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Abstract

While Liouvillian sequences are closed under many operations, simple exam-
ples show that they are not closed under convolution, and the same goes for
d’Alembertian sequences. Nevertheless, we show that d’Alembertian sequences
are closed under convolution with rationally d’Alembertian sequences, and that
Liouvillian sequences are closed under convolution with rationally Liouvillian
sequences.
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1. Introduction

Liouvillian sequences constitute a large class of sequences which can be rep-
resented explicitly (as opposed to recursively, by generating functions, or by
other means). They were defined in [7] as the elements of the least ring of
(germs of) sequences that contains all hypergeometric sequences and is closed5

under shift, inverse shifts, indefinite summation, and interlacing. In the same
paper, an algorithm was given for finding all Liouvillian solutions of linear re-
currences with polynomial coefficients. It is interesting to note that the ring of
Liouvillian sequences is closed under many operations, but it is not closed un-
der convolution or Cauchy product of sequences, an important operation which10

corresponds to the product of their respective (ordinary) generating functions.

Example 1. Zeilberger’s Creative Telescoping algorithm [14, 15] establishes that
the convolution of n! with 1/n!

yn := n! ∗ 1

n!
=

n∑
k=0

k!

(n− k)!
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satisfies the inhomogeneous recurrence

yn+2 − (n+ 2)yn+1 + yn =
1

(n+ 2)!
,

which can be homogenized to

(n+ 3)yn+3 − (n2 + 6n+ 10)yn+2 + (2n+ 5)yn+1 − yn = 0. (1)

As the Hendriks-Singer algorithm [7] shows, this recurrence has no nonzero
Liouvillian solutions. So the convolution of Liouvillian (even hypergeometric!)
sequences n! and 1/n! is not Liouvillian.

This observation opens several new directions of investigation. One, which is15

not pursued here, is algorithmic: Design algorithms for finding those solutions
of linear recurrences with polynomial coefficients that belong to the least ring
of sequences which contains all hypergeometric sequences and is closed under
shift, inverse shifts, indefinite summation, interlacing, and convolution.

Another one, which is the focus of this paper, is finding some restrictions20

on Liouvillian sequences a and/or b which will guarantee that their convolution
a ∗ b is Liouvillian. Such results can be used for simplification of expressions
containing convolutions of these “restricted Liouvillian” sequences, as they allow
us to eliminate convolution and express it by the operations that are used to
define Liouvillian sequences. They also show that by finding all Liouvillian25

solutions of a linear recurrence with polynomial coefficients, we also find all
solutions which are convolutions of “restricted Liouvillian” sequences.

The restrictions that we use concern the set of the basis sequences used in the
definition of the ring of Liouvillian sequences. A sequence a is rational if there is
a rational function r(x) such that an = r(n) for all large enough n. A sequence a30

is quasi-rational [1] if there are d ∈ N, rational functions r1(x), r2(x), . . . , rd(x),

and constants α1, α2, . . . , αd such that an =
∑d
i=1 ri(n)αni for all large enough n.

This is a natural generalization of C-finite (a.k.a. C-recursive) sequences which
are solutions of linear recurrences with constant coefficients. We define (quasi)-
rationally Liouvillian sequences (Def. 5 on p. 5) analogously to Liouvillian se-35

quences, except that the rôle of basis sequences is played by (quasi)-rational
sequences rather than by hypergeometric sequences.

One of the main results of the paper is the following: If a is Liouvillian and b
is quasi-rationally Liouvillian (or vice versa), then a∗b is Liouvillian (Theorem 2
on p. 5). The proof is based on the analogous result for d’Alembertian sequences40

(introduced in [3]) which are the elements of the least ring of sequences that
contains all hypergeometric sequences and is closed under shift, inverse shifts,
and indefinite summation. We define (quasi)-rationally d’Alembertian sequences
(Def. 4 on p. 5) analogously to d’Alembertian sequences, except that again the
basis sequences are (quasi)-rational sequences rather than hypergeometric ones.45

Then we have the following result: If a is d’Alembertian and b is quasi-rationally
d’Alembertian (or vice versa), then a ∗ b is d’Alembertian (Theorem 1 on p. 5).
These results, together with the observation that Liouvillian sequences are not
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closed under convolution (Example 1 on p. 1), appear to be new. Their proofs,
given in Sections 5 and 6, are conceptually simple but technically nontrivial50

because convolution is not a local operation, meaning that equivalent factors
need not yield equivalent results (see Defs. 6 and 7 on p. 6). Consequently, we
cannot use the ring of germs of sequences which has a nicer algebraic structure,
but are forced to work with sequences themselves, ensuring that each term
of every sequence that we consider is well defined. The proofs of Theorems55

1 resp. 2 are constructive and can be used to convert the convolution of a
d’Alembertian sequence with a quasi-rationally d’Alembertian sequence into a
standard representation of a d’Alembertian sequence, resp. the convolution of a
Liouvillian sequence with a quasi-rationally Liouvillian sequence into a standard
representation of a Liouvillian sequence (see Examples 6 resp. 7).60

A short overview of the paper: In Section 2 we define the relevant sequence
classes and operations, and introduce the corresponding notation (cf. [9]). In
Section 3 we state our main results and give some examples. Section 4 contains
some technical results concerning closure properties of sequence classes under
equivalence [12], (non)-locality of operations, and the relation between convo-65

lutions of pairwise equivalent factors. Section 5 begins by listing some of the
properties of d’Alembertian sequences needed to prove Theorem 1. The proof
itself is divided into two parts: Proposition 5 deals with the “ideal” case where
the minimal annihilators of the hypergeometric resp. rational sequences in the
two factors are nonsingular, while the rest of the proof takes care of the general70

case. The section ends by elaborating Example 4. Section 6 contains the proof
of Theorem 2 and elaborates Example 5.

The preliminary version [5] of this paper contains some additional results
and examples.

2. Preliminaries75

Let K be an algebraically closed field of characteristic 0, N the set of non-
negative integers, and (KN,+, ·) the ring of all sequences with terms in K.

