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1. INTRODUCTION
Let 

 

K

 

 be a differential field, for example, the field of rational functions with real or complex coefficients,
and let 

 

S

 

 be the system of differential equations

 

(1)

 

where 

 

y

 

 = (

 

y

 

1

 

, …, 

 

y

 

n

 

)

 

Ú

 

 and 

 

A

 

 

 

∈ 

 

Mat

 

n

 

(

 

K

 

)

 

. Computer algebra provides many algorithms for constructing solu-
tions to systems (1) belonging to 

 

K

 

 and to its extensions. If 

 

K

 

 is the field of rational functions, one can find
solutions belonging to this field, solutions in the form of hyperexponential functions (i.e., functions with a
rational logarithmic derivative), solutions in the form of algebraic or Liouville functions, and so on (see
[1, 2]). However, these algorithms find only the solutions 

 

y

 

 for which 

 

all

 

 the components belong to the given
class. In this paper, we consider the problem of constructing solutions with respect to a part of the
unknowns. More precisely, assume that a set of components 

 

{ , …, } 

 

of the vector

 

 y

 

 is given and a class
of functions 

 

F

 

 (a linear space over the field 

 

K

 

 closed with respect to the differentiation) is specified. We want
to find the components of the solutions 

 

y

 

 to system (1) for which all the specified components belong to 

 

F

 

.
For example, the problem can be as follows. For given system (1), where 

 

K

 

 is the field of the rational func-
tions and 

 

n

 

 

 

≥

 

 2, find all the pairs of the rational functions that are the first and the second components of a
solution 

 

y

 

 = (

 

y

 

1

 

, …, 

 

y

 

n

 

)

 

Ú

 

; the other components of the solution are of no interest.
In computer algebra, solutions in the form of a power series are also of interest (an algorithm for con-

structing such a solution must be able to produce any number of the series terms). An example is provided
by regular formal solutions to a differential system (see [3–5]), where, e.g., 

 

K

 

 is the field of rational func-
tions with complex coefficients. In a neighborhood of a fixed point 

 

x

 

0

 

, these solutions have the form

where 

 

ϕ

 

ν

 

(

 

x

 

 – 

 

x

 

0

 

) 

 

are the Laurent series and 

 

λ ∈ 

 

�

 

. In a neighborhood of an irregular singular point, the sys-
tem does not always have a solution with all regular components; in this context, it makes sense to consider
the problem discussed in this paper.

We also can consider the classes of functions that are not represented in a “closed” form even in the
broadest sense of this word; for example, we can consider meromorphic functions.
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In Section 3, we propose an algorithm that yields one of the following two possible results:

(1) The conclusion that if the specified components of a solution belong to the given class 

 

F

 

, then all the
other components also belong to this class.

(2) A new system of a smaller order in which the specified components of a solution to the initial system
and some of their derivatives are the unknowns; if the specified components of the initial system belong to
the given class 

 

F

 

, then all the other components of the new system also belong to this class.

The problem of the partial construction of solutions is in keeping with the problem of observability and
stability of solutions with respect to a part of the variables (see [6–8]). In Section 4, we discuss this issue
and compare our approach with the approach (which is used in mechanics) based on 

 

µ

 

-transformations pro-
posed in [7]. It should be noted that the new basis chosen for the transformation of the system includes vec-
tors belonging to the set that was considered in [8] in connection with the problems of stability and observ-
ability. However, the partial construction of solutions was not considered in the works cited above.

In Section 2, we introduce the concept of the 

 

m

 

-rank of a system and an admissible partition of the 

 

m

 

-
rank; these concepts are used to validate our approach. In Section 4, we separately consider the case 

 

m

 

 = 1,
i.e., the case when we are interested only in a single component of the solution. We show that the linear
homogeneous equation of minimal order for 

 

y

 

1

 

 that is a consequence of system (1) has no extraneous solu-
tions (to obtain this equation, we construct linear forms that represent 

 

y

 

1

 

, , , … 

 

in terms of 

 

y

 

1

 

, …, 

 

y

 

n

 

until they become linearly dependent). The statement in [9, Section 1.2] to the effect that an equation of
order not exceeding 

 

n

 

 with respect to 

 

y

 

j

 

 (

 

1 

 

≤

 

 

 

j

 

 

 

≤

 

 

 

n

 

) “usually has many solutions which are not the 

 

j

 

th com-
ponent of a solution of the initial system” is true only when the order of this equation is not minimal.

