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Abstract

An H-system is a system of first-order linear homogeneous difference equations for a single unknown
function T , with coefficients which are polynomials with complex coefficients. We consider solutions of
H-systems which are of the form T : dom(T ) → C where either dom(T ) = Zd, or dom(T ) = Zd \ S and
S is the set of integer singularities of the system. It is shown that any natural number is the dimension
of the solution space of some H-system, and that in the case d ≥ 2 there are H-systems whose solution
space is infinite-dimensional. The relationships between dimensions of solution spaces in the two cases
dom(T ) = Zd and dom(T ) = Zd \ S are investigated. Finally we give an appropriate formulation of the
Ore-Sato theorem on possible forms of solutions of H-systems in this setting.

Résumé

Par un H-système nous désignons un système des équations aux differences linéaires homogènes pour
une seule fonction inconnue T , à coefficients polynomiaux sur le corps des nombres complexes. Nous
considérons les solutions des H-systèmes de la forme T : dom(T ) → C où soit dom(T ) = Zd, soit
dom(T ) = Zd \ S, et S est l’ensemble des singularités entières du système. Nous montrons que chaque
nombre naturel est égal à la dimension de l’éspace des solutions d’un H-système, et que dans le cas
d ≥ 2 il y a des H-systèmes dont la dimension de l’éspace des solutions est infinie. Les rélations entre les
dimensions des éspaces des solutions dans les cas dom(T ) = Zd et dom(T ) = Zd\S sont recherchées. Enfin
nous présentons une formulation propre du théorême d’Ore-Sato sur les formes possibles des solutions
des H-systèmes.

1 Introduction

Linear homogeneous recurrence equations with polynomial coefficients and systems of such equations play a
significant role in combinatorics and in the theory of hypergeometric functions; the question of the dimension
of the space of solutions of such systems is of great importance for many problems.

Let n1, . . . , nd be variables ranging over the integers and Eni
the corresponding shift operators, acting

on functions (sequences) of n1, . . . , nd by Eni
f(n1, . . . , ni) = f(n1, . . . , ni + 1, . . . , nd), i = 1, . . . , d. We

consider H-systems, i.e., systems of equations of the form fi Eni
T = giT , where fi, gi ∈ C[n1, . . . , nd] \ {0}

for i = 1, . . . , d. The notion of singular points (singularities) of such systems can be defined in the usual
way. Such singularities make obstacles (sometimes insuperable) for continuation of partial solutions of the
system on all of Zd.

In this paper we consider two spaces of solutions of H-systems: the space V1 of solutions defined every-
where on Zd, and the space V2 of solutions that are defined at all nonsingular points of Zd (more precisely, if
W is the set of all solutions of a given system that are defined at least at all non-singular elements of Zd, then
V2 contains the restrictions of all elements of W to the set of all non-singular elements of Zd). In Sections
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3 and 4 we investigate the dimensions of the spaces V1, V2. It is well known [7] that if (in the case d = 1)
one considers the germs of sequences at infinity (i.e., classes of sequences which agree from some point on),
then the dimension of the solution space is 1. However, the situation is different with dim V1 and dim V2. In
Section 3 we prove for the case d = 1 that if the equation has singularities then 1 ≤ dim V1 < dim V2 < ∞,
and for any integers s, t such that 1 ≤ s < t there exists an equation with dimV1 = s and dim V2 = t (the
case where there is no singularity is trivial: dim V1 = dim V2 = 1). In turn, in Section 4 we show that in the
case d > 1 the possibilities are even richer: for any s, t ∈ Z+∪{∞} there exists an H-system with dim V1 = s
and dim V2 = t.

In Section 5 we revisit the Sato-Ore theorem [5, 6, 8] and show that, contrary to some interpretations in
the literature (e.g., [3, 4]), this theorem does not imply that any solution of an H-system is of the form

R(n1, . . . , nd)
∏p

i=1 Γ(ai,1n1 + . . . + ai,dnd + αi)∏q
j=1 Γ(bj,1n1 + . . . + bj,dnd + βj)

un1
1 · · ·und

d , (1)

where R ∈ C(x1, . . . , xd), aik, bjk ∈ Z, and αi, βj ∈ C (for the case when the solution of the system is
holonomic, and R is required to be a polynomial, we have already noted this in [2]). Finally we give an
appropriate corollary of the Ore-Sato theorem on possible forms of solutions of systems under consideration.