Definition 1. A sequence 〈an〉∞n=0 ∈ KN is:

• rational if there is r ∈ K(x) such that an = r(n) for all large enough n,

• quasi-rational (cf. [1]) if there are d ∈ N, r1, r2, . . . , rd ∈ K(x)∗, and80

α1, α2, . . . , αd ∈ K∗ such that an =
∑d
i=1 ri(n)αni for all large enough n,

• hypergeometric if there are p, q ∈ K[x] \ {0} such that

q(n) an+1 + p(n) an = 0 for all n ∈ N

and an 6= 0 for all large enough n,
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• P -recursive or holonomic if there are d ∈ N and p0, p1, . . . , pd ∈ K[x],
pd 6= 0, such that

pd(n)an+d + pd−1(n)an+d−1 + · · ·+ p0(n)an = 0

for all n ∈ N.

Additional notation:

• We denote the set of hypergeometric sequences in KN by H(K), and the85

set of P -recursive sequences in KN by P(K).

• For n,m ∈ N, m ≥ 1, we denote by n divm := b nmc the quotient, and by
n mod m := n−mb nmc the remainder in integer division of n by m.

• The shift operator E : KN → KN is defined for all a ∈ KN and n ∈ N
by E(a)n := an+1, and for k ∈ N, its k-fold composition with itself is90

denoted by Ek. For d ∈ N and p0, p1, . . . , pd ∈ K[x] such that pd 6= 0, the

map L =
∑d
k=0 pk(n)Ek : KN → KN is a linear recurrence operator of

order ordL = d with polynomial coefficients. We denote the Ore algebra
of all such operators (with composition as multiplication) by K[n]〈E〉.

• The inverse shift operator E−1
λ : KN → KN is defined for all λ ∈ K, a ∈ KN,95

and n ∈ N by E−1
λ (a)n :=

{
an−1, n ≥ 1,
λ, n = 0.

• The indefinite (or: partial) summation operator Σ : KN → KN is defined
for all a ∈ KN and n ∈ N by Σan :=

∑n
k=0 ak.

• The multisection operator µm,r : KN → KN is defined for all m ∈ N \ {0},
r ∈ {0, 1, . . . ,m − 1}, a ∈ KN and n ∈ N by µm,r(a)n = amn+r (the r-th100

m-section of a).

• The convolution operator ∗ : KN × KN → KN is defined for all a, b ∈ KN

and n ∈ N by (a ∗ b)n :=
∑n
k=0 akbn−k.

• The interlacing operator Λ :
⋃∞
m=1

(
KN)m → KN is defined for all m ≥ 1,

a(0), a(1), . . . , a(m−1) ∈ KN and n ∈ N by Λ(a(0), a(1), . . . , a(m−1))n =105 (
Λm−1
j=0 a

(j)
)
n

:= a
(n mod m)
n divm .

Definition 2. The ring of d’Alembertian sequences A(K) (cf. [3]) is the least
subring of KN which contains H(K) and is closed under shift, all inverse shifts,
and indefinite summation.

Definition 3. The ring of Liouvillian sequences L(K) (cf. [7]) is the least sub-110

ring of KN which contains H(K) and is closed under shift, all inverse shifts,
indefinite summation, and interlacing.
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It is well known that P(K) is closed under shift, all inverse shifts, indefinite
summation, multisection, scalar multiplication, addition, multiplication, convo-
lution, and interlacing (cf. [7, 12, 13]). Consequently, H(K) ⊆ A(K) ⊆ L(K) ⊆115

P(K).
As shown by Example 1, neither A(K) nor L(K) is closed under convolution.

To obtain positive results, we define some subrings of these rings by replacing
hypergeometric sequences with (quasi)-rational sequences as their basis.

Definition 4. The ring of (quasi)-rationally d’Alembertian sequences A(q)rat(K)120

is the least subring of KN which contains all (quasi)-rational sequences over K
and is closed under shift, all inverse shifts, and indefinite summation.

Example 2. Derangement numbers dn = n!
∑n
k=0

(−1)k

k! are d’Alembertian but
not rationally d’Alembertian; harmonic numbers Hn =

∑n
k=1

1
k =

∑n
k=0

1
k+1 −

1
n+1 are rationally d’Alembertian.125

Definition 5. The ring of (quasi)-rationally Liouvillian sequences L(q)rat(K) is

the least subring of KN which contains all (quasi)-rational sequences over K and
is closed under shift, all inverse shifts, indefinite summation, and interlacing.

Example 3. The sequence n!! is the interlacing of hypergeometric sequences
2nn! and (2n + 1)!/(2nn!), hence it is Liouvillian (but it is not rationally Li-130

ouvillian). Any interlacing of rationally d’Alembertian sequences is rationally
Liouvillian.

3. Main results

Theorem 1. If a ∈ KN is d’Alembertian and b ∈ KN is (quasi)-rationally
d’Alembertian, then their convolution a ∗ b is d’Alembertian.135

The proof is given in Section 5 on p. 14.

Example 4. Let an = 2n−1n! (a hypergeometric sequence) and bn =
1

n+ 1
2

(a

rational sequence). As shown in Example 6 on p. 15, their convolution equals

yn = (2n+ 1)!!

1 +

n∑
k=1

1

(2k + 1)!!

 1

2k + 1
−
k−1∑
j=0

(2j)!!

 .

As (2n+ 1)!! and (2n)!! are hypergeometric, y is d’Alembertian.

Theorem 2. If u ∈ KN is Liouvillian and v ∈ KN is (quasi)-rationally Liouvil-
lian, then their convolution u ∗ v is Liouvillian.

The proof is given in Section 6 on p. 18.140
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Example 5. Let an = n!! (a Liouvillian sequence which is not d’Alembertian)
and bn = 1

n+1 (a rational sequence). As shown in Example 7 on p. 19, their

convolution y is the interlacing of g(0) and g(1) where

g(0)
n = (2n+ 1)!!

1 +

n∑
k=1

1

(2k + 1)!!

 4k + 1

2k(2k + 1)
−

2k−2∑
j=0

j!!

 (2)

g(1)
n = (2n+ 2)!!

3

4
+

n∑
k=1

1

(2k + 2)!!

 4k + 3

(2k + 1)(2k + 2)
−

2k−1∑
j=0

j!!

