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Abstract—Previously, the authors proposed algorithms making it possible to find exponential-loga-
rithmic solutions of linear ordinary differential equations with coefficients in the form of power series
in which only the initial terms are known. The solution includes a finite number of power series, and
the maximum possible number of their terms is calculated. Now, these algorithms are supplemented
with the option to confirm the impossibility of obtaining a larger number of terms in the series without
using additional information about the given equation a counterexample is constructed to the assump-
tion that it is possible to obtain uniquely defined additional terms. In previous papers, the authors pro-
posed such confirmations for the cases of Laurent and regular solutions.
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1. INTRODUCTION
This article deals with linear ordinary differential equations (LODEs) with coefficients that have the

form of power series in which only their initial terms are known and their “tails” are unknown. Thus, there
is only incomplete information about these equations. In [1–6], algorithms were proposed for finding
solutions of such equations in the form of Laurent series, as well as for finding regular and exponential-
logarithmic solutions. It was proved that these algorithms make it possible to find the maximum possible
number of terms of those series involved in the solutions. The algorithms were implemented by the authors
in a package of procedures (see [7–10]). For the user of these procedures, it may be desirable to obtain
some demonstrative arguments in favor of the assumption that the number of terms found for the series is
maximal. Evident tools of this kind are offered below: an algorithm is described that, for an arbitrary equa-
tion with truncated coefficients, presents two variants for the prolongation of the original equation the
solutions of which differ from each other in subsequent terms, not included in the number of terms found
for the series involved in the solutions.

Let us clarify the essence of the problem with a simple example. Using an algorithm from [4], it is
found that the equation

(1)

(here,  denotes some unknown terms of the power series with powers of  not lower than ) has a
solution

(2)
where  is an arbitrary constant. Can we, based on (1), find more terms of the series that is represented in
(2) as ? A negative answer is justified by presenting two variants for the prolongation of Eq. (1):
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and

(4)

The algorithm from [4] finds the solutions of these two equations:

This shows that, for the series  involved in (2), we cannot find its coefficient at x without using
any additional information on Eq. (1). The pair of equations (3) and (4) form, in the terminology of this
article, a counterexample to the assumption that the subsequent terms of the series involved in the expo-
nential-logarithmic solutions of Eq. (1) can be found only from this truncated equation.

In Section 6, we demonstrate the construction of this counterexample, i.e., Eqs. (3) and (4), using our
algorithm implemented in the Maple environment.

A preliminary version of this work was reported in [11].

2. TRUNCATED EQUATION
Let  be an algebraically closed field of characteristic . For the ring of polynomials in  over K, we

will use the notation . The ring of formal power series in  over  is denoted by , and the field
of formal Laurent series, by . Obviously, . For a nonzero element

 belonging to , its valuation  is defined by the equality
, while .

We consider equations of the form

(5)

where  is an unknown function of . Regarding  (coefficients of the equation), it is
assumed that, for each , the coefficient  is a truncated series

(6)

where  and  is an integer such that  (if , then the sum in (6) is assumed to be equal

to 0). Hereinafter, the symbol  occurring in formal expressions denotes some series whose valuation
is not smaller than . We call  the truncation degree of a series  represented in the form (6). Note that
any coefficient in (5) can have the form , .

A prolongation of Eq. (5) is any equation

for which ; i.e., , .

3. TRUNCATED SOLUTIONS
Formal exponential-logarithmic solutions of the equation

(7)

having completely defined series-represented coefficient are understood as solutions of the form

(8)
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where  is a polynomial with coefficients from K, , ,

, , , and . In this case,  is called the regular part;
, the exponent of the irregular part; and , the ramification index of solution (8).