We write p⊥ q to indicate that polynomials p, q ∈ C[x1, . . . , xd] are relatively prime. We call a set A ⊆ Zd

algebraic if there is a polynomial p ∈ C[x1, . . . , xd] \ {0} which vanishes on A.

Definition 1 Let E denote the shift operator corresponding to x, so that Ef(x) = f(x + 1) for every
f ∈ C(x). A rational function u ∈ C(x) is shift-reduced if there are a, b ∈ C[x] such that u = a/b and
a⊥Ekb for all k ∈ Z.

Theorem 1 For every rational function F ∈ C(x) there are rational functions u, v ∈ C(x) such that

(i) F = u · Ev
v ,

(ii) u is shift-reduced.

Definition 2 If u, v, F are as in Theorem 1, (u, v) is a rational normal form of F .

Theorem 2 Let (u, v) and (u1, v1) be two rational normal forms of F ∈ C(x) \ {0}. Write u = p/q and
u1 = p1/q1 where p, q, p1, q1 ∈ C[x], p⊥ q, and p1⊥ q1. Then deg p = deg p1 and deg q = deg q1.

For proofs of Theorems 1 and 2, see [1].

2 H-systems and their solution spaces

Definition 3 An H-system1 is a system of equations

fi(n1, . . . , nd)T (n1, . . . , ni + 1, . . . , nd) = gi(n1, . . . , nd)T (n1, . . . , ni, . . . , nd), i = 1, 2, . . . , d, (2)

where fi, gi ∈ C[n1, . . . , nd] \ {0} and fi⊥ gi. We say that a d-variate sequence T (i.e., a function
T : dom(T ) → C) is a solution of (2) if (2) is satisfied for all (n1, . . . , ni, . . . , nd) ∈ dom(T ) such that
(n1, . . . , ni + 1, . . . , nd) ∈ dom(T ) as well.

Definition 4 Let A be an H-system of the form (2).
A d-tuple (n1, . . . , nd) ∈ Zd is a trailing integer singularity of A if there exists i, 1 ≤ i ≤ d, such

that gi(n1, . . . , nd) = 0. A d-tuple (n1, . . . , nd) ∈ Zd is a leading integer singularity of A if there exists i,
1 ≤ i ≤ d, such that fi(n1, . . . , ni−1, ni − 1, ni+1, . . . , nd) = 0. A d-tuple (n1, . . . , nd) ∈ Zd is an integer
singularity of A if it is a leading or a trailing integer singularity of A.

Let S(A) denote the set of all integer singularities of A. Denote by V1(A) the C-linear space of all
solutions of A which are defined at all elements of Zd, and by V2(A) the C-linear space of all solutions of A
which are defined at all elements of Zd \ S(A).

1The prefix “H” refers to Jakob Horn and to the adjective “hypergeometric” as well.
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We consider only integer singularities here, therefore we will drop the adjective “integer” in the sequel.
Sometimes we will also drop the name of the H-system, and will write V1, V2 instead of V1(A), V2(A).

Definition 5 Call the two d-tuples (n1, . . . , nd), (n′1, . . . , n
′
d) ∈ Zd adjacent if

∑d
i=1 |ni − n′i| = 1. Call a

finite sequence t1, . . . , tk ∈ Zd a path from t1 to tk if ti is adjacent to ti+1 for all i = 1, . . . , k− 1. Given an
H-system A, we define components induced by A on Zd as the equivalence classes of the following equivalence
relation ∼ in Zd: t′ ∼ t′′ iff there exists a path from t′ to t′′ which contains no singularity of A. If T is a
solution of an H-system A, then its constituent is the sequence that is the restriction of T on a component
induced by A.

