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1. INTRODUCTION
Given a matrix over a field or ring, checking whether it is invertible and constructing an inverse matrix

(if any) are classical mathematical problems. Below, these problems are considered as applied to operator
matrices. In this case, matrix elements are scalar linear difference operators with coefficients from a dif-
ference field  with an automorphism (shift) . The field  is assumed to be of characteristic 0. New algo-
rithms for solving these problems are discussed. Note that they can be solved by well-known algorithms
intended originally for more general problems (this matter will be discussed later). The new algorithms
proposed have lower complexity.

In the case of operator matrices, the term “unimodular matrix” is usually used instead of “invertible
matrix.” The former term will be used throughout this paper.

In the differential case when  is a differential field of characteristic 0 with derivation  and when
the matrix elements are scalar linear differential operators over , algorithms for checking the unimodu-
larity of a matrix and constructing its inverse were considered in [1]. For a given operator matrix L, both
differential and (discussed below) difference algorithms rely on determining the dimension of the solution
space  of the corresponding system of equations under the assumption that the components of solutions
belong to the Picard–Vessiot extension (see [2–4]) of  associated with . An operator matrix  of full
rank (the rows of  are independent over the ring of scalar linear operators) is unimodular if and only if

, i.e.,  is a zero space (see [5]).
The following notation is used below. The ring of  matrices (  is a positive integer) with elements

from a ring or field  is denoted by . If  is an  matrix, then  with  is used to
denote the  matrix equal to the th row of . A diagonal  matrix with diagonal elements 
is designated as , and  stands for the  identity matrix.

The results of this paper were preliminarily announced in an extended abstract [6].

2. DIFFERENCE FROM THE DIFFERENTIAL CASE
There are at least three differences from the differential case considered in [1].
1. In the difference case, there is a natural possibility of separately considering the complexities mea-

sured as the number of arithmetic operations and as the number of shifts; this is similar to sorting algo-
rithms, for which the number of comparisons and the number of element shifts are considered separately.
Given a matrix, computing the number of required arithmetic operations, we can ignore shifts, while,
computing the number of shifts, we can ignore arithmetic operations. In the differential case, two com-
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plexities are not so easy to consider separately, since the application of the derivation operator  to a scalar
differential operator on the left requires additional arithmetic operations (operators are assumed to be rep-
resented in the standard form as polynomials in ), for example, . Ignoring
derivation operations can lead to misleading estimates for the number of arithmetic operations. In the dif-
ference case, we deal with an automorphism , which opens up the opportunity to consider the complex-
ities separately.

2. The simple replacement of  by  in algorithms for the differential case does not yield algorithms for
the difference case. Here, additional tricks are required. As was said above, algorithms are based on the
determination of . The situation is such that the system , where  is an  matrix with
elements from , has a solution space of dimension  if and only if  is nonsingular, while, in the differ-
ential case , this nonsingularity is not required. However, in the difference case, this dimension
can also be algorithmically computed for an arbitrary linear difference system (see [5]).

3. Suppose that a difference field  is the field of rational functions of  and the application of  to an
arbitrary rational function is obtained by substituting  for , followed by reducing the result to canon-
ical form (for ,  is substituted). Then it is natural to assume that  has the same complexity as 
for any integer . This point of view can affect the algorithmic complexity in terms of the number of shifts.
In the differential case, the identification of the complexities for  and  would be groundless: it is natural
to assume that the application of  is the -time application of .

3. ADEQUATE DIFFERENCE EXTENSIONS

Recall that a difference ring is a commutative ring  with identity and an automorphism  (which will
frequently be referred to as a shift). If  is additionally a field, then it is called a difference field. The dif-
ference fields considered in what follows are always assumed to be fields of characteristic 0.

The constant ring of a difference ring  is . If  is a difference field, then
 is a subfield of  (the constant field of ).

Let  be a difference field with an automorphism , and let  be a difference ring extension of 
(on  the corresponding automorphism of  coincides with ; for this automorphism of , we use the
same notation ).