(3)

As
∑2k−2
j=0 j!! =

∑k−1
j=0 (2j)!! +

∑k−2
j=0 (2j + 1)!! and

∑2k−1
j=0 j!! =

∑k−1
j=0 (2j)!! +∑k−1

j=0 (2j + 1)!!, both g(0) and g(1) are d’Alembertian, hence y is Liouvillian.145

4. Equivalence of sequences and (non)-locality of operations

Definition 6. [12] Sequences a, b ∈ KN are equivalent if there is an N ∈ N s.t.

an = bn for all n ≥ N

or equivalently, s.t. EN (a) = EN (b). We denote this relation by ∼, and call its
equivalence classes germs at ∞ of functions N→ K.

Definition 7. • A set of sequences C ⊆ KN is closed under equivalence if
a ∈ C and a ∼ a′ implies that a′ ∈ C.150

• An operation ω on KN will be called local if ∼ is a congruence w.r.t. ω
(i.e., if equivalent operands produce equivalent results).

Proposition 1. The set H(K) is closed under equivalence.

Proof: Assume that a ∈ H(K) and a′ ∼ a. Then there are p, q ∈ K[x] \ {0} and
N ∈ N s.t. q(n)an+1 + p(n)an = 0 for all n ∈ N, and a′n = an 6= 0 for all n ≥ N .
Hence

n(n− 1) · · · (n−N + 1)q(n)a′n+1 + n(n− 1) · · · (n−N + 1)p(n)a′n = 0

for all n ∈ N, so a′ ∈ H(K). �

Proposition 2. Let C ⊆ KN be a set of sequences closed under all inverse shifts155

and addition, and such that 0 ∈ C. Then C is closed under equivalence.

Proof: Let a ∈ C and a′ ∼ a. Then there are k ∈ N and λ0, λ1, . . . , λk ∈ K s.t.

a′ − a = 〈λ0, λ1, . . . , λk, 0, 0, 0, . . .〉 = E−1
λ0
E−1
λ1
· · ·E−1

λk
(0),

so a′ = a+ E−1
λ0
E−1
λ1
· · ·E−1

λk
(0) ∈ C. �
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Corollary 1. The rings A(K), L(K), Arat(K), Lrat(K), Aqrat(K), Lqrat(K),
P(K) are closed under equivalence.

Proposition 3. While shift, inverse shift, difference, multisection, scalar mul-160

tiplication, addition, multiplication, and interlacing are local operations, indefi-
nite summation and convolution are not local.

Proof: Straightforward. �

When dealing with local operations, it is customary to work with germs of
sequences which simplifies the statements of results and their corresponding165

proofs. Since here we are especially interested in the nonlocal operation of
convolution, we need to work with sequences themselves. In this situation, the
following auxiliary results will prove to be useful.

Lemma 1. Let a, b, ε, η ∈ KN with ε, η ∼ 0. Then:

(i) a ε ∼ 0,170

(ii)
∑n
k=0 εk ∼ C for some C ∈ K,

(iii) a ∗ ε =
∑N
k=0 εkE

−k
0 (a) for some N ∈ N,

(iv) ε ∗ η ∼ 0,

(v) (a+ η) ∗ (b+ ε) ∼ a ∗ b +
∑N1

i=0 εiE
−i
0 (a) +

∑N2

j=0 ηjE
−j
0 (b)

for some N1, N2 ∈ N.175

Proof:

(i) This follows from locality of multiplication.

(ii) Let N ∈ N be such that εk = 0 for k > N . Write C =
∑N
k=0 εk. For

n ≥ N we have
∑n
k=0 εk =

∑N
k=0 εk, so

∑n
k=0 εk ∼ C.

(iii) Let N ∈ N be such that εk = 0 for k > N . Then for all n ∈ N,

(a ∗ ε)n =

n∑
k=0

εkan−k =

min{n,N}∑
k=0

εkE
−k
0 (a)n =

( N∑
k=0

εkE
−k
0 (a)

)
n

(4)

where the last equality follows from the fact that E−k0 (a)n = 0 for k > n.180

(iv) Let N1, N2 ∈ N be such that εi = 0 for i > N1 and ηj = 0 for j > N2.
Assume that n > N1 +N2. Then k > N1 or n− k > N2 for every k ∈ N,
therefore

(ε ∗ η)n =

n∑
k=0

εkηn−k = 0

for all such n, so ε ∗ η ∼ 0.

(v) By bilinearity and commutativity of convolution we have

(a+ η) ∗ (b+ ε) = a ∗ b+ a ∗ ε+ b ∗ η + ε ∗ η.

The claim now follows from (iii) and (iv). �
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5. Proof of Theorem 1 (the d’Alembertian case)

We use the fact that d’Alembertian sequences are annihilated by completely
factorable linear recurrence operators with polynomial coefficients. This im-185

plies that each d’Alembertian sequence can be written as a linear combination
of nested indefinite sums with hypergeometric factors in the summands. Simi-
larly, each (quasi)-rationally d’Alembertian sequence can be written as a linear
combination of nested indefinite sums with (quasi)-rational factors in the sum-
mands.190

Definition 8. For d ∈ N \ {0} and a(1), a(2), . . . , a(d) ∈ KN, we shall denote by

NS
(
a(1), a(2), . . . , a(d)

)
= NSdi=1a

(i)

the sequence a ∈ KN defined for all k1 ∈ N by

ak1 :=
(
NSdi=1a

(i)
)
k1

= a
(1)
k1

k1∑
k2=0

a
(2)
k2

k2∑
k3=0

a
(3)
k3
· · ·

kd−1∑
kd=0

a
(d)
kd

(5)

and call it the nested sum of sequences a(1), a(2), . . . , a(d). Note that the scope
of each summation sign on the right of (5) extends to the end of the formula.
We will call the number d the nesting depth of this representation of a.

Theorem 3. Let a ∈ KN. Then:

(i) a is d’Alembertian iff it can be written as a K-linear combination (possibly195

empty) of nested sums of the form (5) where a(1), a(2), . . . , a(d) ∈ H(K),

(ii) a is d’Alembertian iff there are d ∈ N \ {0} and L1, L2, . . . , Ld ∈ K[n]〈E〉,
each of order 1, such that L1L2 · · ·Ld(a) = 0.