Definition 6 Rational functions F1, . . . , Fd ∈ C(n1, . . . , nd) are compatible if

(Enj Fi)Fj = Fi(EniFj)

for all 1 ≤ i ≤ j ≤ d.

Note that a single rational function (corresponding to the case d = 1) is always compatible.

Proposition 1 Let A be an H-system of the form (2) where g1/f1, . . . , gd/fd are compatible rational func-
tions. Then dim V2 is equal to the number of components induced by A.

Proof: To each component Ci induced by A on Zd we assign a solution Ti of (2) which is 1 at a selected
point pi ∈ Ci, and 0 on all the remaining components. The values of Ti on the remaining points of Ci are
uniquely determined by (2). It is clear that the set of all Ti is a basis for V2. 2

3 Dimensions of solution spaces: The univariate case

When d = 1 the system (2) is of the form

f(n)T (n + 1) = g(n)T (n) (3)

where f(n), g(n) ∈ C[n] \ {0} and f(n)⊥ g(n).

Example 1 (dim V1 = 1, dim V2 = k) Consider the recurrence

T (n + 1) = pk(n) T (n) (4)

where k ≥ 1 and pk(n) =
∏k−2

i=0 (n− 2i + 1). Here we use the convention that a product is 1 if its lower limit
exceeds its upper limit. Clearly the set of singularities of (4) is {2i− 1; i = 0, 1, . . . , k − 2}, so dim V2 = k.
To compute dim V1, note that any solution T (n) of (4) defined for all n ∈ Z is a constant multiple of

Fk(n) =
{

(−1)(k−1)n/
∏k−2

i=0 (2i− n− 1)!, n < 0,
0, n ≥ 0.

Therefore dimV1 = 1.

Example 2 (dim V1 = m, dim V2 = m + 1) Now consider the recurrence

qm(n + 1) T (n + 1) = qm(n) T (n) (5)

where m ≥ 1 and qm(n) =
∏m

i=1(n + 2i + 1). The set of singularities is {−(2i + 1); i = 1, 2, . . . ,m}, so
dim V2 = m + 1. Let T (n) be a solution of (5) defined for all n ∈ Z. By substituting n = −2(i + 1) for
i = 1, 2, . . . ,m into (5), we see that T (n) = 0 for these values of n. Likewise, by substituting n = −3 into
(5), we find that T (−2) = 0. Using (5) it follows by induction on n that T (n) = 0 for all n ≤ −2(m+1) and
for all n ≥ −2 as well. On the other hand, it is easy to check that

G(i)
m (n) = δn,−(2i+1)

(where δ is the Kronecker delta) is a solution of (5) for i = 1, 2, . . . ,m. Therefore dim V1 = m.
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Before describing the general situation we need a definition and a lemma.

Definition 7 Let A be an H-system of the form (3). An interval of integers

I = {k, k + 1, . . . , k + m}, m ≥ 0, (6)

is a segment of singularities of A if I ⊆ S(A) while k − 1, k + m + 1 /∈ S(A).

Lemma 1 Each segment of singularities (6) of equation (3) is of (at least) one of the following types:

(i) all elements of the segment are trailing singularities;

(ii) all elements of the segment are leading singularities;

(iii) there exists j, 0 ≤ j < m, such that k, k+1, . . . , k+j are leading singularities, while k+j+1, . . . , k+m
are trailing singularities.

Proof: If u ∈ Z is a trailing singularity and u+1 a leading singularity of (3) then f(u) = g(u) = 0, contrary
to the assumption f ⊥ g. So any segment of singularities of (3) consists of a (possiby empty) interval of
leading singularities followed by a (possiby empty) interval of trailing singularities. 2

Theorem 3 Let S denote the set of singularities of equation (3).
a) If S = ∅ then dim V1 = dim V2 = 1.
b) If S 6= ∅ then 1 ≤ dim V1 < dim V2 < ∞.

