
1887

ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2017, Vol. 57, No. 12, pp. 1887–1898. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © S.A. Abramov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 12, pp. 1933–1945.

Inverse Linear Difference Operators
S. A. Abramov

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”,
Russian Academy of Sciences, Moscow, 119333 Russia

e-mail: sergeyabramov@mail.ru
Received August 28, 2016; in final form, January 23, 2017

Abstract—For matrices whose elements are scalar linear difference operators, algorithms for checking
invertibility (unimodularity) and constructing an inverse matrix (if it exists) are proposed. Their com-
plexity is lower than that of other available algorithms. The differences of these algorithms from their
differential analogues are discussed.

Keywords: complexity of algorithms, difference operator, operator matrix, unimodular matrix, uni-
modularity recognition, inverse matrix construction.
DOI: 10.1134/S0965542517120028

1. INTRODUCTION
Given a matrix over a field or ring, checking whether it is invertible and constructing an inverse matrix

(if any) are classical mathematical problems. Below, these problems are considered as applied to operator
matrices. In this case, matrix elements are scalar linear difference operators with coefficients from a dif-
ference field with an automorphism (shift) . The field is assumed to be of characteristic 0. New algo-
rithms for solving these problems are discussed. Note that they can be solved by well-known algorithms
intended originally for more general problems (this matter will be discussed later). The new algorithms
proposed have lower complexity.

In the case of operator matrices, the term “unimodular matrix” is usually used instead of “invertible
matrix.” The former term will be used throughout this paper.

In the differential case when is a differential field of characteristic 0 with derivation and when
the matrix elements are scalar linear differential operators over , algorithms for checking the unimodu-
larity of a matrix and constructing its inverse were considered in [1]. For a given operator matrix L, both
differential and (discussed below) difference algorithms rely on determining the dimension of the solution
space of the corresponding system of equations under the assumption that the components of solutions
belong to the Picard–Vessiot extension (see [2–4]) of associated with . An operator matrix of full
rank (the rows of are independent over the ring of scalar linear operators) is unimodular if and only if

, i.e., is a zero space (see [5]).
The following notation is used below. The ring of matrices (is a positive integer) with elements

from a ring or field is denoted by . If is an matrix, then with is used to
denote the matrix equal to the th row of . A diagonal matrix with diagonal elements
is designated as , and stands for the identity matrix.

The results of this paper were preliminarily announced in an extended abstract [6].

2. DIFFERENCE FROM THE DIFFERENTIAL CASE
There are at least three differences from the differential case considered in [1].
1. In the difference case, there is a natural possibility of separately considering the complexities mea-

sured as the number of arithmetic operations and as the number of shifts; this is similar to sorting algo-
rithms, for which the number of comparisons and the number of element shifts are considered separately.
Given a matrix, computing the number of required arithmetic operations, we can ignore shifts, while,
computing the number of shifts, we can ignore arithmetic operations. In the differential case, two com-

K σ K

K ∂ = '
K

LV
K L L

L
=dim 0LV LV

×n n n
R ()Matn R M ×n n ,*iM ≤ ≤1 i n

×1 n i M ×n n , ,1 nr … r
, ,1diag()nr … r nI ×n n

1888

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

ABRAMOV

plexities are not so easy to consider separately, since the application of the derivation operator to a scalar
differential operator on the left requires additional arithmetic operations (operators are assumed to be rep-
resented in the standard form as polynomials in), for example, . Ignoring
derivation operations can lead to misleading estimates for the number of arithmetic operations. In the dif-
ference case, we deal with an automorphism , which opens up the opportunity to consider the complex-
ities separately.

2. The simple replacement of by in algorithms for the differential case does not yield algorithms for
the difference case. Here, additional tricks are required. As was said above, algorithms are based on the
determination of . The situation is such that the system , where is an matrix with
elements from , has a solution space of dimension if and only if is nonsingular, while, in the differ-
ential case , this nonsingularity is not required. However, in the difference case, this dimension
can also be algorithmically computed for an arbitrary linear difference system (see [5]).

3. Suppose that a difference field is the field of rational functions of and the application of to an
arbitrary rational function is obtained by substituting for , followed by reducing the result to canon-
ical form (for , is substituted). Then it is natural to assume that has the same complexity as
for any integer . This point of view can affect the algorithmic complexity in terms of the number of shifts.
In the differential case, the identification of the complexities for and would be groundless: it is natural
to assume that the application of is the -time application of .

3. ADEQUATE DIFFERENCE EXTENSIONS

Recall that a difference ring is a commutative ring with identity and an automorphism (which will
frequently be referred to as a shift). If is additionally a field, then it is called a difference field. The dif-
ference fields considered in what follows are always assumed to be fields of characteristic 0.

The constant ring of a difference ring is . If is a difference field, then
 is a subfield of (the constant field of).

Let be a difference field with an automorphism , and let be a difference ring extension of
(on the corresponding automorphism of coincides with ; for this automorphism of , we use the
same notation).

Definition 1. The ring (which is a difference field extension of) is said to be an adequate difference
extension of if is a field and an arbitrary system

(1)

with a nonsingular matrix has in a linear solution space of dimension over .
The nonsingularity of in this definition is essential: for example, if the first row of is all zero, then

the component in any solution of system (1) is zero as well.
Remark 1. The -difference case (see [7, 8]) is covered by the general difference case.
If is algebraically closed, then there exists a unique (up to a difference isomorphism, i.e., an

isomorphism commuting with) adequate extension such that , which is called
the universal difference (Picard–Vessiot) ring extension of . The complete proof of its existence is not
easy (see [4, Section 1.4]), while the existence of an adequate difference extension for an arbitrary dif-
ference field can be rather easily proved (see [9, Section 5.1]). However, it should be emphasized that, for
an adequate extension, the equality is not guaranteed; in the general case,

 is a proper subfield of .
The assertion that a universal difference extension exists for an arbitrary difference field of character-

istic 0 is not true if the extension is understood as a field. Franke’s well-known example (see [10]) is the
scalar equation over a field with an algebraically closed constant field. This equation has no
nontrivial solutions in any difference extension having an algebraically closed constant field.