Definition 1. The ring  (which is a difference field extension of ) is said to be an adequate difference
extension of  if  is a field and an arbitrary system

(1)

with a nonsingular matrix  has in  a linear solution space of dimension  over .
The nonsingularity of  in this definition is essential: for example, if the first row of  is all zero, then

the component  in any solution of system (1) is zero as well.
Remark 1. The -difference case (see [7, 8]) is covered by the general difference case.
If  is algebraically closed, then there exists a unique (up to a difference isomorphism, i.e., an

isomorphism commuting with ) adequate extension  such that , which is called
the universal difference (Picard–Vessiot) ring extension of . The complete proof of its existence is not
easy (see [4, Section 1.4]), while the existence of an adequate difference extension  for an arbitrary dif-
ference field can be rather easily proved (see [9, Section 5.1]). However, it should be emphasized that, for
an adequate extension, the equality  is not guaranteed; in the general case,

 is a proper subfield of .
The assertion that a universal difference extension exists for an arbitrary difference field of character-

istic 0 is not true if the extension is understood as a field. Franke’s well-known example (see [10]) is the
scalar equation  over a field  with an algebraically closed constant field. This equation has no
nontrivial solutions in any difference extension having an algebraically closed constant field.

In what follows,  denotes a fixed adequate difference extension of a difference field  with an auto-
morphism .
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4. ORDERS OF OPERATORS AND SOLUTION SPACES

A scalar difference operator is an element of the ring . Given a nonzero scalar operator
, its upper and lower orders are defined as

and the order of f is defined as

Let , , and .

For a finite set  of scalar operators (a vector, matrix, matrix row),  is defined as the maximum
of the upper orders of its elements;  is defined as the minimum of the lower orders of its elements;
and, finally,  is defined as .

A difference operator matrix is a matrix from . In the subsequent exposition, such an
operator matrix is associated with some matrices belonging to . To avoid terminology confusion,
operator matrices will be briefly referred to as operators. The case of scalar operators will be considered
separately.

An operator is of full rank (or is a full-rank operator) if its rows are linearly independent over .
Recall that same-length rows  with elements belonging to  are called linearly dependent
(over ) if there exist  not all zero such that ; otherwise,

these rows are called linearly independent (over ).
If

and  is a nonzero matrix, then  can be written in expanded form as

(2)

where  and  (the leading and trailing matrices of the original operator) are
nonzero.

Definition 2. Let the upper and lower row orders of an operator  be  and , respec-
tively. The frontal matrix of  is the leading matrix of the operator , where

Accordingly, the rear matrix of  is the trailing matrix of the operator , where

We say that  is strongly reduced if its frontal and rear matrices are both nonsingular.

Definition 3. An operator  is called unimodular or invertible if there exists an
inverse : . The set of unimodular  operators is denoted by .
Two operators  are said to be equivalent if  for some .

Let  denote the space of solutions of the system  that belong to  (see Section 3). For brev-
ity,  is sometimes called the solution space of .

For the difference case, Theorem 1 from [1] can be restated as follows.

Theorem 1. Let  be a full-rank operator. Then the following assertions hold:

(i) If  is strongly reduced, then 

(ii) .
As in the differential case, the proof is based on [5, 9].
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5. REDUCTION OF OPERATORS
In this section and below, we assume without explicit mention that  and  are integers such that 

and  and the original operator  is such that

(3)

Algorithms for solving the considered matrix problems are characterized by two complexities that are
functions of  and :

• arithmetic complexity, i.e., the number of arithmetic operations in  in the worst case for fixed  and ;

• shift complexity, i.e., the number of operations ,  applied to elements of  in the worst case for
fixed  and .

In deriving asymptotic complexity bounds, along with big  notation, we use  notation (see [11]): the
relation  is equivalent to , where , i.e., 
and  are quantities of the same order as .

Concerning the concept of shift complexity, we note that the computation of  for  and 
requires, by assumption, that the operation  or  be applied  times.

5.1. EG Algorithms

5.1.1. Algorithm EG
σ
. If  is a full-rank operator, then the algorithm EG  (see [12–14]) constructs an

equivalent operator  with  and  that has a nonsingular
leading matrix. If  is not of full rank, the algorithm returns a corresponding message.

