such that cn = r(n) for all n ≥ 0. In particular, r(x)
can have no nonnegative integer poles. Solutions which are eventually rational
are covered in subsection 5.3.

For polynomials f, g ∈ K[x], f /∈ K, g 6= 0, denote the order of g at f by

νf (g) = max{k ∈ IN; fk | g}.

Theorem 3 Let yn = p(n)/q(n), with p, q ∈ K[x] relatively prime polynomials,
be a rational solution of the recurrence

s∑
i=0

qi(n)yn+i = h(n) (n ≥ 0) (28)

14



where q0, q1, . . . , qs, h ∈ K[x], and q0, qs 6= 0. Then, for any irreducible polyno-
mial f ∈ K[x] \K,

νf (q) ≤ min


∞∑
i=0

νEif (E−sqs),
∞∑
j=0

νE−jf (q0)

 .

Note that because of characteristic zero, the two sums on the right have only
finitely many nonzero terms.

Proof: Let r(n) = yn+1/yn. Write

r =
A

B

EC

C
(29)

where A,B,C ∈ K[x] and gcd(A,EkB) = gcd(A,C) = gcd(B,EC) = 1 for all
k ∈ IN. This is possible for any nonzero rational function r (cf. [10, Lemma
3.1]). Because r = Ey/y and y is rational, [10, Lemma 5.1] implies that there
is a polynomial v ∈ K[x] such that

B

A
=
Ev

v
. (30)

It follows that
Ey

y
=

v

Ev

EC

C
,

hence y = λC/v for some constant λ. Since by assumption y = p/q with p and
q relatively prime, q divides v. Thus νf (q) ≤ νf (v).

Rewrite (30) as
Bv = A(Ev). (31)

It follows that v divides A(Ev), and, using this repeatedly, that v divides
A(EA) · · · (En−1A)(Env) for any positive integer n. Since we work in char-
acteristic 0, v and Env will be relatively prime for large enough n. Therefore

νf (v) ≤
∞∑
j=0

νf (EjA) =
∞∑
j=0

νE−jf (A).

In an analogous way we obtain from (31) that

νf (v) ≤
∞∑
i=0

νf (E−i−1B) =
∞∑
i=0

νEif (E−1B).

We claim that A | q0 and B |E−s+1qs. Assuming this, the theorem follows.
To prove the claim, note that in the homogeneous case (h = 0) it follows

from [10, Theorem 4.1]. In the general case, express all yn+i in (28) as rational
multiples of yn = λC(n)/v(n), use (29), and clear denominators to find that

λ

s∑
i=0

qi (EiC)

i−1∏
j=0

EjA

 s−1∏
j=i

EjB = vh

s−1∏
j=0

EjB. (32)
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¿From (31) it follows that A divides v and hence the right side of (32). Note
that all terms with i > 0 on the left of (32) contain A as a factor, therefore A
divides the term with i = 0 as well:

A | λ q0C
s−1∏
j=0

EjB.

Because A is relatively prime with C and with all EjB, 0 ≤ j ≤ s − 1, we
conclude that A | q0.

Similarly, all terms with i < s on the left of (32), as well as the right side of
(32), contain Es−1B as a factor, therefore Es−1B divides the term with i = s
as well:

Es−1B | λ qs(EsC)
s−1∏
j=0

EjA.

As Es−1B is relatively prime with EsC and with all EjA, 0 ≤ j ≤ s − 1, we
conclude that Es−1B | qs. 2

Theorem 4 Let L =
∑r
k=0 pk(x)Dk be a linear differential operator with poly-

nomial coefficients, and r ∈ K(x) \ K[x] a non-polynomial rational function
which has no poles in IN. If the series ya =

∑∞
n=0 cn(x − a)n where cn = r(n)

for all n ∈ IN satisfies Lya = 0, then L is singular at x = a, and the equation
Ly = 0 has a solution with rational logarithmic derivative over K̄, the algebraic
closure of K.

Proof: Assume that L is not singular at x = a, hence that pr(a) = u0,r 6= 0.
Then the leading term of (26) is the one with k = r+b, and its leading coefficient
is

qr+b(n) =
∑
k

uk−r,k(n+ r + b)k = u0,r(n+ r + b)r.