In what follows, denotes a fixed adequate difference extension of a difference field with an auto-
morphism .

∂

∂ ∂ ∂ + = ∂ + + ∂ +2() (') 'a b a a b b

σ

∂ σ

dim LV σ =y Ay A ×n n
K n A

='y Ay

K x σ
+ 1x x

−σ 1 − 1x σ σk

k
∂ ∂ k

∂ k k ∂

K σ
K

K = ∈ σ =K KConst() { | }c c c K

KConst() K K

K σ Λ K

K Λ σ Λ
σ

Λ K

K ΛConst()

σ = , = , , ,T
1()ny Ay y y … y

∈ KMat ()nA Λ n n ΛConst()
A A

1y
q

KConst()
σ Ω Ω = KConst() Const()

K

Λ

Λ = KConst() Const()
KConst() ΛConst()

σ = −y y K

Λ K

σ

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

INVERSE LINEAR DIFFERENCE OPERATORS 1889

4. ORDERS OF OPERATORS AND SOLUTION SPACES

A scalar difference operator is an element of the ring . Given a nonzero scalar operator
, its upper and lower orders are defined as

and the order of f is defined as

Let , , and .

For a finite set of scalar operators (a vector, matrix, matrix row), is defined as the maximum
of the upper orders of its elements; is defined as the minimum of the lower orders of its elements;
and, finally, is defined as .

A difference operator matrix is a matrix from . In the subsequent exposition, such an
operator matrix is associated with some matrices belonging to . To avoid terminology confusion,
operator matrices will be briefly referred to as operators. The case of scalar operators will be considered
separately.

An operator is of full rank (or is a full-rank operator) if its rows are linearly independent over .
Recall that same-length rows with elements belonging to are called linearly dependent
(over) if there exist not all zero such that ; otherwise,

these rows are called linearly independent (over).
If

and is a nonzero matrix, then can be written in expanded form as

(2)

where and (the leading and trailing matrices of the original operator) are
nonzero.

Definition 2. Let the upper and lower row orders of an operator be and , respec-
tively. The frontal matrix of is the leading matrix of the operator , where

Accordingly, the rear matrix of is the trailing matrix of the operator , where

We say that is strongly reduced if its frontal and rear matrices are both nonsingular.

Definition 3. An operator is called unimodular or invertible if there exists an
inverse : . The set of unimodular operators is denoted by .
Two operators are said to be equivalent if for some .

Let denote the space of solutions of the system that belong to (see Section 3). For brev-
ity, is sometimes called the solution space of .

For the difference case, Theorem 1 from [1] can be restated as follows.

Theorem 1. Let be a full-rank operator. Then the following assertions hold:

(i) If is strongly reduced, then

(ii) .
As in the differential case, the proof is based on [5, 9].

−σ, σK
1[]

= σ∑
i

if a

= ≠ = ≠ord max{ | 0}, ord min{ | 0}i if i a f i a

= − .ord ord ordf f f

= −∞ord 0 = ∞ord 0 = −∞ord 0

F ord F
ordF

ord F −ord ordF F
−σ, σK

1Mat ([])n

KMat ()n

−σ,σK
1[]

, ,1 su … u −σ, σK
1[]

−σ, σK
1[] −, , ∈ σ, σK

1
1 []sf … f + + =1 1 0s sf u … f u

−σ,σK
1[]

−∈ σ,σ , = , = ,K
1Mat ([]) ord ordnL l L t L

L L
−

−= σ + σ + + σ ,�

1
1

l l t
l l tL A A A

−, , , ∈ K1 Mat ()l l t nA A … A ,l tA A

L α , , α1 n… β , , β1 n…
L PL

−α −α= σ , , σ , = .1diag() ordnl lP … l L

L QL
−β −β= σ , , σ , = .1diag() ordnt tQ … t L

L
−∈ σ,σK

1Mat ([])nL
− −∈ σ, σK

1 1Mat ([])nL − −= =1 1
nLL L L I ×n n ϒn

−, ∈ σ,σK
1

1 2 Mat ([])nL L =1 2L UL ∈ ϒnU

LV =() 0L y Λ n

LV L

−∈ σ,σ 1Mat ([])nL K

L ,=
= .∑ 1

dim ord
*

n
L ii

V L

∈ ϒ ⇔ = 0n LL V

1890

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

ABRAMOV

5. REDUCTION OF OPERATORS
In this section and below, we assume without explicit mention that and are integers such that

and and the original operator is such that

(3)

Algorithms for solving the considered matrix problems are characterized by two complexities that are
functions of and :

• arithmetic complexity, i.e., the number of arithmetic operations in in the worst case for fixed and ;

• shift complexity, i.e., the number of operations , applied to elements of in the worst case for
fixed and .

In deriving asymptotic complexity bounds, along with big notation, we use notation (see [11]): the
relation is equivalent to , where , i.e.,
and are quantities of the same order as .

Concerning the concept of shift complexity, we note that the computation of for and
requires, by assumption, that the operation or be applied times.