If  and , then solution (8) is called formally regular; otherwise, it is called irregular. For
, , , and , a formal regular solution (8) is called Laurent one. When dis-

cussing solutions of equations, we omit the word “formal”, but mean it.
Let the leading coefficient  in Eq. (7) be nonzero. It is known (see, e.g., [12, Ch. V; 13–16]) that

there are  solutions of the form (8) for Eq. (7) that are linearly independent over . In [13–17], algo-
rithms were proposed for finding the ramification index q and the exponent of the irregular part 
of r linearly independent solutions of the form (8). Let the valuation of at least one of the coefficients in
(7) be equal to 0. Then, to construct the ramification index  and the exponent of the irregular part

 for all solutions, it suffices to know  values of the initial coefficients of all ,
 (see, e.g., [18]). To construct the regular part of the solution with any given truncation degree

of the series involved in , the algorithms proposed in [12, Ch. IV; 19; 20, Ch. II, VIII] can be used.
For this construction, it is also sufficient to know some finite number of initial coefficients of all  (see
[21, Prop. 1]).

Let , , , and

, , , and . For Eq. (5) with truncated coefficients, we understand the
solution with a truncated regular part as an expression

(9)

if any equation that is a prolongation of (5) has a solution  that is a prolongation of solu-
tion (9); i.e.,  has the form

and  is satisfied; i.e., , . We say that the
truncated solution is invariant to any prolongation of Eq. (5).

4. SOLUTIONS WITH THE MAXIMUM TRUNCATION DEGREE
It was shown in [1–4, 7] that, for an equation of the form (5), it is possible to construct all invariant

truncated solutions with the maximum truncation degree of the series involved in the solution. The maxi-
mum truncation degree in  means that there is no invariant solution  that is a prolongation of ,
such that the truncation degree of at least one series in  is greater than the truncation degree of the cor-
responding series in . In this case, we are talking about the exhaustive use of information about a given
equation in constructing truncated solutions. In the above-cited articles, algorithms for solving this prob-
lem and their implementation in Maple are presented.

In [22, 23], we considered the issue of automatic confirmation of such an exhaustive use of information
about a given equation in the construction of Laurent and regular truncated solutions. It is confirmed by
a counterexample consisting of two different prolongations of the given equation, which lead to the
appearance of different additional terms in the solutions.

Algorithms for constructing both the truncated solutions and counterexamples mentioned above are
based on finding solutions with literals, i.e., symbols used to represent the unspecified coefficients of the
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series in the equation (see [7]). Literals denote the coefficients in the terms of the series, the degrees of
which are greater than the truncation degree of the series. Finding solutions using literals means repre-
senting subsequent (non-invariant to all possible prolongations) terms of the series by expressions con-
taining literals, i.e., unspecified coefficients. This makes it possible to clarify the effect of unspecified
coefficients on the subsequent terms of the series in the solution.

Below, we extend the results of [22, 23] to the case of exponential-logarithmic solutions with a trun-
cated regular part. We solve the problem of finding two different prolongations of the original equation
that give a counterexample to the assumption about the possibility of adding invariant terms to the trun-
cated solutions of the given truncated equation.

5. CONSTRUCTING A COUNTEREXAMPLE

The prolongation of Eq. (5) containing literals has the form

(10)

where  denotes a literal. The algorithm from [15], presented in a more general form in [17], makes it

possible to construct the irregular parts  of all solutions of the form (8) for Eq. (10). We will be inter-
ested only in those for which the ramification index  and the coefficients of the polynomial  do not
depend on literals. For each such pair , we perform in (10) the substitution

where  is a new independent variable and  is a new unknown function. As a result of substituting and
multiplying the equation by , we obtain a new equation, whose coefficients are Laurent series in .
The coefficients of these series are polynomials in literals over K. For the new equation, we construct reg-
ular solutions , using a variant of the algorithm from [3, Section 4.2]. This variant, for each series
involved in the regular solution, calculates the maximum number of terms that are invariant to all prolon-
gations of the equation and one additional term the coefficient of which depends on the literals. This coef-
ficient is a polynomial over  in a finite number of literals.

Thus, for an exponential-logarithmic solution with a truncated regular part (9), we obtain a finite set
of polynomials in literals, which can be used to construct a counterexample.

In [23], when considering truncated Laurent and regular solutions, we proved the following lemma.

Lemma 1 (see [23, Lemma 1]). For any integer  and , ,
there exist  such that

(11)

From the proof given in [23], it follows that
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can be integers (the ring of integers is naturally embedded in any field  of characteristic 0). It is possible
to iterate over all sets of integers (12) up to the first one satisfying (11). This will make it possible to find
the desired set. It is also possible to involve heuristics and random choice.