For a proof, see [3] or [10].

Corollary 2. If y ∈ KN satisfies L(y) = a where L is a product of first-order200

operators and a ∈ A(K), then y ∈ A(K).

Proof: By Theorem 3.(ii), there are d ∈ N \ {0} and L1, L2, . . . , Ld ∈ K[n]〈E〉,
each of order 1, such that L1L2 · · ·Ld(a) = 0. Hence

L1L2 · · ·LdL(y) = L1L2 · · ·Ld(a) = 0,

so, again by Theorem 3.(ii), y ∈ A(K). �

Theorem 4. A sequence a ∈ KN is (quasi)-rationally d’Alembertian iff it can
be written as a K-linear combination (possibly empty) of nested sums of the form
(5) where a(1), a(2), . . . , a(d) are (quasi)-rational sequences.205

The proof is analogous to that of Theorem 3(i).
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Proposition 4. For all k ∈ N and a, b ∈ A(K), we have

a ∗ b ∈ A(K) ⇐⇒ Ek(a) ∗ Ek(b) ∈ A(K). (6)

Proof: Note that, for all n ∈ N,

E2(a ∗ b)n =

n+2∑
k=0

akbn+2−k = a0bn+2 + an+2b0 +

n+1∑
k=1

akbn+2−k

= a0bn+2 + an+2b0 +

n∑
k=0

ak+1bn+1−k

= a0E
2(b)n + b0E

2(a)n + (E(a) ∗ E(b))n.

As A(K) is closed under shift, scalar multiplication and addition, this implies

E2(a ∗ b) ∈ A(K) ⇐⇒ E(a) ∗ E(b) ∈ A(K).

By the closure of A(K) under shift and all inverse shifts, we have

a ∗ b ∈ A(K) ⇐⇒ E2(a ∗ b) ∈ A(K),

so
a ∗ b ∈ A(K) ⇐⇒ E(a) ∗ E(b) ∈ A(K). (7)

As A(K) is closed under shift, we can replace a by Ek(a) and b by Ek(b) in (7)
and obtain

Ek(a) ∗ Ek(b) ∈ A(K) ⇐⇒ Ek+1(a) ∗ Ek+1(b) ∈ A(K)

for all k ∈ N. Now (6) follows by induction on k. �

Lemma 2. Let d ∈ N, a(1), a(2), . . . , a(d) ∈ KN, ε(1), ε(2), . . . , ε(d) ∈ KN, and
ε(1), ε(2), . . . , ε(d) ∼ 0. Then there are c1, c2, . . . , cd ∈ K such that

NSdi=1

(
a(i) + ε(i)

)
∼

d∑
i=1

ciNS
i
j=1a

(j).

Proof: By induction on d.
If d = 0 both sides are 0. Now assume that the assertion holds at some

d ≥ 1, and expand the left-hand side. In line 2 we use the induction hypothesis
and compensate for replacing equivalence with equality by adding a sequence
η ∼ 0 in the appropriate place. In lines 3 and 4 we use Lemma 1.(i) resp. (ii).
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We denote the constant C introduced in Lemma 1.(ii) by c1:(
NSd+1

i=1

(
a(i) + ε(i)

))
n

=
(
a(1)
n + ε(1)

n

) n∑
k2=0

(
NSd+1

i=2

(
a(i) + ε(i)

))
k2

=
(
a(1)
n + ε(1)

n

) n∑
k2=0

(
d+1∑
i=2

ci

(
NSij=2 a

(j)
)
k2

+ ηk2

)

∼ a(1)
n

n∑
k2=0

d+1∑
i=2

ci

(
NSij=2 a

(j)
)
k2

+ a(1)
n

n∑
k2=0

ηk2

∼
d+1∑
i=2

ci

(
NSij=1 a

(j)
)
n

+ c1a
(1)
n

=

d+1∑
i=1

ci

(
NSij=1 a

(j)
)
n
.

�

Lemma 3. Let d ∈ N and a(1), a(2), . . . , a(d) ∈ KN. If N ∈ N is s.t. a
(i)
n = 0 for

all n < N and i ∈ {1, 2, . . . , d}, then

EN
(
NSdi=1a

(i)
)

= NSdi=1E
N
(
a(i)
)
.

Proof: Write the nested sum on the left as a single sum, shift all summation210

indices by N , and use the fact that all original summands vanish below N :

(
EN

(
NSdi=1a

(i)
))

n
= a

(1)
n+N

n+N∑
k2=0

a
(2)
k2

k2∑
k3=0

a
(3)
k3
· · ·

kd−1∑
kd=0

a
(d)
kd

=
∑

0≤kd≤···≤k3≤k2≤n+N

a
(1)
n+Na

(2)
k2
a

(3)
k3
· · · a(d)

kd

=
∑

−N≤kd≤···≤k3≤k2≤n

a
(1)
n+Na

(2)
k2+Na

(3)
k3+N · · · a

(d)
kd+N

=
∑

0≤kd≤···≤k3≤k2≤n

a
(1)
n+Na

(2)
k2+Na

(3)
k3+N · · · a

(d)
kd+N

=
(
NSdi=1E

N
(
a(i)
))

n
.

�
In Proposition 5 we prove the “ideal” case of Theorem 1 where the minimal

annihilators of the hypergeometric resp. rational sequences in the two factors
are nonsingular. We use induction on the sum of nesting depths of both factors215

and of the valuation of the quasi-rational factor. Thanks to the Partial Fraction
Decomposition Theorem for rational functions, it suffices to consider three cases
according to the possible forms of a term in the partial fraction decomposition
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of a quasi-rational function, namely αx, αxxj , and αx

(x−β)j (both with j ≥ 1). In

each of the cases, we apply to the convolution a ∗ b a linear recurrence operator220

L0 of order at most 1 such that the nesting depth of one of the factors or
the valuation of the quasi-rational factor decreases. Then we use the inductive
hypothesis to show that L0(a ∗ b) is d’Alembertian, and invoke Corollary 2 on
p. 8 to conclude that so is a ∗ b.