The algorithm EG  constructs  by transforming , i.e.,  changes step by step, gradually turning
into :

Check whether the rows of the leading matrix of  are linearly independent over . If yes, then  does
not change and the algorithm terminates. Otherwise, a series of same-type steps are executed, each con-
sisting of the following operations:

• Calculate the dependence coefficients  for the rows of the leading matrix.
• Among the rows of the operator corresponding to nonzero coefficients, choose one with the least

lower order (if there are several such rows, take any one of them). Let i be the index of the chosen row.

• Replace the row  by . If the original operator  is of full rank, then the resulting ith

row is nonzero. Let the upper order of the ith row be . Apply  to this row.
If  is of full rank, then, after at most  steps, the algorithm produces  with a nonsingular leading

matrix. If  is not of full rank, then, after at most  steps, a zero row appears in the operator. Indeed,
the sum of the lower orders of all rows of  increases at every step. However, this sum is initially at least 
and cannot become greater than  at any step. We have . If there is no zero row after executing

 steps, then, at the th step, the sum of the lower orders of all rows of the operator becomes equal
to  and the operator itself is a matrix from . This step is the last: either the resulting matrix is
nonsingular or its rows are linearly dependent and, hence, a zero row appears in the matrix at this step.

Remark 2. If the rear matrix of  is nonsingular, it remains nonsingular after the application of EG .
This is ensured by the fact that the rows with the least lower orders are chosen to be eliminated. Note addi-
tionally that, if the trailing matrix of  is nonsingular, then this matrix is simultaneously the rear (nonsin-
gular) matrix of .

The fact that  is equivalent to  and, hence, , is derived from the existence of an inverse 
of the automorphism .

5.1.2. Algorithm EG . By analogy with EG , we can propose an algorithm EG  in which the trailing
matrix of the operator is considered instead of its leading matrix, the row with the highest upper order is
replaced by a linear combination of rows, and  raised to the corresponding negative power is applied to
the resulting linear combination. If  is of full rank, then, after at most  steps, the algorithm yields an
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equivalent operator  with a nonsingular trailing matrix; moreover,  and .
If  is not of full rank, then, after at most  steps, a zero row appears in the operator. If the frontal matrix
of  is nonsingular, the algorithm produces  that also has a nonsingular frontal matrix, because the rows
with the highest upper orders are chosen to be eliminated. By analogy with Remark 2, we note that, if the lead-
ing matrix of  is nonsingular, then this matrix is simultaneously the frontal (nonsingular) matrix of .

Remark 3. Thus, if  is of full rank, then the sequential application of EG  and EG  to the original
operator yields an equivalent operator in the strongly reduced form. By Theorem 1(i), we can calculate

.

5.2. Complexity of the EG Algorithms

Proposition 1. The arithmetic complexity of each of the algorithms EG  and EG  is

(4)
where  is the matrix multiplication exponent, , while the shift complexity is

(5)
Proof. The search for a linear dependence of rows in the leading or trailing matrices is reduced to solv-

ing a homogeneous system of  linear algebraic equations with  unknowns. The complexity of this search
is . The arithmetic complexity of reducing the order of a row by one in the worst case is ,
which yields estimate (4). Let the orders of all rows in  be equal to . If every step of the algorithm
reduces the order of a single row by one and finally the algorithm produces  of order 0 (which corre-
sponds to the worst case), then each of the rows requires  shifts, while all rows
require the number of shifts given by (5). The proposition is proved.

By applying EG  to  and, in the case of a full-rank operator, subsequently applying EG , we can
find  (see Remark 3). By Theorem 1(ii), the operator  is unimodular if and only if ,
and testing for unimodularity can be performed with arithmetic complexity (4) and shift complexity (5).
It will be shown in Subsection 6.1 that the arithmetic complexity of this testing can be reduced.

5.3. RR Algorithms

5.3.1. Algorithms RR
σ
 and RR . If  is a full-rank operator, then the algorithm RR  (see [16–18])

constructs an equivalent operator  with  and  that has
a nonsingular frontal matrix. If  is not of full rank, then the algorithm returns a corresponding message.

The algorithm RR  constructs  by transforming , i.e.,  changes step by step, gradually turning
into :

Check whether the rows of the frontal matrix of  are linearly independent over . If yes, then  does
not change and the algorithm terminates. Otherwise, a series of same-type steps are executed, each con-
sisting of the following operations:

(a) Calculate the dependence coefficients  for the rows of the frontal matrix.
(b) Among the rows corresponding to nonzero coefficients, choose one with the highest upper order

(if there are several such rows, take any one of them). Let i be the index of the chosen row.