Based on this, we can describe an algorithm for constructing a counterexample to the assumption that
it is possible to obtain uniquely determined additional terms of the series involved in the solutions.

Theorem 1. Let  be an equation of the form (5) and  be its truncated solution found using the algorithm
from [4]. Then, for , there are two different prolongations  and  that have truncated solutions  and ,
respectively, which are such prolongations of  that any truncated series involved in  has a prolongation both
in  and in  and even the very first additional terms in  and  are different.
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COUNTEREXAMPLES TO THE ASSUMPTION ON THE POSSIBILITY 73
Proof. Each series involved in the truncated solution of the form (9) is constructed by the algorithm
from [4] up to the first term containing literals, which is no longer included in the final truncated solution.
Before discarding the terms with literals, the series in the truncated solution can be written as

where
 are some of the literals found in (10);

 are literal-independent constants;
 is a nonconstant polynomial over  in the literals , .

To the polynomials , , Lemma 1 can be applied. Thus, there exist and can be
found two different sets of (integer) values , , , , of the literals  that are used to
construct prolongations  and  that have truncated solutions  and  with different additional terms

 and , respectively, not containing literals. This proves the theorem.

6. EXTENDING THE CAPABILITIES OF THE PROCEDURE 
FOR CONSTRUCTING SOLUTIONS

The construction of a counterexample is implemented in the Maple 2021 computer algebra system as
an extension of the capabilities of the procedure  from the  package. This
package contains our Maple implementations of the algorithms presented in [1–9, 22, 23]. Maple library
files containing the package and Maple session files with examples of using the procedures of the package
can be found on the web-page [10].

The first parameter of the  procedure is differential equation (5). The derivative 
of order  is written in the standard Maple form: . Truncated coefficients of the form (6) are
written as , where  is a polynomial of degree not higher than  over the field of alge-
braic numbers.

The name of the unknown function is specified by the second parameter of the procedure.
To work with the package procedures, one needs to download the TruncatedSeries2021.zip archive

located on the web-page [10]. This archive contains two files: maple.ind and maple.lib. It is necessary to
place these files in some directory, e.g., ''/usr/userlib'', and, in the Maple session, perform the assignment

The following command in the session makes it possible to call  package procedures
in short form:

The Maple 2021 system interface allows one to enter equations in mathematical form. We assign to the
variable  an expression denoting Eq. (1):

As a result of the following call of the  procedure, a truncated solution with the maxi-
mum truncation degree will be obtained:

and the variable  will be assigned a pair of equations comprising a counterexample:
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For the equations of the counterexample, we construct truncated solutions:

It can be seen that the coefficients at  in the series involved in these solutions coincide only if both these
solutions are zero.

Consider another equation, of the second order:

Using the  procedure, we obtain exponential-logarithmic solutions in which the regu-
lar parts are calculated to the maximum possible degree:

(13)

The first two terms in (13), i.e., , mean that all prolongations of the equation  have Laurent
solutions whose valuation is ; here, the initial series truncated up to a power of  is equal to , where

 is an arbitrary constant.
The third term means that all prolongations of the equation  have irregular solutions with the expo-

nent of the irregular part , the exponent , and the initial truncated series , where
 is an arbitrary constant.
If, when calling the  procedure, an optional parameter  is specified,

then the regular parts of the solution are calculated to the maximum degree and terms with coefficients
depending on literals are added:

In our implementation of literals, the coefficient at  is denoted . There are two sets of integer val-
ues of literals, such that the expressions

take different values. These two sets correspond to two prolongations of the equation , which comprise
a counterexample. Indeed, the solutions of these two equations will be different prolongations of solution
(13) and all the regular parts of the solution will be prolonged. Obviously, there are an infinite number of
counterexamples. As a result of the  procedure called with the optional parameter

, the variable  will be assigned a pair of equations, which is the desired coun-
terexample:
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For the first equation of this counterexample,

using , we obtain a truncated solution

(14)

For the second equation,

we obtain

(15)

It can be seen that (14) and (15) are prolongations of (13) and the truncated series involved in them are
different.
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