In Section 6, the concept of an admissible partition of the 

 

m

 

-rank is used to formulate and prove a local
existence theorem for nonlinear autonomous systems. In Section 7, difference systems are discussed. In
Section 8, we briefly discuss the description and implementation of the algorithm in terms of noncommuta-
tive Ore polynomials, which makes it possible to develop a universal computer program adjustable to the
differential, difference, and some other cases.

In the further presentation, we assume, for simplicity, that 

 

(

 

i

 

1

 

, …, 

 

i

 

m

 

) = (1, 2, …, 

 

m

 

)

 

. Thus, we are inter-
ested in the components (

 

y

 

1

 

, …, 

 

y

 

m

 

) (

 

m

 

 

 

≤

 

 

 

n

 

) of the solution to the system 

 

S

 

. We also assume that, in addition
to the class 

 

F

 

, there exists a class 

 

G

 

 (

 

F

 

 

 

⊆ 

 

G

 

) which is also a linear space over 

 

K

 

 such that any system 

 

y

 

' =

 

Ay

 

 + b with A ∈ Matn(K) and b ∈ Fn has at least one solution in Gn, i.e., a solution with all the components
belonging to G. (We do not specify this class and do not discuss its structure; rather, we only assume that
such a class exists.) This assumption is quite natural; it relieves us of the necessity to consider the issues of
differential algebra related to the Picard–Vessio extensions (see [2]) and so on. When we mention solutions
to the system without specifying the class to which they belong, solutions with components in G are
assumed. The elements of the spaces F and G are called functions, although a more formal differential-alge-
braic interpretation of these spaces is possible.

2. ADMISSIBLE PARTITIONS OF THE m-RANK OF A SYSTEM

Let e1, …, en be the standard basis in the space of the linear forms of y1, …, yn over K:

Every linear form f can be differentiated along the solutions to the system S, which yields another linear
form of y1, …, yn. Identifying any linear form with the column vector of its coefficients, we obtain for the
derivatives along the solutions to the system S the representation

(2)

where f (i – 1) is the result of the componentwise differentiation of the column vector f (i – 1).

The dimension l of the linear space Spanm(S) of the linear forms generated by e1, …, em and by all the

linear forms  (i = 1, 2, …, m, j = 1, 2, …) is called the m-rank of the system S. If the nonnegative integers

y1' y1''

e1 y1 … en, , yn.= =

f 0( ) f , f i( ) AÚ f i 1–( ) d
dx
------ f i 1–( ), i+ 1 2 …,, ,= = =

d
dx
------

ei
j( )
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l1, …, lm are such that the linear forms

(3)

form a basis

in the space Spanm(S) (l = l1 + … + lm), then the ordered set (l1, …, lm) is an admissible partition of the m-
rank of the system S.

Example 1. Consider the system y' = Ay consisting of three equations with constant coefficients in which

The 2-rank l of this system is equal to three, and the only admissible partition of l is (2, 1). For example, the
partition (1, 2) is inadmissible because  = e2 . On the other hand, the 3-rank of this system has three admis-
sible partitions: (2, 1, 0), (0, 1, 2), and (1, 1, 1).

The derivative of any linear form in (3) along the solutions to the system S (i.e., the derivative of any
linear form in f1, …, fl) is a linear combination (over K) of the linear forms f1, …, fl. Introduce new variables
z1, …, zl that are represented in terms of y1, …, yn by the linear forms f1, …, fl. Let the matrix B ∈ Matl(K)
be such that the column vector of the coefficients of the derivative of the linear form fi along the solutions
to the system S is equal to the product of B and the column vector of the coefficients fi (i = 1, 2, …, l). Set
up the system of equations

(4)

where z = (z1, …, zl)Ú. The basis f1, …, fl can be extended to the basis

of the space of all linear forms of y1, …, yn. The use of the linear forms from this basis for introducing the
new variables Z = (z1, …, zl, zl + 1, …, zn) corresponds to the change of variables

with a nonsingular matrix H ∈ Matn(K). The initial system S can be reduced to the form

(5)

Proposition 1. (i) The projections of the set of solutions to the initial system S and to the system z' = Bz
on y1, …, ym are identical.