Proof: a) This is clear.
b) There is only a finite set of components induced on Z by (3), therefore dim V2 < ∞.
Next we prove that dim V1 < dim V2. First we show that if (6) is a segment of singularities of (3), then

the restriction of V1 to
Î = {k − 1, k, , . . . , k + m, k + m + 1}

has dimension ≤ 1, while the analogous restriction of V2 obviously has dimension 2. Indeed, if u is a trailing
singularity, then any sequence from V1 vanishes at u + 1; and if u is a leading singularity, then any sequence
from V1 vanishes at u− 1. By Lemma 1 we have three possibilities (i), (ii), (iii) for (6). In case (i) we have
T (k + 1) = T (k + 2) = . . . = T (k + m + 1) = 0, in case (ii) T (k − 1) = T (k) = . . . = T (k + m − 1) = 0, in
case (iii) T (k− 1) = T (k) = . . . T (k + j − 1) = 0 and T (k + j + 2) = T (k + j + 3) = . . . = T (k + m + 1) = 0;
in each case T (n) can be nonzero at most in two points of Î, however the value at one of them is uniquely
determined by the value at the other one. Therefore the dimension of the restricted V1 is ≤ 1. The same
holds for dimension of the restriction of V1 to the set

{k − v, k − v + 1, . . . , k, k + 1, . . . , k + m, k + m + 1, . . . , k + w},

where k, k + 1, . . . , k + m are singularities, while k − v, . . . , k − 1 and k + m + 1, . . . , k + w are not. Gluing
together two such restrictions with coinciding, say, k +m+1, . . . , k +w, and non-intersecting singular parts,
we get the dimension ≤ 2, while the dimension of the corresponding restriction of V2 is 3 and so on. This
proves that dim V1 < dim V2.

Finally we prove that dim V1 ≥ 1. If there are leading singularities, let n0 be the largest leading singularity.
Set T (n0) = 1 and T (n) = 0 for n < n0. None of the points n > n0 is a leading singularity, hence the value
of T at n > n0 is uniquely determined by the recurrence (3) and the initial condition T (n0) = 1. If there
are no leading singularities, let n0 be the least trailing singularity. Set T (n0) = 1 and T (n) = 0 for n > n0.
None of the points n < n0 is a trailing singularity, hence the value of T at n < n0 is uniquely determined by
the recurrence (3) and the initial condition T (n0) = 1. In either case V1 contains a nonzero solution. 2

Theorem 4 For any integers s, t such that 1 ≤ s < t there exists an equation of the form (3) such that
dim V1 = s and dim V2 = t.
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Proof: Consider the recurrence

qm(n + 1) T (n + 1) = pk(n)qm(n) T (n) (7)

where k,m ≥ 1, pk(n) is as in Example 1, and qm(n) is as in Example 2. Here the set of singularities is
{2i − 1; i = 0, 1, . . . , k − 2} ∪ {−(2i + 1); i = 1, 2, . . . ,m}, so dim V2 = k + m. Let T (n) be a solution
of (7) defined for all n ∈ Z. In exactly the same way as in Example 2 we can see that T (n) = 0 for
n = −2,−4, . . . ,−2(m + 1), n ≤ −2(m + 1) or n ≥ −2, and that G

(i)
m (n) = δn,−(2i+1) is a solution of (7) for

i = 1, 2, . . . ,m. Therefore dim V1 = m.
If 1 ≤ s < t, let m = s and k = t− s. Then for equation (7), dim V1 = m = s and dim V2 = k +m = t. 2

We conclude this section by some remarks on computation of dim V1 and dim V2. Let A denote equation
(3). According to Proposition 1, dim V2(A) is the number of components induced on Z by A and is thus easy
to compute. We claim that dim V1(A) equals the dimension of the kernel of a bidiagonal matrix B defined
as follows. Let α be the maximum and β the minimum of the integer roots of f(x)g(x); if A has no integer
singularities then we can take α = β = 1. Let B be the (α− β + 1)× (α− β + 2) matrix with entries

bi,j =

 f(α− i + 1), j = i,
−g(α− i + 1), j = i + 1,
0, otherwise,

where 1 ≤ i ≤ α− β + 1 and 1 ≤ j ≤ α− β + 2. Indeed, any vector v such that Bv = 0 can be extended to
a solution of A in a unique way. This mapping is an isomorphism between the kernel of B and V1(A).