We are going to use Theorem 3 on recurrence (26). The order of (26) in this case
is s = r+ b, so qs(n− s) = u0,rn

r, therefore νEif (E−sqs) > 0 for an irreducible
f only if f(n) = n − α for some α ∈ IN. As cn has no poles in IN, it follows
from Theorem 3 that cn is a polynomial in n. We conclude that (22) can have
non-polynomial rational solutions only when L is singular at x = a.

To prove the second assertion, recall that a function f is called d’Alembertian
over K if it is annihilated by an operator L = L1L2 · · ·Lk where each
Li ∈ K(x)[D] is of order one [3]. A d’Alembertian function satisfies f(x) ∈
f1(x)

∫
f2(x)

∫
· · ·
∫
fk(x)dx · · · dx dx where the fi have rational logarithmic

derivatives. Let

f(x) =
∞∑
n=0

xn

(n− α)k

where α ∈ K̄ \ IN. It is easy to see that the operator

L =
(
D − 1

1− x

)
(xD − α)k
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annihilates f(x), which is consequently d’Alembertian over K̄. Now, if cn is a
rational function of n, its partial fraction decomposition

cn = p(n) +
s∑
i=0

di∑
j=1

βi,j
(n− αi)j

together with (27) and the fact that d’Alembertian functions form a ring [6],
shows that (20) is d’Alembertian as well. But if Lay = 0 has a d’Alembertian
solution then it also has a solution with rational logarithmic derivative [3, The-
orem 4], and so does Ly = 0. 2

Therefore to find solutions (21) of Lya = 0 with non-polynomial rational
coefficients cn, it suffices to consider the singular points of (17) as candidate
expansion points a, and to use the algorithm of [1] at each of them to find
rational solutions of the corresponding recurrence (26).

Example 8 The equation

2x(x− 1)y′′(x) + (7x− 3)y′(x) + 2y(x) = 0 (33)

is singular at x = 0 and x = 1. Let us find power series solutions at x = 0.
Recurrence (26) in this case is

(n+ 1)(2n+ 3)cn+1 − (n+ 2)(2n+ 1)cn = 0 (34)

and is satisfied by the rational sequence cn = 2(n+ 1)/(2n+ 1). Thus (33) has
a power series solution with rational coefficients

f(x) =
∞∑
n=0

2(n+ 1)
2n+ 1

xn =
1

1− x
+

1
2

∞∑
n=0

xn

n+ 1/2

∈ 1
1− x

+
1

2
√
x

∫
dx√

x(1− x)
=

1
1− x

+
1

2
√
x

log
1 +
√
x

1−
√
x

+
K√
x
,

which is d’Alembertian. Since f(0) = 2 it follows that f(x) = 1
1−x +

1
2
√
x

log 1+
√
x

1−
√
x

. Note that (33) is also satisfied by g(x) = 1/
√
x which has rational

logarithmic derivative. 2

Remark 1 If, in notation of Theorem 4, cn = r(n) for large enough n but
not for all n ∈ IN, then L need not be singular at x = a. For instance, the
equation (x− 1)y′′+ y′ = 0 has solution y(x) = − log(1−x) =

∑∞
n=1 x

n/n with
non-polynomial rational coefficients, although it is not singular at x = 0. This
is because c0 = 0 while r(n) = 1/n has a pole at n = 0. Such solutions are
covered in the next subsection. 2
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5.3 Solutions with hypergeometric coefficients

To find power series solutions with hypergeometric coefficients, instead of (20)
and (21) it is more convenient to write

y =
∞∑
n=0

bn
xn

n!
, (35)

and

ya =
∞∑
n=0

bn
(x− a)n

n!
(36)

respectively, where bn = cnn! is hypergeometric iff cn is. Note that bn is unde-
fined for n < 0. Then, after replacing k with k + j − b and multiplying both
sides with (n+ b)!, (26) turns into

r+b∑
j=0

qj(n)bn+j = 0 for large enough n, (37)

where qj(n) =
∑
k uk,k+j−b(n+b)k. Since k+j−b ≤ r, it follows that deg qj(n) ≤

r + b− j. In particular, qr+b(n) is a constant polynomial.

Theorem 5 Let x = a be an ordinary point of L =
∑r
k=0 pk(x)Dk, and ya =∑∞

n=0 bn(x−a)n/n! a hypergeometric series which satisfies Lya = 0. Then there
are polynomials A,C ∈ K[x] with degA ≤ 1, such that

bn+1 = A(n)
C(n+ 1)
C(n)

bn (38)

for all large enough n.