5.1. EG Algorithms

5.1.1. Algorithm EG
σ
. If is a full-rank operator, then the algorithm EG (see [12–14]) constructs an

equivalent operator with and that has a nonsingular
leading matrix. If is not of full rank, the algorithm returns a corresponding message.

The algorithm EG constructs by transforming , i.e., changes step by step, gradually turning
into :

Check whether the rows of the leading matrix of are linearly independent over . If yes, then does
not change and the algorithm terminates. Otherwise, a series of same-type steps are executed, each con-
sisting of the following operations:

• Calculate the dependence coefficients for the rows of the leading matrix.
• Among the rows of the operator corresponding to nonzero coefficients, choose one with the least

lower order (if there are several such rows, take any one of them). Let i be the index of the chosen row.

• Replace the row by . If the original operator is of full rank, then the resulting ith

row is nonzero. Let the upper order of the ith row be . Apply to this row.
If is of full rank, then, after at most steps, the algorithm produces with a nonsingular leading

matrix. If is not of full rank, then, after at most steps, a zero row appears in the operator. Indeed,
the sum of the lower orders of all rows of increases at every step. However, this sum is initially at least
and cannot become greater than at any step. We have . If there is no zero row after executing

 steps, then, at the th step, the sum of the lower orders of all rows of the operator becomes equal
to and the operator itself is a matrix from . This step is the last: either the resulting matrix is
nonsingular or its rows are linearly dependent and, hence, a zero row appears in the matrix at this step.

Remark 2. If the rear matrix of is nonsingular, it remains nonsingular after the application of EG .
This is ensured by the fact that the rows with the least lower orders are chosen to be eliminated. Note addi-
tionally that, if the trailing matrix of is nonsingular, then this matrix is simultaneously the rear (nonsin-
gular) matrix of .

The fact that is equivalent to and, hence, , is derived from the existence of an inverse
of the automorphism .

5.1.2. Algorithm EG . By analogy with EG , we can propose an algorithm EG in which the trailing
matrix of the operator is considered instead of its leading matrix, the row with the highest upper order is
replaced by a linear combination of rows, and raised to the corresponding negative power is applied to
the resulting linear combination. If is of full rank, then, after at most steps, the algorithm yields an

n d > 0n
≥ 0d L

−∈ σ,σ , = , = , = .1Mat ([]) ord ord ordnL K l L t L d L

n d
K n d

σ −σ 1
K

n d
O Θ

, = Θ ,() (())f n d g n d , = ,() (())f n d O g n d , = ,() (())g n d O f n d ,()f n d
,()g n d , → ∞n d

σka ∈ Zk ∈Ka
σ −σ 1 k

L σ
−

+ ∈ σ,σ
�

K
1Mat ([])nL + =

�

ord ordL L + ≥
�

ord ordL L
L

σ +
�

L L L

+
�

L
L K L

, , ∈K1 np … p

,*iL ,=∑ 1 *
n

k kk
p L L

α −ασ l

L nd +
�

L
L nd

L tn
ln − =ln tn dn

− 1nd nd
ln KMat ()n

L σ

L
L

+
�

L L
+

= �

L LV V −σ 1

σ

σ
-1 σ −σ 1

σ
L nd

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

INVERSE LINEAR DIFFERENCE OPERATORS 1891

equivalent operator with a nonsingular trailing matrix; moreover, and .
If is not of full rank, then, after at most steps, a zero row appears in the operator. If the frontal matrix
of is nonsingular, the algorithm produces that also has a nonsingular frontal matrix, because the rows
with the highest upper orders are chosen to be eliminated. By analogy with Remark 2, we note that, if the lead-
ing matrix of is nonsingular, then this matrix is simultaneously the frontal (nonsingular) matrix of .

Remark 3. Thus, if is of full rank, then the sequential application of EG and EG to the original
operator yields an equivalent operator in the strongly reduced form. By Theorem 1(i), we can calculate

.

5.2. Complexity of the EG Algorithms

Proposition 1. The arithmetic complexity of each of the algorithms EG and EG is

(4)
where is the matrix multiplication exponent, , while the shift complexity is

(5)
Proof. The search for a linear dependence of rows in the leading or trailing matrices is reduced to solv-

ing a homogeneous system of linear algebraic equations with unknowns. The complexity of this search
is . The arithmetic complexity of reducing the order of a row by one in the worst case is ,
which yields estimate (4). Let the orders of all rows in be equal to . If every step of the algorithm
reduces the order of a single row by one and finally the algorithm produces of order 0 (which corre-
sponds to the worst case), then each of the rows requires shifts, while all rows
require the number of shifts given by (5). The proposition is proved.

By applying EG to and, in the case of a full-rank operator, subsequently applying EG , we can
find (see Remark 3). By Theorem 1(ii), the operator is unimodular if and only if ,
and testing for unimodularity can be performed with arithmetic complexity (4) and shift complexity (5).
It will be shown in Subsection 6.1 that the arithmetic complexity of this testing can be reduced.

5.3. RR Algorithms

5.3.1. Algorithms RR
σ
 and RR . If is a full-rank operator, then the algorithm RR (see [16–18])

constructs an equivalent operator with and that has
a nonsingular frontal matrix. If is not of full rank, then the algorithm returns a corresponding message.

The algorithm RR constructs by transforming , i.e., changes step by step, gradually turning
into :

Check whether the rows of the frontal matrix of are linearly independent over . If yes, then does
not change and the algorithm terminates. Otherwise, a series of same-type steps are executed, each con-
sisting of the following operations:

(a) Calculate the dependence coefficients for the rows of the frontal matrix.
(b) Among the rows corresponding to nonzero coefficients, choose one with the highest upper order

(if there are several such rows, take any one of them). Let i be the index of the chosen row.