Proposition 5. Let d, e ∈ N, and let for all n ∈ N225

an =


0 if d = 0

h
(1)
n

n+η1∑
k2=0

h
(2)
k2

k2+η2∑
k3=0

h
(3)
k3
· · ·

kd−1+ηd−1∑
kd=0

h
(d)
kd

if d ≥ 1,

bn =


0 if e = 0

ϕ1(n)

n+ξ1∑
k2=0

ϕ2(k2)

k2+ξ2∑
k3=0

ϕ3(k3) · · ·
ke−1+ξe−1∑

ke=0

ϕe(ke) if e ≥ 1

where

• for i = 1, 2, . . . , d, h(i) is hypergeometric over K, and there are pi, qi ∈ K[x]

such that qi(n) 6= 0 and qi(n) h
(i)
n+1 = pi(n) h

(i)
n for all n ∈ N,

• η1, η2, . . . , ηd−1 ∈ N,

• for i = 1, 2, . . . , e, there are αi ∈ K∗, βi ∈ K \ N and ji ∈ N such that230

ϕi(x) ∈ {αxi xji , αxi (x− βi)−ji},

• ξ1, ξ2, . . . , ξe−1 ∈ N.

Then a ∗ b is d’Alembertian.

Proof: Note that a is d’Alembertian, and b is quasi-rationally d’Alembertian.
We use induction on d + e +

∑e
i=1 ji where d resp. e are the nesting depths of

these representations of a resp. b, and
∑e
i=1 ji is the valuation of b. If d = 0 or

e = 0, then a ∗ b = 0 ∈ A(K). Now let d, e ≥ 1. Write

an = hn

n+η∑
k2=0

ãk2 (8)

where h = h(1), η = η1 and

ãk2 =


δk2,0, d = 1,

h
(2)
k2

k2+η2∑
k3=0

h
(3)
k3
· · ·

kd−1+ηd−1∑
kd=0

h
(d)
kd
, d ≥ 2

with δk2,0 = 〈1, 0, 0, 0, . . .〉 ∈ KN the identity element for convolution. Write

bn = ϕ(n)

n+ξ∑
k2=0

b̃k2 (9)

11



where ϕ = ϕ1 (with j = j1, α = α1, β = β1), ξ = ξ1 and

b̃k2 =


δk2,0, e = 1,

ϕ2(k2)

k2+ξ2∑
k3=0

ϕ3(k3) · · ·
ke−1+ξe−1∑

ke=0

ϕe(ke), e ≥ 2.

We shall prove that the convolution

yn :=

n∑
k=0

akbn−k =

n∑
k=0

hkϕ(n− k)

(
k+η∑
k2=0

ãk2

)(
n−k+ξ∑
k2=0

b̃k2

)

is d’Alembertian by showing that L0(y) ∈ A(K) for an appropriate operator
L0 ∈ K[n]〈E〉, then invoking Corollary 2. We distinguish three cases:235

Case 1. ϕ(x) = αx

In this case yn =
∑n
k=0 akα

n−k∑n−k+ξ
k2=0 b̃k2 and we take L0 = E − α. Then

(L0(y))n = yn+1 − αyn

=

n+1∑
k=0

akα
n+1−k

n+1−k+ξ∑
k2=0

b̃k2 −
n∑
k=0

akα
n+1−k

n−k+ξ∑
k2=0

b̃k2

= an+1

ξ∑
k2=0

b̃k2 +

n∑
k=0

akα
n+1−k b̃n−k+ξ+1

= E(a)n

ξ∑
k2=0

b̃k2 + α
(
an ∗ αnEξ+1b̃n

)
where E(a) is d’Alembertian and αnEξ+1b̃n has nesting depth e − 1, hence
an ∗ αnEξ+1b̃n is d’Alembertian by induction hypothesis.

Case 2. ϕ(x) = αxxj with j ≥ 1240

Here bn = njcn where cn = αn
∑n+ξ
k2=0 b̃k2 , and we take L0 = 1. So

yn =

n∑
k=0

ak(n− k)jcn−k =

j∑
i=0

(−1)i
(
j

i

)
nj−i

n∑
k=0

kiakcn−k

=

j∑
i=0

(−1)i
(
j

i

)
nj−i

(
(nian) ∗ cn

)
.

As the valuation of c is j less than that of b, our induction hypothesis implies
that y is d’Alembertian.

Case 3. ϕ(x) = αx

(x−β)j with j ≥ 1

12



Here we take L0 = q(n − β)E − p(n − β) where polynomials p, q ∈ K[x] \ {0}
are such that q(n)hn+1 − p(n)hn = 0 for all n ∈ N. Then245

(L0(y))n =

= q(n− β)

n+1∑
k=0

hkα
n+1−k

(n+ 1− k − β)j

(
k+η∑
k2=0

ãk2

)(
n+1−k+ξ∑
k2=0

b̃k2

)

− p(n− β)

n∑
k=0

hkα
n−k

(n− k − β)j

(
k+η∑
k2=0

ãk2

)(
n−k+ξ∑
k2=0

b̃k2

)

= q(n− β)

n∑
k=−1

hk+1α
n−k

(n− k − β)j

(
k+1+η∑
k2=0

ãk2

)(
n−k+ξ∑
k2=0

b̃k2

)

− p(n− β)

n∑
k=0

hkα
n−k

(n− k − β)j

(
k+η∑
k2=0

ãk2

)(
n−k+ξ∑
k2=0

b̃k2

)
= An +Bn + Cn,

where

An := q(n− β)a0 bn+1,

Bn := q(n− β)

n∑
k=0

hk+1ãk+1+η
αn−k

(n− k − β)j

(
n−k+ξ∑
k2=0

b̃k2

)
,

Cn :=

n∑
k=0

q(n− β)hk+1 − p(n− β)hk
(n− k − β)j

αn−k

(
k+η∑
k2=0

ãk2

)(
n−k+ξ∑
k2=0

b̃k2

)
.