Incidentally, this gives an alternative proof of the inequality dim V1 ≥ 1: B has more columns than rows,
hence its kernel is nontrivial.

4 Dimensions of solution spaces: The multivariate case

If d ≥ 2 in (2) then the dimensions of V1 and/or V2 can be infinite as shown by the following examples.

Example 3 (dim V1 = ∞, dim V2 = 1) Let A be the system

(n1 − 4n2 + 1)T (n1 + 1, n2) = (n1 − 4n2)T (n1, n2),
(n1 − 4n2 − 4)T (n1, n2 + 1) = (n1 − 4n2)T (n1, n2).

It is easy to check that
Ti(n1, n2) = δn1,4iδn2,i, for i ∈ Z,

are linearly independent solutions of A on all of Z2, hence dim V1 = ∞. On the other hand, S(A) =
{(n1, n2); n1 = 4n2}, so A induces a single component on Z2, and dim V2 = 1.

Example 4 (dim V1 = 1, dim V2 = ∞) Let B be the system

(n1 − 4n2)T (n1 + 1, n2) = (n1 − 4n2 + 1)T (n1, n2),
(n1 − 4n2)T (n1, n2 + 1) = (n1 − 4n2 − 4)T (n1, n2).

It can be shown that any solution of B defined on all Z2 is a constant multiple of n1 − 4n2, so dim V1 = 1.
On the other hand, S(B) = {(n1, n2); n1 − 4n2 ∈ {−4,−1, 1, 4}}, so each of the points (4i, i) for i ∈ Z is a
separate component of Z2 induced by B, hence dim V2 = ∞.

Example 5 (dim V1 = dim V2 = ∞) Let C be the system

(n1 − n2 − 1)(n1 − n2 + 1)T (n1 + 1, n2) = (n1 − n2)(n1 − n2 + 2)T (n1, n2),
(n1 − n2 − 1)(n1 − n2 + 1)T (n1, n2 + 1) = (n1 − n2)(n1 − n2 − 2)T (n1, n2).
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It is easy to check that
Ti(n1, n2) = δn1,iδn2,i, for i ∈ Z, (8)

are linearly independent solutions of C on all of Z2, hence dim V1 = ∞. As S(C) = {(n1, n2); n1 − n2 ∈
{−2, 0, 2}}, each of the points (i, i− 1) and (i, i + 1) for i ∈ Z is a separate component of Z2 induced by C,
so dim V2 = ∞ as well.

The following theorem describes the general situation.

Theorem 5 Let 1 ≤ s, t ≤ ∞. Then there exists an H-system such that dim V1 = s and dim V2 = t.

Proof: Let t ≥ 2 and pt(n1, n2) =
∏t−2

i=0(n1 − n2 + 3i). Then the set of singularities of

pt(n1 + 1, n2)T (n1 + 1, n2) = pt(n1, n2)T (n1, n2),
pt(n1, n2 + 1)T (n1, n2 + 1) = pt(n1, n2)T (n1, n2)

is S = {(n1, n2); n1−n2 ∈ {−3i; 0 ≤ i ≤ t−2}}. As in Example 5, the functions (8) are linearly independent
solutions of this system on all of Z2, hence dim V1 = ∞. On the other hand, the number of components
induced on Z2 is t, so dim V2 = t.