(c) Replace the row by .

If is of full rank, then, after at most steps, the algorithm yields with a nonsingular frontal
matrix. If is not of full rank, then, after at most steps, a zero row appears in the operator.

By analogy with EG , we can propose an algorithm RR that constructs an equivalent operator
with a nonsingular rear matrix.

5.3.2. Extended RR
σ
 and RR . The extended algorithm RR , which is denoted by ExtRR , produces,

along with , a unimodular operator such that .

−
�

L − =
�

ord ordL L − ≤
�

ord ordL L
L nd
L −

�

L

L L
L −σ 1 σ

dim LV

σ −σ 1

ω+Θ +1 3 2(),n d n d

ω < ω2 3<

Θ .2 2()n d

n n
ωΘ()n ωΘ + 2()n n d

L d
�

L
+ − + + Θ 2(1) ()nd n d … n nd

−σ 1 L σ

dim LV L =dim 0LV

σ
-1

L σ
−

+ ∈ σ, σ
�

K
1Mat ([])nL + ≤

�

ord ordL L + ≥
�

ord ordL L
L

σ +
�

L L L

+
�

L
L K L

, , ∈K1 np … p

,*iL α − α −α
,=

σ σ∑ 1
()()

*
i i k

n l
k kk

p L

L nd +
�

L
L nd

−σ 1 −σ 1 −
�

L

σ
-1 σ σ

+
�

L ∈ ϒnU + =
�

L UL

1892

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

ABRAMOV

In fact, the input to ExtRR is and an arbitrary operator and, if is of full
rank, then ExtRR yields and , where is the above-mentioned unimodular operator (if ,
then ExtRR produces and):

Apply RR to and apply all operations executed over to the operator initially equal to

Proposition 2. Let , be of full rank, , and . Then
 at every step of the algorithm ExtRR .

Proof. This result is a consequence of [16, Proposition 1; 22, Theorem 4.9]; here, the difference
between the differential and difference cases is of no matter.

What was said above remains valid for the algorithm RR extended in a similar manner. This extended
version is denoted by ExtRR .

Remark 4. For the differential case, it was proved in [1, Proposition 5] that a unimodular
operator of order satisfies the inequality

, (6)

and, for any , there exists an operator such that . The proof is easy to modify for
the difference case.

Example 1. For , any unimodular operator satisfies ; for example,

(7)

In this case,

5.3.3. Complexity of RR algorithms. The following result is true.
Proposition 3. The arithmetic complexity of each of the algorithms RR and RR is

(8)
while the shift complexity is

(9)
Proof. Using the same argument as in the proof of Proposition 1, we can see that the arithmetic com-

plexity of each of the algorithms RR and RR coincides, in the order of growth, with the arithmetic
complexity (4) of the algorithms EG and EG described in Subsection 5.3.1.

Direct verification shows that the shift complexity of RR and RR is . Now, to prove (9), it
is sufficient to associate each pair with an operator such that, for any and a certain pos-
itive constant common for all and , the number of shifts required by any of the algorithms RR and
RR is greater than . For RR , for example, can be chosen from operators in which the upper
orders of the first rows are equal to , the upper orders of the other rows are equal to , and the
upper orders of all rows after the application of RR are equal to . Additionally, it is required that the
sum of the upper orders of the rows be reduced precisely by one at every step of the algorithm and that
every elimination involve all rows of order . The same is true for RR , but the upper orders are
replaced by lower ones.

Thus, as , the shift complexity of RR and RR has a higher order of growth than that of
EG and EG .

For the differential case, it was proved in [1, Proposition 6] that, if all results of row differentiation are
stored (so that differentiations are not repeated), then the total number of row differentiations in the dif-

σ L −∈ σ,σK
1Mat ([])nW L

σ +
�

L UW U = nW I
σ +

�

L U

σ L L .W
−, ∈ σ,σK

1Mat ([])nL W L =ord L d = 1ordW d
= + 1ord ()W O nd d σ

−σ 1

−σ 1

×n n
L d

− ≤ −1ord (1)L n d

,n d L − = −1ord (1)L n d

= 2n L −= 1ord ordL L
−

⎛ ⎞+⎛ ⎞− σ − σ σ⎜ ⎟⎜ ⎟
= .⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− σ + −⎜ ⎟⎝ ⎠ ⎝ ⎠

1 2

2 2

1 (1) 11 1
2

1 1
2 2 2

x
x x x

x x x

−= , σ = + , = = .K Q
1() 1 ord ord 1x x x L L

σ −σ 1

ω+Θ +1 3 2(),n d n d

Θ 3 3().n d

σ −σ 1

σ −σ 1

σ −σ 1
3 3()O n d

 and n d ,()n dL ,n d
c n d σ

−σ 1
3 3cn d σ ,()n dL

[/2]n d [/2]d
[/2]d

[/2]d −σ 1

, → ∞n d σ −σ 1

σ −σ 1

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

INVERSE LINEAR DIFFERENCE OPERATORS 1893

ferential version of RR in the worst case is . This estimate was not stated to be tight in some sense.
This estimate is also valid for the number of row shifts in the difference case (in fact, the proof remains the
same). Due to the storage of all results of row shifts, the space complexity is increased significantly, but
the shift complexity of RR and RR is reduced: instead of (9), we obtain

(10)

The complexity of ExtRR and ExtRR can be estimated by applying Proposition 2. Assuming as before

that , we have for arithmetic complexity
and for shift complexity. If all shift results are stored,
then the shift complexity is estimated by .