Clearly A is d’Alembertian. Since Bn = q(n−β) (E(hEη(ã)) ∗ b)n and the nest-
ing depth of E(hEη(ã)) is d−1, B is d’Alembertian by the induction hypothesis.
In Cn we replace hk+1 with hk p(k)/q(k) and obtain

Cn =

n∑
k=0

P (k)hkα
n−k

q(k)(n− k − β)j

(
k+η∑
k2=0

ãk2

)(
n−k+ξ∑
k2=0

b̃k2

)

where P (k) := q(n−β)p(k)− p(n−β)q(k) ∈ K[n][k]. Since P (n−β) = 0, P (k)250

is divisible by k − n + β, hence there are s ∈ N and c0, c1, . . . , cs ∈ K[x] such
that P (k) = (n− k − β)

∑s
i=0 ci(n)ki. It follows that

Cn =

s∑
i=0

ci(n)

n∑
k=0

kiak
q(k)

· αn−k

(n− k − β)j−1

(
n−k+ξ∑
k2=0

b̃k2

)

=

s∑
i=0

ci(n)

n∑
k=0

u
(i)
k ·

αn−k

(n− k − β)j−1

(
n−k+ξ∑
k2=0

b̃k2

)

=

s∑
i=0

ci(n)
(
u(i)
n ∗ (n− β)bn

)

13



where u
(i)
k := kiak

q(k) for all k ∈ N and i ∈ {1, 2, . . . , s}. As the valuation of

(n − β)bn is one less than that of bn, our induction hypothesis implies that

u
(i)
n ∗ (n−β)bn is d’Alembertian, hence so are C and L0(y) = A+B+C. Since255

L0 has order one, Corollary 2 implies that y = a ∗ b is d’Alembertian. �

Based on Proposition 5, we now prove the full version of Theorem 1. Again
we use induction on the nesting depth of the two factors, as well as Lemmas 2,
3 and Proposition 4.

Proof of Theorem 1 (see p. 5): By Theorem 3.(i), the sequence a can be260

written as a K-linear combination of sequences of the form NSdi=1h
(i) where

h(1), h(2), . . . , h(d) ∈ H(K). For i = 1, 2, . . . , d, let pi, qi ∈ K[x] be such that

qi(n)h
(i)
n+1 = pi(n)h

(i)
n for all n ∈ N. By Theorem 4, the sequence b can be

written as a K-linear combination of sequences of the form NSei=1r
(i) where

r(1), r(2), . . . , r(e) are (quasi)-rational sequences. By the Partial Fraction Decom-265

position Theorem for rational functions, we can assume that for i = 1, 2, . . . , e

there are ji ∈ N, αi ∈ K∗ and βi ∈ K such that r
(i)
n = ϕi(n) for all large enough

n, where ϕi(x) ∈ {αxi xji , αxi (x− βi)−ji}.
By bilinearity of convolution, it suffices to prove that the convolution of a

single NSdi=1h
(i) with a single NSei=1r

(i) is d’Alembertian, so henceforth we270

assume that a ≡ NSdi=1h
(i) and b ≡ NSei=1r

(i). Let N ∈ N be such that for all

n ≥ N , qi(n) 6= 0 for all i ∈ {1, 2, . . . , d}, and r
(i)
n = ϕi(n) for all i ∈ {1, 2, . . . , e}.

We shall prove by induction on the sum of nesting depths d + e that a ∗ b is
d’Alembertian.

If d = 0 or e = 0 then a = 0 or b = 0 and so a ∗ b = 0 ∈ A(K).275

Assume now that d ≥ 1 and e ≥ 1. Let ã := NSdk=1h̃
(k) and b̃ := NSek=1r̃

(k)

where h̃(k) = E−N0 EN
(
h(k)

)
and r̃(k) = E−N0 EN

(
r(k)

)
. Then h̃

(k)
n = r̃

(k)
n = 0

for n < N and h̃
(k)
n = h

(k)
n , r̃

(k)
n = r

(k)
n for n ≥ N . It follows by Lemma 3 that

EN (ã)n = NSdk=1E
N
(
h̃(k)

)
n

= NSdk=1E
N
(
h(k)

)
n

= NSdk=1h
(k)
n+N ,

EN (b̃)n = NSek=1E
N
(
r̃(k)

)
n

= NSek=1E
N
(
r(k)

)
n

= NSek=1ϕk(n+N).

Note that by our definition of N , the sequences EN (ã) and EN (b̃) satisfy all
the assumptions of Proposition 5, so EN (ã)∗EN (b̃) ∈ A(K). Proposition 4 now
implies that ã ∗ b̃ ∈ A(K) as well.

By Lemma 2, there are c1, c2, . . . , cd ∈ K and c′1, c
′
2, . . . , c

′
e ∈ K such that

a =

d∑
i=1

ciNS
i
j=1h̃

(j) + η = cdNS
d
j=1h̃

(j) +

d−1∑
i=1

ciNS
i
j=1h̃

(j) + η,

b =

e∑
i=1

c′iNS
i
j=1r̃

(j) + η′ = c′eNS
e
j=1r̃

(j) +

e−1∑
i=1

c′iNS
i
j=1r̃

(j) + η′

14



for some sequences η, η′ ∼ 0. Hence

a ∗ b = cd c
′
eNS

d
j=1h̃

(j) ∗NSej=1r̃
(j) + cdNS

d
j=1h̃

(j) ∗
e−1∑
i=1

c′iNS
i
j=1r̃

(j)

+ c′eNS
e
j=1r̃

(j) ∗
d−1∑
i=1

ciNS
i
j=1h̃

(j) +

d−1∑
i=1

ciNS
i
j=1h̃

(j) ∗
e−1∑
i=1

c′iNS
i
j=1r̃

(j)

+ η ∗

(
c′eNS

e
j=1r̃

(j) +

e−1∑
i=1

c′iNS
i
j=1r̃

(j) + η′

)

+ η′ ∗

(
cdNS

d
j=1h̃

(j) +

d−1∑
i=1

ciNS
i
j=1h̃

(j)

)
.