Let s ≥ 2 and

qs(n1, n2) =
s−1∏
i=1

((n1 − 2i)2 + n2
2). (9)

Then the set of singularities of

(n1 − 4n2)qs+1(n1 + 1, n2)T (n1 + 1, n2) = (n1 − 4n2 + 1)qs+1(n1, n2)T (n1, n2),
(n1 − 4n2)qs+1(n1, n2 + 1)T (n1, n2 + 1) = (n1 − 4n2 − 4)qs+1(n1, n2)T (n1, n2)

is S = {(n1, n2); n1 − 4n2 ∈ {−4,−1, 1, 4}} ∪ {(2i, 0); 1 ≤ i ≤ s}. Each of the points (4i, i) for i ∈ Z is a
separate component, so dim V2 = ∞. It can be shown that any solution T (n1, n2) defined on all Z2 vanishes
everywhere except at the points (2i, 0) where 1 ≤ i ≤ s, and that

Ti(n1, n2) = δn1,2iδn2,0, (10)

for i = 1, 2, . . . , s, are linearly independent solutions of this system defined on all Z2. Hence dim V1 = ∞.
Together with Examples 3 – 5 this proves the assertion in the case when at least one of s, t is infinite.
Now assume that s, t are natural numbers, and let rt(n1, n2) =

∏t−1
i=1(n1 + 2i + 1). Consider the system

qs(n1 + 1, n2)T (n1 + 1, n2) = qs(n1, n2)rt(n1, n2)T (n1, n2),
qs(n1, n2 + 1)T (n1, n2 + 1) = qs(n1, n2)T (n1, n2),

where qs is as in (9). It can be shown that any solution T (n1, n2) defined on all Z2 vanishes for all (n1, n2)
such that n1 > −(2t− 1) and (n1, n2) is not of the form (2i, 0) with 1 ≤ i ≤ s− 1. Further, a basis of V1 is
given by the s functions Ti(n1, n2) for i = 0, 1, . . . , s− 1 where

T0(n1, n2) =

{
(−1)(t−1)n1∏s−1

i=1
((n1−2i)2+n2

2)
∏t−1

i=1
(−n1−2i−1)!

, n1 ≤ −(2t− 1),

0, otherwise,

and Ti(n1, n2) are as in (10) for i = 1, 2, . . . , s− 1. It follows that dim V1 = s. The set of singularities of this
system is S = {(2i, 0); 1 ≤ i ≤ s− 1}∪ {(−(2i+1), j); 1 ≤ i ≤ t− 1, j ∈ Z}, and the number of components
induced on Z2 is t, so dim V2 = t as desired. 2

We considered the case d = 2 here. The corresponding H-systems for the case of an orbitrary d > 1 can
be obtained by adding equations Eni

T = T , i = 3, . . . , d, to the systems with d = 2.
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5 The Ore-Sato theorem and its consequences

The well-known Ore-Sato theorem (see [5], [6], [8]) is commonly believed to imply that any solution of an
H-system (2) is of the form (1). We show that this is not so, and give an appropriate corollary of the
Ore-Sato theorem on possible forms of solutions of H-systems in our setting.

Definition 8 Let T be a solution of (2). We write suppT for the support of T , i.e., for the set of points in
Zd where T is defined and does not vanish.

If (2) has a solution with non-algebraic support, then the rational functions fi/gi, i = 1, . . . , d, are compatible,
and uniquely determined by this solution (see [2]).

Definition 9 A polynomial p ∈ C[x1, . . . , xd] is integer-linear if p(x1, . . . , xd) = a0 +a1x1 + · · ·+adxd where
a1, . . . , ad ∈ Z.

The Ore-Sato theorem states (in the case d = 2) that for any compatible rational functions F1(x, y)
and F2(x, y) there are compatible rational functions G1(x, y) and G2(x, y) which factor into integer-linear
factors, and a rational function R(x, y) such that F1(x, y) = G1(x, y)R(x + 1, y)/R(x, y) and F2(x, y) =
G2(x, y)R(x, y + 1)/R(x, y). The full statement gives a precise description of the integer-linear factors.

In the literature one often encounters the claim that as a corollary of this theorem, any solution of an
H-system (2) is of the form (1). For example, in [3, p. 223] one can read: “From Ore’s result it can be
deduced that the most general form of Amn is of the form

Amn = R(m,n)γmnambn

where R is a fixed rational function of m and n, a and b are constants, and γmn is a gamma product (. . . )
that is to say it is of the form

γmn =
∏

i

Γ(ai + uim + vin)/Γ(ai)

where the ai are arbitrary (real or complex) constants, and the ui and vi are arbitrary integers which may
be positive, negative, or zero.” A similar quote can be found in [4, p. 5].