(ii) If a solution to the system z' = Bz is such that its components y1, …, ym belong to the given class F,
then all the components of this solution belong to this class.

(iii) If the m-rank of the initial system is n and this system has a solution with the components y1, …, ym

belonging to the given class F, then all the components of this solution belong to this class.

Proof. (i) Set z = (z1, …, zl)Ú and  = (zl + 1, …, zn)Ú. Using the solution z to system (4) and system (5), we
obtain the following nonhomogeneous system for :

(6)

According to the assumption made at the end of the Introduction, this system has a solution in the class G.
On the other hand, m unknowns from z1, …, zl are equal to y1, …, ym (because the transformation H does not

e1 e1
1( ) … e1

l1 1–( )
,, , ,

………………

em em
1( ) … em

lm 1–( )
, , ,

f 1 … f l, ,

A
0 0 1

0 1 0

1 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

e2'

z' Bz,=

f 1 … f l f l 1+ … f n, , , , ,

Z Hy=

Z' B 0

U V⎝ ⎠
⎜ ⎟
⎛ ⎞

Z .=

z̃
z̃

z'˜ Vz̃ Uz.+=
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change the values of these unknowns):

(ii) This assertion is obvious because the class F is closed with respect to the differentiation.
(iii) In this case, system (5) has the form Z' = BZ and y = H–1Z. Then, use (ii).
Setting F = {0}, we obtain two corollaries to Proposition 1.
Corollary 1. The initial system has a nonzero solution with the zero components y1, …, ym if and only

if its m-rank is less than n.
Corollary 2. All the components of a nonzero solution to the irreducible (over K) system (i.e., to a sys-

tem that cannot be reduced to form (5) by a linear (over K) nonsingular change of unknowns) are distinct
from zero.

For example, if we are interested in rational or meromorphic solutions to the system z' = Bz, then the fact
that some of the unknowns are derivatives of others can be used to reduce the a priori bounds of the orders
of the poles of the solutions (such bounds can be obtained using the methods studied in [10, 11]). For exam-
ple, if we know that  = z2,  = z3, …,  = zl and that γ > 0 is an upper bound on the orders of the poles of
the unknown functions z1, …, zl at the point x = x0 , then we can use the improved bounds γ – l, γ – l + 1, …,
γ – 1 on the orders of the poles of the unknown functions z1, …, zl – 1, respectively. If it turns out that γ – l ≤ 0,
then none of the functions z1, …, zl has a pole at x0.

3. ALGORITHM

Computation of the m-rank of the initial system and the construction of the system z' = Bz of form (4)
play a key role in the solution of the problem.

The algorithm is as follows. If the m-rank of the initial system is n, then the algorithm concludes that,
since the specified components of the solution to the system belong to the given class, then all the compo-
nents also belong to this class. If the m-rank of the initial system is less than n, then set up the system z' =
Bz as described in Section 2, find its solutions with all the components belonging to the given class, and
produce the corresponding subset of the components of these solutions (removing the derivative compo-
nents).

Here, it is pertinent to note that, as was mentioned in the Introduction, computer algebra provides many
algorithms for constructing solutions to systems (1) with all the components belonging to a certain class of
functions. These algorithms can be divided into two types. The first type includes the algorithms that reduce
the initial system to a scalar equation of order n. Such a reduction is called uncoupling. Usually, it is per-
formed by constructing a cyclic vector, which will be briefly discussed in the next section. The second type
comprises all the other methods, which are called direct. These algorithms are faster; however, they are few
in number. For the case when K is the field of rational functions, three such algorithms are based on the
search for rational solutions [11, 10], for formal regular solutions [4, 5], and for irregular solutions with the
use of the Puiseux series [12]. However, the algorithms for finding Liouville solutions (or, which is the
same, solutions by quadratures) [2] can be used only in the scalar case; in the multidimensional case, uncou-
pling is used.