Combining these relations with Remark 4 yields the following result.
Proposition 4. For , without storing all row shift results, the arithmetic and shift complex-

ities of the algorithms ExtRR and ExtRR are

. (11)
If all shift results are stored, then the complexities are

(12)

5.4. Triangular Matrices

Definition 4. Suppose that the ith row of the frontal operator matrix of has the form

Then the number is called the pin index of the ith row of . If the ith row of is zero, then its pin index
is equal to .

If the rows of have pairwise distinct positive pin indices, then the frontal matrix is nonsingular: up
to the ordering of rows, it is a triangular matrix with nonzero diagonal elements. Assume that the rows

 and have the same positive pin index and, moreover, and ,
where . Executing one arithmetic operation in , we can find such that the row

(13)

has a pin index greater than or an upper order lower than (or both). Of the rows in , the one
having a higher order is replaced by (13). If they have the same orders, any of them is replaced by (13). If

 is of full rank, then, the frontal matrix becomes triangular after at most such unimodular trans-
formations (each being equivalent to multiplication on the left by a unimodular operator). This technique
can be used instead of the search for a linear dependence of the rows in the frontal matrix.

Remark 5. Under the assumption that is the field of rational functions of with the automorphism
, this technique was used in [12] in the first version of EG. In a discussion of the differential

case, A. Storjohann attracted my attention to the fact that this approach has a lower complexity than the
approach associated with solving linear algebraic systems (see also [20]).

Moreover, the algorithm can be proposed for obtaining an equivalent operator with a nonsin-
gular rear matrix.

For EG the leading and the frontal matrices coincide at the moment of comparing the pin indices;
moreover, in (13). Of the rows and , (13) replaces the one with a smaller lower order, which
is equivalent to a higher order row chosen for this replacement (if the rows have the same order, any of
them is taken).

The algorithm is supplemented with a preliminary step at which the upper orders of all rows are equal-
ized with the help of . (This transformation is unimodular, since and are mutually inverse.) Fol-
lowing this approach, we obtain the algorithm .

2()O nd

σ −σ 1

.2 3()O n d

σ −σ 1

= 1ordW d ω ω+Θ + ⋅ + = Θ + +2 1 3 2 3
1 1((()) ()nd n n d d n d n d n dd

Θ ⋅ ⋅ + = Θ + +2 2 3 3 3 2 3 2
1 1 1(()) ()nd n d d n d n d d n dd

⋅ ⋅ + = + +2 2 3 2 2 2 2
1 1 1(()) ()O nd n d d O n d n d d n dd

= Θord ()W nd
σ −σ 1

Θ , Θ4 2 5 3() ()n d n d

Θ , .4 2 4 3() ()n d O n d

L

−

, , , , ≤ ≠≤, ,
���

1

(0 0) 1 , 0.
k

… a … b k n a

k L L
−∞

L

,=1 *ir L ,=2 *jr L k , = 1ord
*iL d , = 2ord

*jL d
≤1 2d d K ∈v K

−− σv 2 1
2 1

d dr r

k 2d ,1 2r r L

L ⋅n nd

K x
→ + 1x x

−σΔ 1RR

σ
− =2 1 0d d 1r 2r

σ σ −σ 1

σΔEG

1894

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

ABRAMOV

Remark 6. Applying to an operator with a nonsingular rear matrix yields an operator with both
leading and rear matrices being nonsingular (the same is true of EG , see Remark 2). This is a conse-
quence of the replacement rule that “out of the rows in , the one with a higher order is replaced
by (13); if these rows have the same order, any of them is replaced.” Following an analogy with the differ-
ential case [1], the replacement rule is that “the row is replaced in by (13),” but the nonsingularity of
the rear matrix may then not be conserved (in the differential case, this conservation is of no interest).

The algorithm is obtained in a similar manner. It finds an operator that is equivalent to the
original one and has a nonsingular trailing matrix.

Proposition 5. For the algorithms, the arithmetic complexity is

(14)
and the shift complexity is

(15)

Proof. Obviously, for the family, the arithmetic complexity is , i.e., (14). It is also
easy to see that, for the family, the number of shifts in the worst case is the same as for EG,
i.e., .

6. TESTING FOR UNIMODULARITY AND INVERTING OPERATORS
6.1. Testing for Unimodularity

An algorithm for recognizing unimodularity with arithmetic complexity (4) and shift complexity (5)
was mentioned at the end of Section 2. On the basis of and , we can propose an algorithm
with the same shift complexity but with a lower arithmetic complexity. Specifically, is used to
transform the original operator into an equivalent one with a nonsingular trailing matrix. Then
is applied to the resulting operator. If the original operator is of full rank (which is determined in the course
of applying and), then, according to Remark 6, this application yields the value of .
By Theorem 1(ii), .

Taking into account estimates (14) and (15), we conclude that the arithmetic and shift complexities of
the described algorithm are

(16)

respectively.

6.2. Construction of an Inverse Operator
The inversion algorithm relies on the algorithms described in Subsection 5.3.2. It is represented as con-

sisting of four steps. If the operator is not of full rank, this is uncovered at the first step and the algorithm
terminates.

Step 1. Apply ExtRR to . Let the result be , .