The first term on the right equals cd c
′
e ã ∗ b̃, so it is d’Alembertian as shown

in the preceding paragraph. The next three terms are linear combinations of280

convolutions of nested sums having nesting depths at most d+ e− 1, d+ e− 1,
and d+ e− 2, respectively, so they are d’Alembertian by induction hypothesis.
By Lemma 1.(iii), the last two terms above are linear combinations of shifted
d’Alembertian sequences, so they are d’Alembertian as well. It follows that a∗b
is d’Alembertian as claimed. �285

Example 6. By Theorem 1, the convolution of a hypergeometric sequence with
a rational sequence, such as

yn = (2n−1n!) ∗

(
1

n+ 1
2

)
=

n∑
k=0

2k−1k!

n− k + 1
2

,

is d’Alembertian. By following through the proof of Proposition 5 with an =
2n−1n! and bn = 1/(n+ 1

2 ), we will obtain an explicit nested-sum representation
of yn. Here the nesting depths of a and b are 1, j = 1, β = −1/2, hn = an =
2n−1n!, hn+1/hn = p(n) = 2(n+ 1), q(n) = 1 and

L0 = q(n− β)E − p(n− β) = E − (2n+ 3).

15



Applying L0 to y(n) we obtain

(L0(y))n =

n+1∑
k=0

2k−1k!

n− k + 3
2

− (2n+ 3)

n∑
k=0

2k−1k!

n− k + 1
2

=

n∑
k=−1

2k(k + 1)!

n− k + 1
2

− (2n+ 3)

n∑
k=0

2k−1k!

n− k + 1
2

=
1

2n+ 3
+

n∑
k=0

2k−1k!(2(k + 1)− (2n+ 3))

n− k + 1
2

=
1

2n+ 3
+

n∑
k=0

2k−1k!(2k − 2n− 1)

n− k + 1
2

=
1

2n+ 3
−

n∑
k=0

2kk! =
1

2n+ 3
−

n∑
k=0

(2k)!!. (10)

By solving this recurrence with initial condition y0 = 1, we obtain

yn = (2n+ 1)!!

1 +

n∑
k=1

1

(2k + 1)!!

 1

2k + 1
−
k−1∑
j=0

(2j)!!

 .

Since (2n+ 1)!! and (2n)!! are hypergeometric sequences, this shows that y(n) is
indeed a d’Alembertian sequence.

From (10) we can also obtain a fully factored annihilator of y as follows:
The right-hand side of (10) is annihilated by the least common left multiple of
E − (2n+ 3)/(2n+ 5) and (E − (2n+ 4))(E − 1), which is(

E − (2n+ 3)(2n+ 7)2

(2n+ 5)2(2n+ 9)

)
(E − (2n+ 4)) (E − 1),

hence L(y) = 0 where

L =

(
E − (2n+ 3)(2n+ 7)2

(2n+ 5)2(2n+ 9)

)
(E − (2n+ 4)) (E − 1)(E − (2n+ 3)).

6. Proof of Theorem 2 (the Liouvillian case)

To prove Theorem 2, we use generating functions, Theorem 1, and the fact
that a sequence is Liouvillian if and only if it is an interlacing of d’Alembertian
sequences [11, 10]. Recall that the (ordinary) generating function of a sequence
a ∈ KN is defined as the formal power series

ga(x) =

∞∑
k=0

akx
k,

and that for all pairs of sequences a, b ∈ KN we have: ga+b(x) = ga(x) + gb(x),290

ga∗b(x) = ga(x)gb(x).
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Definition 9. [7] For m ∈ N\{0} and a ∈ KN, we write Λma for Λ(a,

m−1︷ ︸︸ ︷
0, . . . , 0),

and call it the 0th m-interlacing of a with zeroes.

Lemma 4. Let k ∈ N, m ∈ N \ {0}, a, a(0), a(1), . . . , a(m−1) ∈ KN, and b =
Λm−1
j=0 a

(j).295

(i)
(
E−k0 (a)

)
n

=

{
an−k, n ≥ k
0, n < k

(ii) (Λma)n =

{
a n

m
, n ≡ 0 (mod m)

0, n 6≡ 0 (mod m)

(iii) gE−k
0 (a)(x) = xkga(x)

(iv) gΛma(x) = ga(xm)

(v) gb(x) =
∑m−1
j=0 xjga(j)(x

m)300

(vi) Λm−1
j=0 a

(j) =
∑m−1
j=0 E−j0

(
Λma(j)

)
(vii) ΛmE−k0 = E−km0 Λm

Proof: Items (i), (ii) follow immediately from the definitions of E−1
0 and Λm.

(iii): gE−k
0 (a)(x) =

∞∑
n=0

E−k0 (a)nx
n =

∞∑
n=k

an−kx
n =

∞∑
n=0

anx
n+k = xkga(x)

(iv): gΛma(x) =

∞∑
n=0

(Λma)nx
n =

∑
n≡0 (mod m)

a n
m
xn =

∞∑
k=0

akx
km = ga(xm)305

(v): gb(x) =
∑∞
n=0 a

(n mod m)
n divm xn =

∑m−1
j=0

∑∞
k=0 a

(j)
k xkm+j =

∑m−1
j=0 xjga(j)(x

m)

(vi): Using (v), (iv) and (iii) we find that

gb(x) =

m−1∑
j=0

xjga(j)(x
m) =

m−1∑
j=0

xjgΛma(j)(x) =

m−1∑
j=0

gE−j
0 (Λma(j))(x)

= g∑m−1
j=0 E−j

0 (Λma(j))(x)

which implies the assertion.