(c) Replace the row  by .

If  is of full rank, then, after at most  steps, the algorithm yields  with a nonsingular frontal
matrix. If  is not of full rank, then, after at most  steps, a zero row appears in the operator.

By analogy with EG , we can propose an algorithm RR  that constructs an equivalent operator 
with a nonsingular rear matrix.

5.3.2. Extended RR
σ
 and RR . The extended algorithm RR , which is denoted by ExtRR , produces,

along with , a unimodular operator  such that .
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In fact, the input to ExtRR  is  and an arbitrary operator  and, if  is of full
rank, then ExtRR  yields  and , where  is the above-mentioned unimodular operator (if ,
then ExtRR  produces  and ):

Apply RR  to  and apply all operations executed over  to the operator initially equal to 

Proposition 2. Let ,  be of full rank, , and . Then
 at every step of the algorithm ExtRR .

Proof. This result is a consequence of [16, Proposition 1; 22, Theorem 4.9]; here, the difference
between the differential and difference cases is of no matter.

What was said above remains valid for the algorithm RR  extended in a similar manner. This extended
version is denoted by ExtRR .

Remark 4. For the differential case, it was proved in [1, Proposition 5] that a unimodular 
operator  of order  satisfies the inequality

, (6)

and, for any , there exists an operator  such that . The proof is easy to modify for
the difference case.

Example 1. For , any unimodular operator  satisfies ; for example,

(7)

In this case,

5.3.3. Complexity of RR algorithms. The following result is true.
Proposition 3. The arithmetic complexity of each of the algorithms RR  and RR  is

(8)
while the shift complexity is

(9)
Proof. Using the same argument as in the proof of Proposition 1, we can see that the arithmetic com-

plexity of each of the algorithms RR  and RR  coincides, in the order of growth, with the arithmetic
complexity (4) of the algorithms EG  and EG  described in Subsection 5.3.1.

Direct verification shows that the shift complexity of RR  and RR  is . Now, to prove (9), it
is sufficient to associate each pair  with an operator  such that, for any  and a certain pos-
itive constant  common for all  and , the number of shifts required by any of the algorithms RR  and
RR  is greater than . For RR , for example,  can be chosen from operators in which the upper
orders of the first  rows are equal to , the upper orders of the other rows are equal to , and the
upper orders of all rows after the application of RR are equal to . Additionally, it is required that the
sum of the upper orders of the rows be reduced precisely by one at every step of the algorithm and that
every elimination involve all rows of order . The same is true for RR , but the upper orders are
replaced by lower ones.

Thus, as , the shift complexity of RR  and RR  has a higher order of growth than that of
EG  and EG .

For the differential case, it was proved in [1, Proposition 6] that, if all results of row differentiation are
stored (so that differentiations are not repeated), then the total number of row differentiations in the dif-
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ferential version of RR in the worst case is . This estimate was not stated to be tight in some sense.
This estimate is also valid for the number of row shifts in the difference case (in fact, the proof remains the
same). Due to the storage of all results of row shifts, the space complexity is increased significantly, but
the shift complexity of RR  and RR  is reduced: instead of (9), we obtain

(10)

The complexity of ExtRR  and ExtRR  can be estimated by applying Proposition 2. Assuming as before

that , we have  for arithmetic complexity
and  for shift complexity. If all shift results are stored,
then the shift complexity is estimated by .

Combining these relations with Remark 4 yields the following result.
Proposition 4. For , without storing all row shift results, the arithmetic and shift complex-

ities of the algorithms ExtRR  and ExtRR  are

. (11)
If all shift results are stored, then the complexities are

(12)

5.4. Triangular Matrices

Definition 4. Suppose that the ith row of the frontal operator matrix of  has the form

Then the number  is called the pin index of the ith row of . If the ith row of  is zero, then its pin index
is equal to .