Step 2. Apply ExtRR to . Let the result be , .
Step 3. If , then .
Step 4. Let and be the lower orders of the rows of . Then , where

 and . From this, .
After performing Step 2, the frontal and rear matrices of are nonsingular. The total arithmetic and

shift complexities of Steps 1–3 is given by (11). The arithmetic complexity of computing (Step 4)
is . This complexity grows more slowly than . The first estimate in (11) and (12)
remains unchanged. The values obtained at Step 4 satisfy , . More-

over, . Therefore, the shift complexity of multiplying

σΔEG
σ

,1 2r r L

2r L

−σΔ 1EG

ΔEG

Θ 3 2()n d

Θ .2 2()n d

ΔEG Θ ⋅ ⋅()nd n nd
ΔEG

Θ 2 2()n d

−σΔ 1EG σ−Δ 1EG
−σΔ 1EG

L σΔEG

−σΔ 1EG σΔEG dim LV
∈ ϒ ⇔ =dim 0n LL V

Θ , Θ3 2 2 2() (),n d n d

−σ 1 and nL I −∈ σ, σK
1

1 Mat ([])nL ∈ ϒ1 nW

σ 1 1 andL W −∈ σ, σK
1

2 Mat ([])nL ∈ ϒ2 nW

>2ord 0L ∉ ϒnL
=2ord 0L β , , β1 n… 2L =2L MD

∈ KMat ()nM β β= σ , , σ1diag()nD … − −β −β −= σ , , σ11 1
2diag()nL … M W

2L
−1

2M W
⋅ =2 3() ()O n nd O n d 4 2n d

β , , β1 n… ≤ ≤β0 i d = , ,1i … n
− = ≤ − = −1

2 2ord ord (1)ord (1)M W W n L n d

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

INVERSE LINEAR DIFFERENCE OPERATORS 1895

 by in the worst case is , while the second estimates in (11) and (12)
remain unchanged.

Finally, we have proved the following result.
Theorem 2. (i) To test an arbitrary operator for unimodularity, there exists an algorithm with arithmetic

and shift complexities equal to and . The algorithm returns “yes” (the operator is unimodular)
or “no” (the operator is not unimodular).

(ii) To test an arbitrary operator for unimodularity and, if is unimodular, to construct , there exists
an algorithm with arithmetic and shift complexities

(17)

respectively. The algorithm produces an operator or says that is not unimodular. (If the results of all per-
formed shifts are not stored, then the arithmetic and shift complexities are and , but the space
complexity increases, i.e., more storage space is required in the worst case.)

Example 2. The operator on the left-hand side of (7) is written in expanded form:

The rear matrix coincides with the trailing one, and the latter is nonsingular. By applying ExtRR ,
 is transformed as follows:

The last matrix in the chain is . It has a full rank, and its order is zero. We have . It follows
that the original operator is unimodular. By applying ExtRR , the operator initially equal to is
transformed as

(18)

According to the algorithm, the last operator in the chain is multiplied on the left by the inverse of .
This multiplication does not change the last operator in (18), and the same is true of multiplication by

. Thus, the last operator in (18) is the inverse of . It coincides with the operator on the right-
hand side of (7).

Consider the case of matrices. According to the above algorithms, every matrix is unimodular
if and only if its only element is an operator of order 0, i.e., . In this case, the inverse matrix
consists of the single element .

It is easy to note that in algorithm of an inversion of an operator we did not use the approaches based
on deriving of triangular matrices and discussed in item 5.4, although this approach has allowed to reduce
arithmetic complexity of algorithm of verification of a unimodularity. By analogy with ExtRR , ExtRR
we can describe algorithms Ext , Ext , but remains unclear, for example, whether on all steps
of these new algorithms will be satisfied of Proposition 2.

7. FIELD OF RATIONAL FUNCTIONS AS AN INITIAL DIFFERENCE FIELD
If the elements of the field are represented by expressions involving the variable and if the shift

is the replacement of by , followed by a possible simplification of the expression, then, for any

−β −βσ , , σ1diag()n… −1
2M W 2 2()O n d

L
Θ 3 2()n d Θ 2 3()n d

L L −1L

Θ ,4 2 4 3() (),n d O n d
−1L L

Θ 4 2()n d Θ 5 3()n d

⎛ ⎞ ⎛ ⎞− σ − ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = σ + .⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟− σ + ⎝ ⎠⎝ ⎠⎝ ⎠

2
2

1 11 1 00

101 222 2

x xL xxx x

σ
L

⎛ ⎞− ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟σ + → σ + → .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠−⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

2

1 1 0 10 0 1 0 1 0
0 1 0 11 0 00 22

x xxx

2I β = β =1 2 0
L σ W 2I

⎛ ⎞+
⎛ ⎞ − σ σ⎜ ⎟⎛ ⎞ ⎜ ⎟→ → .⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟−⎜ ⎟⎝ ⎠

⎝ ⎠

2

2
2

(1) 11 0 11 0 2
0 1 1 12 2

x
x x

x
x

2I

σ , σ0 0diag() L

×1 1 ×1 1
a ∈ K\{0}a

−1a

σ −σ 1

σΔRR −σΔ 1RR

K x σ
x + 1x

1896

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

ABRAMOV

, the costs of applying and can be considered identical. As a result, the shift complexity of some
of the above algorithms is reduced. Let us examine these complexity changes, assuming that is the field

 of rational functions over a field of characteristic 0 and .

Note that, if the application of to any requires finding , then these quantities can

be stored for further use. At the same time, the computation of as discussed above does not yield
 and, if we need, for example, later, this element has to be computed. Therefore, the

complexity of an algorithm with the above-discussed treatment of the cost of applying is not necessar-
ily lower than that in the case of the shift complexity treatment described in the preceding sections. How-
ever, in our situation, the shift complexity is indeed reduced slightly.