(vii): By applying (iv) and (iii) alternatingly, we obtain

gΛmE−k
0 (a)(x) = gE−k

0 (a)(x
m) = xkmga(xm) = xkmgΛma(x) = gE−km

0 Λma(x)

for every a ∈ KN, which implies the assertion. �

Proposition 6. The convolution of the 0th m-interlacings of a, b ∈ KN with
zeroes is the 0th m-interlacing of a ∗ b with zeroes:

Λma ∗ Λmb = Λm(a ∗ b).
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Proof:

gΛma∗Λmb(x) = gΛma(x)gΛmb(x) = ga(xm)gb(x
m)

=

∞∑
i=0

aix
mi
∞∑
j=0

bjx
mj =

∞∑
i=0

∞∑
j=0

aibjx
m(i+j)

=

∞∑
k=0

xmk
k∑
i=0

aibk−i =

∞∑
k=0

(a ∗ b)k (xm)
k

= ga∗b(x
m) = gΛm(a∗b)(x)

by using Lemma 4.(iv) three times. �310

Proposition 7. Let m ∈ N \ {0}, a(j), b(j) ∈ KN for all j ∈ {0, 1, . . . ,m − 1},
u = Λm−1

j=0 a
(j), and v = Λm−1

j=0 b
(j). Then

u ∗ v =

2m−2∑
k=0

min{k,m−1}∑
j=max{0,k−m+1}

E−k0 Λm
(
a(j) ∗ b(k−j)

)
. (11)

Proof: Using Lemma 4.(v), we obtain

gu∗v(x) = gu(x)gv(x) =

m−1∑
j=0

xjga(j)(x
m)

m−1∑
`=0

x`gb(`)(x
m)

=

m−1∑
j=0

m−1∑
`=0

xj+`ga(j)(x
m)gb(`)(x

m)

=

m−1∑
k=0

k∑
j=0

+

2m−2∑
k=m

m−1∑
j=k−m+1

xkga(j)(x
m)gb(k−j)(xm)

=

2m−2∑
k=0

min{k,m−1}∑
j=max{0,k−m+1}

xkga(j)(x
m)gb(k−j)(xm) (12)

By Lemma 4.(iv), Proposition 6 and Lemma 4.(iii),

xkga(j)(x
m)gb(k−j)(xm) = xkgΛma(j)(x)gΛmb(k−j)(x) = xkgΛma(j)∗Λmb(k−j)(x)

= xkgΛm(a(j)∗b(k−j))(x) = gE−k
0 Λm(a(j)∗b(k−j))(x)

which, together with (12), implies (11). �

Proof of Theorem 2 (see p. 5): Let u = Λm−1
i=0 a(i) with all a(i) d’Alembertian,

and v = Λk−1
i=0 b

(i) with all b(i) (quasi)-rationally d’Alembertian. Let ` = lcm(m, k).
Write u = Λ`−1

j=0c
(j), v = Λ`−1

j=0d
(j) where c(j) and d(j), for j = 0, 1, . . . , ` − 1,315

are the j-th l-sections of u and v, respectively. Clearly all c(j), d(j) are them-
selves sections of a(i) resp. b(i). Since A(K) is closed under multisection [10,
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Prop. 7], all c(j) are d’Alembertian. Similarly one can show that the ring of
(quasi)-rationally d’Alembertian sequences is closed under multisection, hence
all d(j) are (quasi)-rationally d’Alembertian. So by Theorem 1, all convolutions320

c(j1)∗d(j2) for j1, j2 ∈ {0, 1, . . . , `−1} are d’Alembertian. It follows from Propo-
sition 7 that u ∗ v is a sum of shifted interlacings of d’Alembertian sequences,
hence it is Liouvillian. �

Example 7. By Theorem 2, the convolution of a Liouvillian sequence with a
rational sequence, such as

yn := n!! ∗
(

1

n+ 1

)
=

n∑
k=0

k!!

n− k + 1
,

is Liouvillian. By following the proof of Proposition 7 with un = n!! and vn =
1

n+1 , we will obtain a representation of yn as an interlacing of d’Alembertian325

sequences. Here m = 2, u = Λ(a(0), a(1)) and v = Λ(b(0), b(1)), where

a(0)
n = (2n)!! = 2nn!,

a(1)
n = (2n+ 1)!! =

(2n+ 1)!

2nn!
,

b(0)
n = v2n =

1

2n+ 1
,

b(1)
n = v2n+1 =

1

2n+ 2
.

By Proposition 7 at m = 2,

u ∗ v = Λ2
(
a(0) ∗ b(0)

)
+ E−1

0 Λ2
(
a(0) ∗ b(1) + a(1) ∗ b(0)

)
+ E−2

0 Λ2
(
a(1) ∗ b(1)

)
.

Denote

g(0) := a(0) ∗ b(0) + E−1
(
a(1) ∗ b(1)

)
,

g(1) := a(0) ∗ b(1) + a(1) ∗ b(0).

For any a, b, c, d ∈ KN we have Λ(a+ b, c+ d) = Λ(a, c) + Λ(b, d), therefore

Λ
(
g(0), g(1)

)
= Λ

(
a(0) ∗ b(0), a(0) ∗ b(1)

)
+ Λ

(
E−1

0

(
a(1) ∗ b(1)

)
, a(1) ∗ b(0)

)
,

which by Lemma 4.(vi) at m = 2 equals

Λ2
(
a(0) ∗ b(0)

)
+ E−1

0 Λ2
(
a(0) ∗ b(1) + a(1) ∗ b(0)

)
+ Λ2E−1

0

(
a(1) ∗ b(1)

)
.

Since Λ2E−1
0

(
a(1) ∗ b(1)

)
= E−2

0 Λ2
(
a(1) ∗ b(1)

)
by Lemma 4.(vii) at m = 2, it330

follows that u ∗ v = Λ
(
g(0), g(1)

)
. It remains to show that g(0) and g(1) are
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d’Alembertian. We have

(a(0) ∗ b(0))n =

n∑
k=0

2kk!

2(n− k) + 1
=

n∑
k=0

2k−1k!

n− k + 1
2

,

(a(1) ∗ b(1))n−1 =

n∑
k=0

(2k + 1)!

2kk!(2(n− k − 1) + 2)
=

n∑
k=0

(2k + 1)!

2k+1k!(n− k)
,

(a(0) ∗ b(1))n =

n∑
k=0

2kk!

2(n− k) + 2
=

n∑
k=0

2k−1k!

n− k + 1
,

(a(1) ∗ b(0))n =

n∑
k=0

(2k + 1)!

2kk!(2(n− k) + 1)
=

n∑
k=0

(2k + 1)!

2k+1k!(n− k + 1
2 )
.

In an analogous way as we did it for (a(0) ∗b(0))n in Example 6, we can compute
explicit d’Alembertian representations for (a(1) ∗ b(1))n−1, (a(0) ∗ b(1))n, and
(a(1) ∗ b(0))n. After some additional simplification we obtain (2), (3) on p. 6.335
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