It may be the case that in the literature referred to above the term Amn is implicitly assumed to be nonzero
for all m,n ∈ Z. This possibility is supported by the fact that, e.g., in [3] the corresponding H-system is given
in terms of the two quotients Am+1,n/Amn and Am,n+1/Amn. But such a severe restriction would preclude
many important functions from being hypergeometric, such as the binomial coefficient T (n1, n2) =

(
n1
n2

)
, and

all polynomials with integer roots.
However if we do not adopt this restriction, then there are hypergeometric terms which cannot be written

in the form (1), as illustrated by the following examples.

Example 6 Take the H-system

p(n1, n2)T (n1 + 1, n2) = p(n1 + 1, n2)T (n1, n2), (11)
p(n1, n2)T (n1, n2 + 1) = p(n1, n2 + 1)T (n1, n2),

where p(n1, n2) = (n1 − n2 − 1)(n1 − n2 + 1). It can be checked that any sequence T which satisfies
T (n1, n2) = 0 unless n1 = n2 is a solution of (11). In particular, the sequence

T (n1, n2) =
{

2n2
1 , n1 = n2,

0, otherwise,

is a solution of (11), even though it does not have the form (1) because it grows too fast along the diagonal.

There are examples which look less artificial and where the solution has a non-algebraic support.
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Example 7 In this example we show that |n1 − n2|, although a hypergeometric term, cannot be written in
the form (1).

Denote D(n1, n2) = |n1 − n2|. Then

(n1 − n2)D(n1 + 1, n2) = (n1 − n2 + 1)D(n1, n2), (12)
(n1 − n2)D(n1, n2 + 1) = (n1 − n2 − 1)D(n1, n2)

for all n1, n2 ∈ Z, so D(n1, n2) is a hypergeometric term. Note that when restricted to n1, n2 ≥ 0, it is also
holonomic, because its generating function is rational:∑

n1,n2≥0

|n1 − n2|zn1
1 zn2

2 =
(

z1

(1− z1)2
+

z2

(1− z2)2

)
1

1− z1z2
. (13)

By comparison, the generating function of the polynomial n1 − n2 is∑
n1,n2≥0

(n1 − n2)zn1
1 zn2

2 =
(

z1

1− z1
− z2

1− z2

)
1

(1− z1)(1− z2)
.

Let T (n1, n2) be a hypergeometric term of the form (1) with d = 2, defined for all n1, n2 ≥ 0. Pick
k0 ∈ Z, k0 > 0, and assume that T (n, k0) = |n − k0| for all n > k0. Then we claim that T (n, k0) = n − k0

for all n ≥ 0. Hence T (n, k0) disagrees with |n− k0| for all n such that 0 ≤ n < k0.
To prove the claim, define

t(n) := T (n, k0) = R(n, k0) un
1uk0

2

∏p
i=1 Γ(ai,1n + ai,2k0 + αi)∏q
j=1 Γ(bj,1n + bj,2k0 + βj)

, for all n ≥ 0. (14)

We wish to rewrite the right-hand side of (14) in such a way that the coefficient of n in the arguments of the
Gamma function will be 1. It is straightforward to verify that for n ∈ Z, a ∈ Z \ {0} and z ∈ C such that
an + z is not a nonpositive integer,

Γ(an + z) =

{
C(a, z)aan

∏a−1
m=0 Γ(n + (z + m)/a), a > 0,

C(a, z)aan/
∏|a|

m=1 Γ(n + (z −m)/a), a < 0, z /∈ Z,

where C(a, z) ∈ C is independent of n. To be able to apply this to (14), we need to show that

(i) for i = 1, 2, . . . , p and for all n ≥ 0, the number ai,1n + ai,2k0 + αi is not a nonpositive integer,

(ii) for i = 1, 2, . . . , p and for all n ≥ 0, if ai,1 < 0 then αi /∈ Z,

(iii) for j = 1, 2, . . . , q and for all n ≥ 0, the number bj,1n + bj,2k0 + βj is not a nonpositive integer,

(iv) for j = 1, 2, . . . , q and for all n ≥ 0, if bj,1 < 0 then βj /∈ Z.