If the rows of  have pairwise distinct positive pin indices, then the frontal matrix is nonsingular: up
to the ordering of rows, it is a triangular matrix with nonzero diagonal elements. Assume that the rows

 and  have the same positive pin index  and, moreover,  and ,
where . Executing one arithmetic operation in , we can find  such that the row

(13)

has a pin index greater than  or an upper order lower than  (or both). Of the rows  in , the one
having a higher order is replaced by (13). If they have the same orders, any of them is replaced by (13). If

 is of full rank, then, the frontal matrix becomes triangular after at most  such unimodular trans-
formations (each being equivalent to multiplication on the left by a unimodular operator). This technique
can be used instead of the search for a linear dependence of the rows in the frontal matrix.

Remark 5. Under the assumption that  is the field of rational functions of  with the automorphism
, this technique was used in [12] in the first version of EG. In a discussion of the differential

case, A. Storjohann attracted my attention to the fact that this approach has a lower complexity than the
approach associated with solving linear algebraic systems (see also [20]).

Moreover, the algorithm  can be proposed for obtaining an equivalent operator with a nonsin-
gular rear matrix.

For EG  the leading and the frontal matrices coincide at the moment of comparing the pin indices;
moreover,  in (13). Of the rows  and , (13) replaces the one with a smaller lower order, which
is equivalent to a higher order row chosen for this replacement (if the rows have the same order, any of
them is taken).

The algorithm is supplemented with a preliminary step at which the upper orders of all rows are equal-
ized with the help of . (This transformation is unimodular, since  and  are mutually inverse.) Fol-
lowing this approach, we obtain the algorithm .
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Remark 6. Applying  to an operator with a nonsingular rear matrix yields an operator with both
leading and rear matrices being nonsingular (the same is true of EG , see Remark 2). This is a conse-
quence of the replacement rule that “out of the rows  in , the one with a higher order is replaced
by (13); if these rows have the same order, any of them is replaced.” Following an analogy with the differ-
ential case [1], the replacement rule is that “the row  is replaced in  by (13),” but the nonsingularity of
the rear matrix may then not be conserved (in the differential case, this conservation is of no interest).

The algorithm  is obtained in a similar manner. It finds an operator that is equivalent to the
original one and has a nonsingular trailing matrix.

Proposition 5. For the  algorithms, the arithmetic complexity is

(14)
and the shift complexity is

(15)

Proof. Obviously, for the  family, the arithmetic complexity is , i.e., (14). It is also
easy to see that, for the  family, the number of shifts in the worst case is the same as for EG,
i.e., .

6. TESTING FOR UNIMODULARITY AND INVERTING OPERATORS
6.1. Testing for Unimodularity

An algorithm for recognizing unimodularity with arithmetic complexity (4) and shift complexity (5)
was mentioned at the end of Section 2. On the basis of  and , we can propose an algorithm
with the same shift complexity but with a lower arithmetic complexity. Specifically,  is used to
transform the original operator  into an equivalent one with a nonsingular trailing matrix. Then 
is applied to the resulting operator. If the original operator is of full rank (which is determined in the course
of applying  and ), then, according to Remark 6, this application yields the value of .
By Theorem 1(ii), .

Taking into account estimates (14) and (15), we conclude that the arithmetic and shift complexities of
the described algorithm are

(16)

respectively.

6.2. Construction of an Inverse Operator
The inversion algorithm relies on the algorithms described in Subsection 5.3.2. It is represented as con-

sisting of four steps. If the operator is not of full rank, this is uncovered at the first step and the algorithm
terminates.

Step 1. Apply ExtRR  to . Let the result be , .

Step 2. Apply ExtRR  to . Let the result be , .
Step 3. If , then .
Step 4. Let  and  be the lower orders of the rows of . Then , where

 and . From this, .
After performing Step 2, the frontal and rear matrices of  are nonsingular. The total arithmetic and

shift complexities of Steps 1–3 is given by (11). The arithmetic complexity of computing  (Step 4)
is . This complexity grows more slowly than . The first estimate in (11) and (12)
remains unchanged. The values  obtained at Step 4 satisfy , . More-

over, . Therefore, the shift complexity of multiplying
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 by  in the worst case is , while the second estimates in (11) and (12)
remain unchanged.

Finally, we have proved the following result.
Theorem 2. (i) To test an arbitrary operator  for unimodularity, there exists an algorithm with arithmetic

and shift complexities equal to  and . The algorithm returns “yes” (the operator is unimodular)
or “no” (the operator is not unimodular).