The algorithm described in this section is designed for use at the preliminary stage, which precedes the
solution of the system z' = Bz (this system can be called an m-system) with all the components belonging to
the given class.

We complete the discussion of the algorithm by a remark concerning the case when the m-rank of the
initial system is n. In this case, the matrix B can also be constructed, and its size is n × n. However, the algo-
rithm recommends skipping the construction of B and returning to the initial system y' = Ay (the operations
used to transform A into B can make the matrix entries more bulky). However, if we do not assume that F
is a linear space over K but is only closed with respect to differentiation (this problem is slightly different
from the one considered in this paper), the transition to the system z' = Bz is appropriate even when the m-
rank is equal to n. In this case, part (iii) of Proposition 1 does not apply because H–1z can contain the com-
ponents not belonging to F. For example, this is the case when K = �(x) and we are interested in the poly-
nomial components y1, …, ym or in the same components in the form of entire functions. For example, for

z1 y1, z2 y1' , …, zl1
y1

l1 1–( )
,= = =

…………………………………………

zk ym, zk 1+ ym' , …, zl ym
lm 1–( )

.= = =

z1' z2' zl 1–'
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the system

we have n = 2, m = 1, and its 1-rank is 2. The solutions (x, 1/x)Ú and (1/x, 0)Ú to this system are linearly inde-
pendent, which implies that this system has no solutions in which both components are polynomial. The
consideration of the initial system instead of z' = Bz does not make it possible to find the polynomial com-
ponent y1 = x. In this case,

and the solutions of the corresponding system with both polynomial components are represented as the
product of an arbitrary constant and (x, 1)Ú.

Usually, the search for polynomial solutions is performed in two steps. At the first step, an a priori upper
bound for the degrees of the polynomials that are the components of any such solution is found. At the sec-
ond stage, these components are found using, for example, the method of undetermined coefficients. Here,
we can make a simplification similar to that described at the end of Section 2. If it is known that the degree
of any of the polynomials z1, …, zl is less than γ ≥ 0 and  = z2, …,  = zl, then degz2 ≤ γ – 1, degz3 ≤ γ
– 2, …, degzl ≤ γ – l + 1. If, for a certain i in the range 1 ≤ i ≤ l – 1, γ – 1 < 0, then zi + 1 = … = zl = 0.

4. THE CASE WHERE m = 1
If m = 1, then the matrix B is

(7)

where l is equal to the 1-rank of the initial system. In this case, the set of solutions to the system z' = Bz
obviously coincides with the set of the vectors (u, u', …, u(l – 1))Ú, where u ranges over all the solutions to the
equation Lu = 0 with

Applying Proposition 1 to the case m = 1, we see that any y1 = u, where u is a solution to the equation
Lu = 0, can be extended to become a solution of the system y' = Ay. Thus, we have the following result.

Proposition 2. All the solutions to the equation Lu = 0 and only these solutions are the y1 components
of all the solutions y of the system y' = Ay

Note that if the 1-rank of system (1) is n, then y1 is the so-called cyclic vector (see [13]) for this system.
The validity of Proposition 2 for this case has always been beyond question; the misunderstanding men-
tioned in the Introduction in connection with the quotation from [9] concerned the case of smaller values of
the m-rank. A cyclic vector of system (1) is a linear form v = v1y1 + … + vnyn with the coefficients from K
such that v, in combination with the derivatives v', …, v(n – 1) along the solutions of the system, form a basis
in the space Spann(S). The equation of the minimal order for v, which is a consequence of the system, has
the order n in this case. It is proved that, under broad assumptions about the field K, a cyclic vector exists,
and there are algorithms for its construction. One of such algorithms is the one based on a random choice
of the coefficients v1, …, vn with the subsequent verification of the linear independence of the set v, v(1),
…, v(n – 1). If necessary, this procedure is repeated until a cyclic vector is found.