Proof: If Lya = 0 then by Lemma 2, Lay = 0 where La and y are as in
(22) and (35), respectively. By the preceding discussion, bn is a hypergeometric
solution of (37).

If bn is eventually zero then the theorem holds trivially. Otherwise bn is
eventually nonzero (because it satisfies a homogeneous first-order recurrence
with rational coefficients). Let R(n) be the rational function equal to bn+1/bn
for all large enough n. As any nonzero rational function, R can be written in
the form

R = ζ
A

B

EC

C
(39)

where ζ ∈ K \ {0}, A,B,C ∈ K[x] are monic, and gcd(A,EkB) = gcd(A,C) =
gcd(B,EC) = 1 for all k ∈ IN.

By [10, Theorem 5.1], B divides the leading coefficient of recurrence (37)
which is

qr+b(n) =
∑
k

uk,k+r(n+ b)k = u0,r = pr(a),
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a nonzero constant because x = a is an ordinary point of L. So B = 1, and it
remains to show that degA ≤ 1.

Again by [10, Theorem 5.1], ζ is a nonzero root of the algebraic equation

r+b∑
k=0

αkζ
k = 0, (40)

where αk is the coefficient of nM in Pk(n) = qk(n)
∏k−1
j=0 E

jA, and M =
max0≤k≤r+b degPk. Write δ = degA. Since deg qr+b = 0 and deg qk ≤ r+ b−k
for k < r + b, it follows that degPr+b = (r + b)δ and degPk ≤ r + b− k(1− δ)
for k < r + b. If δ > 1 then for k < r + b,

degPr+b − degPk ≥ (r + b)δ − (r + b− k(1− δ)) = (δ − 1)(r + b− k) > 0,

so degPk < degPr+b. Therefore M = (r + b)δ and all the α’s are zero except
αr+b. Hence (40) has no nonzero roots, and (37) has no hypergeometric solution
with δ > 1. It follows that degA = δ ≤ 1. Writing A for ζA in (39) we obtain
(38). 2

Corollary 2 Let x = 0 be an ordinary point of L, and y =
∑∞
n=0 bnx

n/n! a
hypergeometric series solution of Ly = 0. Then y is of one of the forms

a) y ∼ p(x)eζx, or

b) y ∼ p(x)(1− ζx)α, or

c) y ∼ p(x)/(1− ζx)s + q(x) log(1− ζx),

where p, q ∈ K[x] are polynomials, ζ ∈ K \ {0}, α ∈ K, and s ∈ IN.

Proof: If y is a polynomial, this is trivially true. Otherwise, Theorem 5
implies that for all large enough n, bn+1/bn = ζA(n)C(n + 1)/C(n) where
ζ ∈ K \ {0} and either A(n) = 1, or A(n) = n − α for some α ∈ K. We
distinguish three cases according to the form of A and the nature of α.

Case a) A(n) = 1
In this case, b(n + 1)/b(n) = ζC(n + 1)/C(n), so bn = λC(n)ζn where λ is a
constant. Hence by (19),

y ∼ λ
∞∑
n=0

C(n)
(ζx)n

n!
= λC(ϑ)eζx = p(x)eζx (41)

where p(x) is some polynomial of degree s = degC(n).

Case b) A(n) = n− α, where α /∈ IN
In this case, b(n + 1)/b(n) = ζ(n − α)C(n + 1)/C(n), so bn = λC(n)(−α)nζn
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where λ is a constant. Hence by (19),

y ∼ λ
∞∑
n=0

C(n)
(−α)n

n!
(ζx)n = λC(ϑ)

∞∑
n=0

(
α

n

)
(−ζx)n = λC(ϑ)(1−ζx)α = p(x)(1−ζx)α−s

(42)
where p(x) is some polynomial and deg p = s = degC.