Assertion (i) is obvious, for otherwise T (n, k0) would be undefined at such n. Assertion (ii) holds for the
same reason, since if ai,1 < 0 and αi ∈ Z for some i, then ai,1n + ai,2k0 + αi would be a nonpositive integer
for all large enough n. If bj,1n + bj,2k0 + βj is a nonpositive integer for some j and some n 6= k0, then
t vanishes at this n, contrary to the fact that t(n) = |n − k0| 6= 0 for all n 6= k0. If bj,1k0 + bj,2k0 + βj

is a nonpositive integer then (depending on the sign of bj,1) at least one of bj,1(k0 − 1) + bj,2k0 + βj and
bj,1(k0 + 1) + bj,2k0 + βj is also a nonpositive integer, something we have just ruled out. This proves (iii).
Assertion (iv) holds for the same reason, since if bj,1 < 0 and βj ∈ Z for some j, then bj,1n + bj,2k0 + βj

would be a nonpositive integer for all large enough n.
Therefore the univariate term t can be written in the form

t(n) = r(n) vn

∏p′

i=1 Γ(n + γi)∏q′

j=1 Γ(n + δj)
, for all n ≥ 0, (15)
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where r ∈ C(x) and v, γi, δj ∈ C. If γi − δj ∈ Z then Γ(n + γi)/Γ(n + δj) is a rational function of n, hence
(15) can be rewritten as

t(n) = s(n) vn

∏p′′

i=1 Γ(n + εi)∏q′′

j=1 Γ(n + ζj)
, for all n ≥ 0, (16)

where s ∈ C(x), εi, ζj ∈ C, and none of the differences εi − ζj is an integer. It follows that

g(x) := v

∏p′′

i=1(x + εi)∏q′′

j=1(x + ζj)
∈ C(x)

is a shift-reduced rational function (see Definition 1). Let f(x) := (x + 1− k0)/(x− k0) ∈ C(x). For n > k0

we have
t(n + 1)

t(n)
=

|n + 1− k0|
|n− k0|

=
n + 1− k0

n− k0
= f(n)

and
t(n + 1)

t(n)
= g(n)

s(n + 1)
s(n)

.

The two rational functions f(x) and g(x) s(x + 1)/s(x) agree infinitely often, so they are equal. Since g is
shift-reduced, both (1, x− k0) and (g(x), s(x)) are rational normal forms of f . Now Theorem 2 implies that
g(x) = 1. Comparing this with the definition of g(x), we see that v = 1 and p′′ = q′′ = 0. From (16) it
follows that s(n) = t(n) for all n ≥ 0, therefore s(n) = n− k0 for all n > k0. As the two rational functions
s(x) and x− k0 agree infinitely often, they are equal. But then t(n) = n− k0 for all n ≥ 0, which proves our
claim.

In the theory of multivariate hypergeometric series, H-systems are used to specify coefficients for such
series. The simple rational function on the right-hand side of (13) has series expansion whose coefficients
satisfy the H-system (12), however are not of the form (1).

The following statement is a corollary of the Ore-Sato theorem.

Corollary 1 Any constituent (see Definition 5) of a solution with non-algebraic support of an H-system (2)
is of the form (1).
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[2] S. A. Abramov and M. Petkovšek, Rational normal forms and minimal decompositions of hypergeometric
terms, J. Symb. Comput. 33 (2002) 521–543.

[3] H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York–Toronto–
London 1953.

[4] I. M. Gel’fand, M. I. Graev and V. S. Retakh, General hypergeometric systems of equations and series
of hypergeometric type (Russian), Uspekhi Mat. Nauk 47 (1992) 3–82, 235; translation in Russian Math.
Surveys 47 (1992) 1–88.
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