In the following examples, in the consideration of a problem with respect to a part of the unknowns, we
usually assume that the field of the system’s coefficients K and the class F consist of the rational functions.
This is done only for the sake of simplicity: our approach does not rely on this assumption.

y' 1/x– 2x

0 1/x–⎝ ⎠
⎜ ⎟
⎛ ⎞

y,=

B
0 1

1/x2 1/x–⎝ ⎠
⎜ ⎟
⎛ ⎞

=

z1' zl 1–'

0 1

1

g0 g1 … gl 1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,…

L
dl

dxl
------- gi

di

dxi
-------.

i 0=

l 1–

∑–=
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Example 2. Consider the system y' = Ay, where

y = (y1, y2, y3)Ú, and K = �(x). Assume that we are interested in all rational y1 and y2. The 2-rank of this sys-
tem is 3. Therefore, if the components y1 and y2 of a solution to this system belong to an appropriate class
(in particular, to the class of rational functions), then all the components of this solution also belong to this
class. The direct algorithm described in [10] applied to finding the rational solutions shows that this system
has no nonzero rational solutions; therefore, it has no nonzero solutions for which both components y1 and
y2 are rational functions. If we are interested in all possible rational y2, then the corresponding 1-rank is 2
and the matrix B in the new system z' = Bz is

(8)

z = (z1, z2)Ú, z1 = y2, and z2 = . The rational solutions to the system z' = Bz can be found using the direct
algorithm described in [10]. It is also seen that, according to Proposition 2, this system is equivalent to the
scalar equation Ly2 = 0, where

The projection of the space of solutions to the system y' = Ay on y2 coincides with the space of solutions to
Eq. Ly2 = 0, which, as can be shown, has the basis x – 1, x–1 + x–2. Therefore, Eq. Ly2 = 0 has no other solu-
tions except for the rational ones; y2 is a rational function for all the solutions of y' = Ay; and, for any con-
stants c1 and c2, there is a solution y such that y2 = c1(x – 1) + c2(x–1 + x–2). The space of solutions to this
system for which y2 = 0 is one-dimension because system (6) consists of a single first-order equation in this
case. It can be shown that, in complete agreement with Corollary 1 to Proposition 1, the one-dimensional
space of the solutions for which y2 = 0 is generated by the solution

If a direct algorithm is used to find the rational solutions to the system z' = Bz with matrix (8), then a pre-
liminary estimation of the order of the poles can yield, for example, the upper bound of 3 for x = 0 and 1 for
the roots of the equation x2 + x – 1 = 0. The change of variables

(9)

in z' = Bz yields a very cumbersome system of equations for finding the polynomials p1 and p2. The solution
to this system yields sixth-degree polynomials such that rational functions (9) turn out to be reducible by
x(x2 – x – 1) and x2 – x – 1, respectively. Using the reasoning presented at the end of Section 2, we obtain
that the solutions to the system z' = Bz cannot have poles at the roots of the equation x2 + x – 1 = 0 and a
bound on the order of the pole z1 at 0 is 2. Therefore, one can use the change of variables z1 = p1/x2, z2 = p2/x3

instead of (9), which results in a simpler system that has the cubic polynomials p1(x) and p2(x) as its solu-
tions.

A

3x 1– 2x– 2x

1 x– x2–( )/x2 1/x2– 1 x– x2–( )/x2

1 x– 3x3–( )/x2 x2 1– 2x3+( )/x2 1 x– 2x3–( )/x2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

B
0 1

x 3+( )/ x3 x2 x–+( ) x 3+( ) 1 x–( )/ x3 x2 x–+( )⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

y2'

L x x2 x3––( ) d2

dx2
-------- x 3+( ) 1 x–( ) d

dx
------ x 3.+ + +=

y ex
2/2

1

0

1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

z1

p1 x( )
x3 x2 x– 1+( )
---------------------------------, z2

p2 x( )
x3 x2 x– 1+( )
---------------------------------= =
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5. STRUCTURE OF THE MATRIX B AND PARTIAL STABILITY OF THE ZERO SOLUTION 
IN THE CASE OF A SYSTEM WITH CONSTANT COEFFICIENTS

We have already seen that, for m = 1, the matrix of the system z' = Bz is a companion matrix of form (7).
Consider the case m > 1, in which B is an l-by-l matrix of the form

(10)

where the asterisks denote elements of the field K. If A in the initial system is a constant n-by-n matrix, then
B is also constant.