(ii) To test an arbitrary operator  for unimodularity and, if  is unimodular, to construct , there exists
an algorithm with arithmetic and shift complexities

(17)

respectively. The algorithm produces an operator  or says that  is not unimodular. (If the results of all per-
formed shifts are not stored, then the arithmetic and shift complexities are  and , but the space
complexity increases, i.e., more storage space is required in the worst case.)

Example 2. The operator on the left-hand side of (7) is written in expanded form:

The rear matrix coincides with the trailing one, and the latter is nonsingular. By applying ExtRR ,
 is transformed as follows:

The last matrix in the chain is . It has a full rank, and its order is zero. We have . It follows
that the original operator  is unimodular. By applying ExtRR , the operator  initially equal to  is
transformed as

(18)

According to the algorithm, the last operator in the chain is multiplied on the left by the inverse of .
This multiplication does not change the last operator in (18), and the same is true of multiplication by

. Thus, the last operator in (18) is the inverse of . It coincides with the operator on the right-
hand side of (7).

Consider the case of  matrices. According to the above algorithms, every  matrix is unimodular
if and only if its only element  is an operator of order 0, i.e., . In this case, the inverse matrix
consists of the single element .

It is easy to note that in algorithm of an inversion of an operator we did not use the approaches based
on deriving of triangular matrices and discussed in item 5.4, although this approach has allowed to reduce
arithmetic complexity of algorithm of verification of a unimodularity. By analogy with ExtRR , ExtRR
we can describe algorithms Ext , Ext , but remains unclear, for example, whether on all steps
of these new algorithms will be satisfied of Proposition 2.

7. FIELD OF RATIONAL FUNCTIONS AS AN INITIAL DIFFERENCE FIELD
If the elements of the field  are represented by expressions involving the variable  and if the shift 

is the replacement of  by , followed by a possible simplification of the expression, then, for any

−β −βσ , , σ1diag( )n… −1
2M W 2 2( )O n d

L
Θ 3 2( )n d Θ 2 3( )n d

L L −1L

Θ ,4 2 4 3( ) ( ),n d O n d
−1L L

Θ 4 2( )n d Θ 5 3( )n d

⎛ ⎞ ⎛ ⎞− σ − ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = σ + .⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟− σ + ⎝ ⎠⎝ ⎠⎝ ⎠

2
2

1 11 1 00

101 222 2

x xL xxx x

σ
L

⎛ ⎞− ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟σ + → σ + → .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠−⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

2

1 1 0 10 0 1 0 1 0
0 1 0 11 0 00 22

x xxx

2I β = β =1 2 0
L σ W 2I

⎛ ⎞+
⎛ ⎞ − σ σ⎜ ⎟⎛ ⎞ ⎜ ⎟→ → .⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟−⎜ ⎟⎝ ⎠

⎝ ⎠

2

2
2

( 1) 11 0 11 0 2
0 1 1 12 2

x
x x

x
x

2I

σ , σ0 0diag( ) L

×1 1 ×1 1
a ∈ K\{0}a

−1a

σ −σ 1

σΔRR −σΔ 1RR

K x σ
x + 1x



1896

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 12  2017

ABRAMOV

, the costs of applying  and  can be considered identical. As a result, the shift complexity of some
of the above algorithms is reduced. Let us examine these complexity changes, assuming that  is the field

 of rational functions over a field  of characteristic 0 and .

Note that, if the application of  to any  requires finding , then these quantities can

be stored for further use. At the same time, the computation of  as discussed above does not yield
 and, if we need, for example,  later, this element has to be computed. Therefore, the

complexity of an algorithm with the above-discussed treatment of the cost of applying  is not necessar-
ily lower than that in the case of the shift complexity treatment described in the preceding sections. How-
ever, in our situation, the shift complexity is indeed reduced slightly.

It is easy to see that estimate (9) for RR  and RR  is transformed into : each of  steps in
the worst case requires  row shifts. For ExtRR  and ExtRR , the second (shift complexity) estimate

in (10) is transformed into .
For the families  and , estimate (15) remains unchanged, while the shift complexity estimate

for algorithms of the family  becomes the same as for : with the new treatment of , every step
in the worst case requires  shifts of -element rows.