Case c) A(n) = n− α, with α ∈ IN
Here we still have the solution

y ∼ λC(ϑ)(1− ζx)α

which in this case is simply a polynomial in x, corresponding to s = q = 0. But
now there is another hypergeometric solution of (37), namely

bn = λC(n)(n− α− 1)!ζn−α−1, for n ≥ α+ 1,

which, using (19), yields

y ∼ λ

∞∑
n=α+1

C(n)
(n− α− 1)!

n!
ζn−α−1xn

= λC(ϑ)
∞∑
n=0

ζnxn+α+1

(n+ 1)α+1

∈ λC(ϑ)
∫ ∫

· · ·
∫

1
1− ζx

dx . . . dx dx

where there are α+ 1 integral signs. It is straightforward to verify by induction
on k that for any n, k ∈ IN,

dk

dxk
((1− ζx)n log(1− ζx)) = ζkk!(1− ζx)n−kfn,k(x) (43)

where

fn,k(x) =

{
(−1)k

(
n
k

)
(Hn −Hn−k + log(1− ζx)), k ≤ n

(−1)n+1/
(
k
(
k−1
n

))
, k > n

and Hn =
∑n
k=1 1/k. Taking n = α and k = α + 1 in (43), we see that the

nested integral of 1/(1− ζx) has the form P (x) log(1− ζx) +Q(x) where P and
Q are polynomials of degree ≤ α. Finally

y ∼ p(x)
(1− ζx)s

+ q(x) log(1− ζx), (44)

where p, q are polynomials, deg p ≤ α + s, deg q ≤ α, and s = degC. In
fact, a more careful analysis shows that p(x) is divisible by (1 − ζx)t where
t = min{α, s}. 2
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Lemma 4 Let L =
∑r
k=0 ak(x)Dk be a linear differential operator with poly-

nomial coefficients. If y(x) = p(x)(1− ζx)α satisfies Ly = 0 where α ∈ K \ IN,
ζ ∈ K \ {0}, and p ∈ K[x] is relatively prime with 1 − ζx, then 1 − ζx divides
the leading coefficient ar(x) of L.

Proof: By Leibniz’ rule,

Ly(x) =
r∑

k=0

ak(x)
k∑
j=0

(
k

j

)
dk−jp(x)
dxk−j

(−ζ)jαj(1− ζx)α−j = 0.

Multiplying this by (1− ζx)r−α we see that 1− ζx divides ar(x)p(x) and hence
ar(x). 2

Lemma 5 Let L =
∑r
k=0 ak(x)Dk be a linear differential operator with poly-

nomial coefficients. If

y(x) =
p(x)

(1− ζx)s
+ q(x)(1− ζx)t log(1− ζx) (45)

satisfies Ly = 0 where p, q ∈ K[x], q 6= 0, s, t ∈ IN, ζ ∈ K \ {0}, and q(x) is
relatively prime with 1− ζx, then 1− ζx divides the leading coefficient ar(x) of
L.

Proof: If y is as in (45) then clearly

Ly(x) = A(x) +B(x) log(1− ζx)

where A,B ∈ K(x) are rational power series. As log(1 − ζx) is not a rational
power series, Ly = 0 implies A = B = 0. We distinguish three cases.

Case 1 (t ≥ r): Using (43) and Leibniz’ rule,

B(x) =
r∑

k=0

ak(x)
k∑
j=0

(
k

j

)
dk−jq(x)
dxk−j

ζjj!(−1)j
(
t

j

)
(1− ζx)t−j .

As B(x) = 0, and all terms with j ≤ r − 1 above contain (1 − ζx)t−r+1 as an
explicit factor, it follows that the term with j = k = r is also divisible by this
factor. Thus 1− ζx divides ar(x)q(x) and hence ar(x).

Case 2 (t < r, s > 0): In this case we can assume that p(x) is relatively
prime with 1 − ζx, and use the fact that A(x) = 0. Consider the exponent of
1 − ζx in the denominators of various contributions to A(x). In those terms
arising from applying L to q(x)(1 − ζx)t log(1 − ζx) this exponent is at most
r − t, according to (43). On the other hand,

L
p(x)

(1− ζx)s
=

r∑
k=0

ak(x)
pk(x)

(1− ζx)s+k
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where pk(x) is a polynomial relatively prime with 1− ζx, and pr 6= 0. As s > 0
we have s+ r > r− t. It follows that 1− ζx divides ar(x)pr(x) and hence ar(x).

Case 3 (t < r, s = 0): As Lp(x) is a polynomial, A(x) contains a term which
is a constant multiple of ar(x)q(x)/(1− ζx)r−t while the exponent of 1− ζx in
the denominators of all other terms of A(x) is at most r − t − 1, according to
(43). It follows that 1− ζx divides ar(x)q(x) and hence ar(x). 2

Corollary 3 Let x = a be an ordinary point of L, and ya =
∑∞
n=0 cn(x−a)n/n!

a hypergeometric series satisfying Lya = 0. Then for any other ordinary point
x = b of L, there is a hypergeometric series wb =

∑∞
n=0 dn(x− b)n/n! satisfying

Lwb = 0.