The direct application of the Routh–Hurwitz criterion does not help to analyze the stability of the zero
solution to the system y' = Ay with a constant real matrix A with respect to y1, …, ym (this is a well-known
problem in classical mechanics, see [6]).

Example 3. Consider the system y' = Ay with

Since the characteristic polynomial has a root 1, the solution y1 = y2 = y3 = 0 is Lyapunov unstable. We want
to analyze the stability of this system with respect to y1 . Applying the µ-transformation method proposed in
[7] (see also [6]), we define µ1 = y2 – 2y3 in the first equation

of the initial system. Then, we obtain

Since the 1-rank of the initial system is 2, the unknowns y2 and y3 can be eliminated. We have

.

In the general case, it can be necessary to use µ1, µ2, … instead of µ. The characteristic polynomial of the
last system is –λ2 – 2λ – 2; its roots are –1 + i and –1 – i. The real part of each of them is negative; therefore,
the solution y1 = y2 = y3 = 0 to the initial system is asymptotically stable with respect to y1.

0 1

0 1

* … * * * * … * … … … * … * *
0 1

0 1

* … * * * * … * … … … * … * *
… … … … … … … … … … … … … … …

* … * * * * … * … … … * … * *
0 1

0 1

* … * * * * … * … … … * … * *⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

… …

… …

… …

A
1– 1 2–

4 1 0

5/2 1 1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

y1' y1– y2 2y3–+=

µ1' y1– y2 2y3.+–=

y1' y1 µ1,+–=

µ1' y1– µ1–=
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The consideration of the system z' = Bz described in Section 2 can be used instead the µ-transformation.
In the example under consideration, we have

z1 = y1, z2 = , and the roots of the characteristic polynomial are –1 + i and –1 – i as in the case of the
µ-transformation.

In the general case, form (10) of the matrix B is convenient when the characteristic polynomial must be
found. A permutation of the rows of the matrix B – λIl reduces the problem to the computation of the deter-
minant of the matrix

(11)

where the upper horizontal part consists of m rows and the subsequent parts consist of l1 – 1, …, lm – 1 rows,
where l1 + … + lm = l. Eliminating the entries in the upper part of this matrix using the unit entries of the
subsequent rows (first, c1n, …, cml are eliminated using the last row; then the next to last row is used; and so
on) and expanding the determinant in terms of the columns, of which each contains only one (unit) entry,
we reduce the problem to calculating the determinant of the m-by-m matrix (pij(λ)) in which

where k0 = 0 and kj = l1 + … + lj, j = 1, 2, …, m. This determinant, which is equal to the determinant of matrix
(11) up to a sign, can be calculated by the standard methods. Thus, there is no need for writing out and stor-
ing the entire matrix (10); it is sufficient to find only the m rows of this matrix depicted by the asterisks and
construct the m-by-m matrix (pij(λ)).

Proposition 3. Suppose that the system S of form (1) with constant coefficients has the m-rank l (l ≥ m ≥
1), the space Spanm(S) has basis (3), and the vector of the coefficients of the expansion  in terms of this
basis is (ds1, …, dsl). Then, the characteristic polynomial of the matrix B of system (4) produced by the pro-
posed algorithm coincides, up to a sign, with the determinant of the m-by-m matrix (pij(λ)) in which

where k0 = 0 and kj = l1 + … + lj, j = 1, 2, …, m.

B 0 1

2– 2–⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

y1'

c11 c22 … c1l

… … …
cm1 cm2 … cml

– – – – – – – – – – – – – – –

λ– 1

λ– 1

– – – – – – – – – – – – – – –

λ– 1

λ– 1

– – – – – – – – – – – – – – –

… … …
– – – – – – – – – – – – – – –

λ– 1

λ– 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎜ ⎟
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,

… …

… …

… …

pij ci k j 1–, 1+ ci k j 1–, 2+ λ … ci k j, λ
l j 1–

,+ + +=

es
ls( )

pij di k j 1– 1+, di k j 1–, 2+ λ … di k j, λ
l j 1–

λ
l j,–+ + +=
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Proof. The proof immediately follows from the reasoning above concerning the calculation of the deter-
minant of matrix (11): we set cst = dst – λ if t = kj for a certain j ≤ m and set cst = dst otherwise.