The shift complexity estimate for a unimodularity recognition algorithm (the second estimate in (16))
remains unchanged, but, in the corresponding shift complexity estimate for the construction of an inverse
operator,  is replaced by  because of similar changes in the shift complexity of ExtRR  and ExtRR .

Thus, estimates (17) are transformed into  and 
The following result has been proved.
Theorem 3. Let , where  is a field of characteristic 0 and  is a variable. Let 

for any rational function . Then there exists an algorithm for recognizing the unimodularity of an
arbitrary operator and for constructing an inverse operator (if it exists) such that its arithmetic and shift com-
plexities are both .

A similar result can be obtained for the -difference case. In its simplest version, ,
where  is another variable, and  is the automorphism defined as .

8. OTHER APPROACHES
The problems of unimodularity recognition and inverse matrix construction can be solved by applying

various algorithms. For example, the Jacobson and Hermite forms of the given operator matrix can be
constructed; their definitions can be found in [21, 22]. In [21] an algorithm for constructing the Jacobson
form was proposed and its complexity was treated as a function of three variables, two of which are the
above  (other notation was used in [21]). The value of the third variable in the worst case is equal
to , and the complexity regarded as a function of  can be estimated as . The Hermite form
of a unimodular matrix is an identity matrix, and, in this case, the transformation matrix  is the inverse
of the original one. In our notation, the complexity estimate presented in [22] is . It seems
that this estimate is tight. (Of course, the algorithms in [21, 22] are intended for more general problems,
and the algorithms described above have advantages only for unimodularity recognition and the construc-
tion of an inverse operator matrix.) The algorithms in [21, 22] are described in terms of rings of noncom-
mutative Ore polynomials (see [23, 24]). As a result, those algorithms are applicable to the differential and
difference cases.

Note that we are discussing algorithms in terms of complexity. An algorithm that looks the best in this
sense is not necessarily the best in computational practice.

9. OPEN QUESTIONS AND HYPOTHESES
It is unclear whether there exists a unimodularity recognition algorithm with complexity equal to

, where  are real numbers and . For matrices whose elements are usual commutative
polynomials from , there is an algorithm (see [25]) for constructing an inverse matrix with complexity
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, where  is the maximum degree of elements of given matrices (strictly speaking, the algorithm in
[25] is intended for inverting only matrices in general position). It is also unclear whether the problem of
constructing an inverse operator matrix can be reduced to matrix multiplication by analogy with reduc-
ibility in the case when the matrix elements belong to a field (see [26, Section. 16.4; 27, Chapter 6]). Here,
reducibility is understood in the sense that, if there exists an algorithm for multiplying operator matrices
with complexity (arithmetic or shift) , then there exists a matrix inversion algorithm with complex-
ity . The hypothesized reducibility is doubtful, but reducibility in the opposite direction is
proved in the same manner as for matrices over a field.

Returning to matrices with polynomial elements, we note that there exists a matrix multiplication algo-
rithm with complexity , where  is, as before, the matrix multiplication exponent,

,  is again denotes the maximum degree of elements of these matrices, and  is a polynomial
(see [28]). However, most likely, a matrix inversion algorithm with such complexity does not exist.

However, what was said above is only a hypothesis. To the author’s knowledge, there are no algo-
rithms, for example, for unimodularity recognition with complexity lower than that in Theorem 2(i). At
least, a search through the literature has not revealed such an algorithm, but, of course, its existence is not
excluded. For example, on the basis of the ideas underlying algorithms for fast matrix multiplication over
a field (see [29–31]) and the idea underlying algorithms for fast multiplication of scalar linear operators
(see [19, 32, 33]), an algorithm for fast multiplication of operator matrices can be proposed and then a
corresponding algorithm for unimodularity recognition can be obtained.

Numerous recent works (see, e.g., [18, 22]) have been aimed to determine the growth of coefficients
belonging to when, for example, . It would be of interest to investigate the bit complexity of
unimodularity recognition algorithms. Another approach is to treat complexity as a function of three vari-
ables: , and , where  is such that all polynomials involved in  as numerators and denominators of
elements' coefficients have degrees at most ; moreover, for fixed , and , the complexity in the worse-
case is the number of operations in .
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