It is easy to see that estimate (9) for RR and RR is transformed into : each of steps in
the worst case requires row shifts. For ExtRR and ExtRR , the second (shift complexity) estimate

in (10) is transformed into .
For the families and , estimate (15) remains unchanged, while the shift complexity estimate

for algorithms of the family becomes the same as for : with the new treatment of , every step
in the worst case requires shifts of -element rows.

The shift complexity estimate for a unimodularity recognition algorithm (the second estimate in (16))
remains unchanged, but, in the corresponding shift complexity estimate for the construction of an inverse
operator, is replaced by because of similar changes in the shift complexity of ExtRR and ExtRR .

Thus, estimates (17) are transformed into and
The following result has been proved.
Theorem 3. Let , where is a field of characteristic 0 and is a variable. Let

for any rational function . Then there exists an algorithm for recognizing the unimodularity of an
arbitrary operator and for constructing an inverse operator (if it exists) such that its arithmetic and shift com-
plexities are both .

A similar result can be obtained for the -difference case. In its simplest version, ,
where is another variable, and is the automorphism defined as .

8. OTHER APPROACHES
The problems of unimodularity recognition and inverse matrix construction can be solved by applying

various algorithms. For example, the Jacobson and Hermite forms of the given operator matrix can be
constructed; their definitions can be found in [21, 22]. In [21] an algorithm for constructing the Jacobson
form was proposed and its complexity was treated as a function of three variables, two of which are the
above (other notation was used in [21]). The value of the third variable in the worst case is equal
to , and the complexity regarded as a function of can be estimated as . The Hermite form
of a unimodular matrix is an identity matrix, and, in this case, the transformation matrix is the inverse
of the original one. In our notation, the complexity estimate presented in [22] is . It seems
that this estimate is tight. (Of course, the algorithms in [21, 22] are intended for more general problems,
and the algorithms described above have advantages only for unimodularity recognition and the construc-
tion of an inverse operator matrix.) The algorithms in [21, 22] are described in terms of rings of noncom-
mutative Ore polynomials (see [23, 24]). As a result, those algorithms are applicable to the differential and
difference cases.

Note that we are discussing algorithms in terms of complexity. An algorithm that looks the best in this
sense is not necessarily the best in computational practice.

9. OPEN QUESTIONS AND HYPOTHESES
It is unclear whether there exists a unimodularity recognition algorithm with complexity equal to

, where are real numbers and . For matrices whose elements are usual commutative
polynomials from , there is an algorithm (see [25]) for constructing an inverse matrix with complexity

∈ Zk σk σ
K

()K x K σ = + 1x x

σk ∈Ka σ , , σka … a

σka
−σ , , σ 1ka … a −σ 1k a

σk

σ −σ 1 Θ 3 2()n d nd
− 1n σ −σ 1

Θ 4 2()n d
ΔEG ΔRR

ΔRR ΔEG σk

n nd

3d 2d σ −σ 1

Θ 4 2()n d .4 2()O n d

=K ()K x K x σ = +() (1)R x R x
∈() ()R x K x

4 2()O n d
q = ,()K q xK

q σ →x qx

 and n d
nd ,n d Θ 9 9()n d

U
7 3(log())O n d nd

α β()O n d α, β α < 3
[]K x

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

INVERSE LINEAR DIFFERENCE OPERATORS 1897

, where is the maximum degree of elements of given matrices (strictly speaking, the algorithm in
[25] is intended for inverting only matrices in general position). It is also unclear whether the problem of
constructing an inverse operator matrix can be reduced to matrix multiplication by analogy with reduc-
ibility in the case when the matrix elements belong to a field (see [26, Section. 16.4; 27, Chapter 6]). Here,
reducibility is understood in the sense that, if there exists an algorithm for multiplying operator matrices
with complexity (arithmetic or shift) , then there exists a matrix inversion algorithm with complex-
ity . The hypothesized reducibility is doubtful, but reducibility in the opposite direction is
proved in the same manner as for matrices over a field.

Returning to matrices with polynomial elements, we note that there exists a matrix multiplication algo-
rithm with complexity , where is, as before, the matrix multiplication exponent,

, is again denotes the maximum degree of elements of these matrices, and is a polynomial
(see [28]). However, most likely, a matrix inversion algorithm with such complexity does not exist.

However, what was said above is only a hypothesis. To the author’s knowledge, there are no algo-
rithms, for example, for unimodularity recognition with complexity lower than that in Theorem 2(i). At
least, a search through the literature has not revealed such an algorithm, but, of course, its existence is not
excluded. For example, on the basis of the ideas underlying algorithms for fast matrix multiplication over
a field (see [29–31]) and the idea underlying algorithms for fast multiplication of scalar linear operators
(see [19, 32, 33]), an algorithm for fast multiplication of operator matrices can be proposed and then a
corresponding algorithm for unimodularity recognition can be obtained.

Numerous recent works (see, e.g., [18, 22]) have been aimed to determine the growth of coefficients
belonging to when, for example, . It would be of interest to investigate the bit complexity of
unimodularity recognition algorithms. Another approach is to treat complexity as a function of three vari-
ables: , and , where is such that all polynomials involved in as numerators and denominators of
elements' coefficients have degrees at most ; moreover, for fixed , and , the complexity in the worse-
case is the number of operations in .

ACKNOWLEDGMENTS
The author is grateful to the reviewer for advice and remarks concerning the first version of this paper.
This work was supported by the Russian Foundation for Basic Research, project no. 16-01-001174.