Proof: By Lemma 2, Lya = 0 implies that Lay = 0 where y =
∑∞
n=0 cnx

n/n!,
and La is as in (22). Because x = 0 is an ordinary point of La, the series
y has one of the three forms listed in Corollary 2. Note that all three are
d’Alembertian. Let Lmin ∈ K(x)[D] be the monic operator of minimal order
annihilating y. Then Lmin is a right factor of La in K(x)[D]. We claim that
in each of the three cases, and for any ordinary point b of L, there exists a
hypergeometric series of the form wc =

∑∞
n=0 dn(x − c)n/n! where c = b − a,

such that Lminwc = 0 and hence that Lawc = 0. By Lemma 2, it then follows
that Lwc+a = Lwb = 0 as desired.

To prove the claim, we give Lmin and wc separately for the three cases of
Corollary 2. In each of them, it is easy to check that indeed Lminwc = 0. We
write z for x− c. In what follows, p0, p, q ∈ K[x] and ζ ∈ K \ {0}.

Case a) y(x) = p0(x) + p(x)eζx with p 6= 0: As Lp0(x) is rational while
L
(
p(x)eζx

)
is not unless it vanishes, Ly(x) = 0 implies that also L

(
p(x)eζx

)
=

0. Thus we can take p0(x) = 0 and y(x) = p(x)eζx. Then

Lmin = D −
(
p′(x)
p(x)

+ ζ

)
,

wc = p(z + c)eζz. (46)

Case b) y(x) = p0(x) + p(x)(1− ζx)α with α ∈ K \ IN and p 6= 0: As in
Case a), we can take p0(x) = 0 and y(x) = p(x)(1− ζx)α. Then

Lmin = D −
(
p′(x)
p(x)

− αζ

1− ζx

)
,

wc = p(z + c)(1− ξz)α (47)

with ξ = ζ/(1− ζc).
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Case c) y(x) = p0(x) + p(x)/(1− ζx)s + q(x) log(1− ζx) with s ∈ IN and
q 6= 0: Here

Lmin =
(
D − g′(x)

g(x)

)(
D − q′(x)

q(x)

)
,

wc = p0(z + c) +
p(z + c)

(1− ζc)s(1− ξz)s
+ q(z + c) log(1− ξz) (48)

with g = q(y/q)′ and ξ = ζ/(1− ζc).

In the latter two cases, we need to show that 1 − ζc 6= 0. According to
Lemmas 4 and 5, La is singular at x = 1/ζ (unless s = q = 0). But then L
is singular at x = a + 1/ζ, so a + 1/ζ 6= b as b is an ordinary point of L, and
ζc = ζ(b− a) 6= 1.

In the first two cases, wc is a polynomial multiple of a hypergeometric series,
which by Lemma 1 is again a hypergeometric series. In the last case, wc is the
sum of two such series. But the coefficients of 1/(1− ξz)s =

∑∞
n=0

(
n+s−1
s−1

)
ξnzn

as well as those of log(1− ξz) = −
∑∞
n=1(ξn/n)zn are rational multiples of ξn,

hence, as in the proof of Lemma 1, so are the coefficients of wc which is thus a
hypergeometric series as claimed. 2

Therefore the following algorithm will find all solutions (21) of Lya = 0
with hypergeometric cn:

1. For each singular point a of L, find all solutions y =
∑∞
n=0 cnx

n of Lay = 0
with hypergeometric cn, using the algorithm of [11]. Then the correspond-
ing ya give all the hypergeometric series solutions at x = a.

2. Pick any ordinary point a of L. Find all solutions y =
∑∞
n=0 cnx

n of
Lay = 0 with hypergeometric cn, using either the algorithm of [11], or,
since these solutions are d’Alembertian, the algorithm of [7], or a custom-
designed algorithm for finding solutions of the three types described in
Corollary 2. Then the corresponding ya give all the hypergeometric series
solutions at x = a. For any other ordinary point b of L, the series wc
given in (46), (47), and (48), respectively (with z replaced by x− b and c
by b− a), give all the hypergeometric series solutions at x = b.
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q-difference equations, Discrete Math., to appear.
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