REFERENCES
1. S. A. Abramov, “On the differential and full algebraic complexities of operator matrices transformations,” Lect.

Notes Comput. Sci. 9890, 1–14 (2016).
2. M. van der Put and M. F. Singer, Galois Theory of Differential Equations (Springer, Heidelberg, 2003).
3. A. G. Khovanskii, Topological Galois Theory: Solvability and Unsolvability of Equations in Finite Terms

(MTsNMO, Moscow, 2008; Springer, Berlin, 2014).
4. M. van der Put and M. F. Singer, Galois Theory of Difference Equations (Springer, Heidelberg, 1997).
5. S. Abramov and M. Barkatou, “On the dimension of solution spaces of full rank linear differential systems,”

Lect. Notes Comput. Sci. 8136, 1–9 (2016).
6. S. A. Abramov, “On inversion of difference operator matrices,” in Differential Equations and Related Mathemat-

ical Issues: Proceedings of 8th Oka Scientific Conference, Konstantinovo, Kolomna, June 10–11, 2016 (2016),
pp. 4–12.

7. V. G. Kats and P. Chen, Quantum Analysis (MTsHMO, Moscow, 2005) [in Russian].
8. G. E. Andrews, q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics,

and Computer Algebra (Pennsylvania State Univ., University Park, PA, 1986).
9. S. Abramov and M. Barkatou, “On solution spaces of products of linear differential or difference operators,”

ACM Commun. Comput. Alg. 4, 155–165 (2014).
10. C. H. Franke, “Picard–Vessiot theory of linear homogeneous difference equations,” Trans. Am. Math. Soc.

108, 491–515 (1963).
11. D. E. Knuth, “Big omicron and big omega and big theta,” ACM SIGACT News 8 (2), 18–23 (1976).
12. S. Abramov, “EG-Eliminations,” J. Differ. Equations Appl. 5, 393–433 (1999).
13. S. Abramov and M. Bronstein, “Linear algebra for skew-polynomial matrices,” Rapport de Recherche INRIA,

March 2002, RR-4420. http://www.inria.fr/RRRT/RR-4420.html.

ρ3()O n ρ

,()T n d
,(())O T n d

ωρ ρ((log log))O n f n ω
< ω2 3< ρ f

K =K Q()x

,n d ρ ρ L
ρ ,n d ρ

Q

1898

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 57 No. 12 2017

ABRAMOV

14. S. Abramov and M. Bronstein, “On solutions of linear functional systems,” in ISSAC’2001 Proceedings (2001),
pp. 1–6.

15. S. A. Abramov and D. E. Khmelnov, “Linear differential and difference systems: EGδ- and EGσ-eliminations,”
Program. Comput. Software 39 (2), 91–109 (2013).

16. M. A. Barkatou, C. El Bacha, G. Labahn, and E. Pflugel, “On simultaneous row and column reduction of
higher-order linear differential systems,” J. Symbol. Comput. 49 (1), 45–64 (2013).

17. B. Beckermann and G. Labahn, “Fraction-free computation of matrix rational interpolants and matrix GCDs,”
SIAM J. Matrix Anal. Appl. 77 (1), 114–144 (2000).

18. H. Cheng and G. Labahn, “Fraction-free row reduction of matrices of Ore polynomials,” J. Symbol. Comput.
41, 513–543 (2006).

19. A. Benoit, A. Bostan, and J. van der Hoeven, “Quasi-optimal multiplication of linear differential operators,”
Proceedings of FOCS'12 (IEEE Comput. Soc., New Brunswick, 2012), pp. 524–530.

20. T. Mulders and A. Storjohann, “On lattice reduction for polynomial matrices,” J. Symbol. Comput. 37 (4),
485–510 (2004).

21. J. Middeke, “A polynomial-time algorithm for the Jacobson form for matrices of differential operators,” Tech.
Report in RISC Report Series, No. 08-13 (2008).

22. M. Giesbrecht and KimM. Sub, “Computation of the Hermite form of a matrix of Ore polynomials,” J. Algebra
376, 341–362 (2013).

23. O. Ore, “Theory of non-commutative polynomials,” Ann. Math. 34, 480–508 (1933).
24. M. Bronstein and M. Petkovsek, “An introduction to pseudo-linear algebra,” Theor. Comput. Sci. 157 (1), 3–

33 (1996).
25. C.-P. Jeannerod and G. Villard, “Essentially optimal computation of the inverse of generic polynomial matri-

ces,” J. Complexity 21 (1), 72–86 (2005).
26. P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory (Springer, Heidelberg, 1997).
27. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley,

Reading, Mass., 1976; Mir, Moscow, 1979).
28. A. Bostan and E. Schost, “Polynomial evaluation and interpolation on special sets of points,” J. Complexity 21

(4), 420–446 (2005).
29. V. Strassen, “Gaussian elimination is not optimal,” Numer. Math. 13, 354–356 (1969).
30. D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbol. Comput. 9

(3), 251–280 (1990).
31. V. Williams, “Multiplying matrices faster than Coppersmith–Winograd,” STOC'2012 Proceedings (2012),

pp. 887–898.
32. J. van der Hoeven, “FFT-like multiplication of linear differential operators,” J. Symbol. Comput. 33, 123–127

(2002).
33. A. Bostan, F. Chyzak, and N. Le Roix, “Products of ordinary differential operators by evaluating and interpo-

lation,” Proceedings of ISSAC’2008 (2008), pp. 23–30.

Translated by I. Ruzanova

SPELL: OK

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /RUS ()
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