Proposition 3 is a generalization of the fact that if matrix (7) is constant, then its characteristic polyno-
mial is equal to g0 + g1λ + … + gl – 1λl – 1 – λl up to a sign.

For the case of constant coefficients, G.V. Plotnikov implemented the proposed algorithm for construct-
ing the matrix B and for finding the characteristic polynomial in Maple. Experiments showed that Plotni-
kov’s program computes the characteristic polynomial of a matrix B of order 20 with m = 3 at least two and
a half times faster than the standard Maple procedures.

The fact that, in the case of systems with constant coefficients, the stability of the zero solution to the
initial system with respect to y1, …, ym is equivalent to the stability of the zero solution to the system z' = Bz
with respect to all of its variables (this is also true for the µ-transformation method) can be derived from the
fact that the solutions to the systems with constant coefficients have a special (well-known) form. However,
in the case of variable coefficients, this is not always true.

Example 4. The equation

has the solutions (sinx3)/(1 + x) and (cosx3)/(1 + x). We can set up a linear system of two first-order equations
for y1 = y, y2 = y'. The zero solution to this system is obviously stable with respect to y1 as x  +∞; however,
it is unstable with respect to y1, y2: for example, the function [(sinx3)/(1 + x)]' is unbounded as x  +∞. If
we apply to this system the transformation described in Section 2, the system does not change.

6. m-RANK OF A NONLINEAR AUTONOMOUS SYSTEM

The quantity that we call the m-rank in this paper is used in mechanics and control theory (although in a
different manner) for the investigation of the observability of the system y' = Ay in terms of the variables
y1, …, ym; here, A ∈ Matn(K). In a certain sense, the system is observable if and only if its m-rank is equal
to n.

The concept of an admissible partition of the m-rank proposed in this paper can find other applications.
We consider its application in the theory of autonomous systems of the form

(12)

such that y1(x) = … = yn(x) = 0 is a solution to this system; i.e.,

(13)

Assume that the functions f1, …, fn are sufficiently smooth. Then, |yi| < r (i = 1, 2, …, n), where r is a positive
real number. For 0 < m ≤ n, define the m-rank of system (12) as the m-rank (over � or �) of its linearization
y' = Cy (C is a constant n-by-n matrix).

Proposition 4. Suppose that the m-rank of system (12) is l and (l1, …, lm) is an admissible partition of l.
Then, there exists a ρ, 0 < ρ < r, such that, for any a1, …, am satisfying the inequalities |ai| < ρ ( i = 1, 2, …,
m), system (12) has a solution (y1, …, yn)Ú for which

and

Proof. We consider only the case m = 1. For the general case, the proof is similar. Denote by Q(y1, …,
yn) the set of functions of the variables y1, …, yn such that each of these functions is defined in a neighbor-
hood of the point (0, …, 0) and has the form

1 x+( )xy'' 2y'– 9x6 9x5 2–+( )y+ 0=

y1' f 1 y1 … yn, ,( ),=

…………………
yn' f n y1 … yn, ,( )=

f i 0 … 0, ,( ) 0, i 1 2 … n., , ,= =

yi 0( ) ai, i 1 2 … m,, , ,= =

yi
j( ) 0( ) 0, i 1 2 … m, j, , , 1 2 … li 1.–, , ,= = =

αij y1 … yn, ,( )yiy j

j 1=

n

∑
i 1=

n

∑



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 46     No. 2      2006

SOLVING LINEAR SYSTEMS 227

with sufficiently smooth αij.

Assume that the first equations in the system have the form

(14)

where ϕk ∈ Q(y1, …, yn), k = 1, 2, …, l – 1. Using the induction on k, it can be easily proved that

(15)

ψk ∈ Q(y1, …, yn), k = 1, 2, …, l – 1 (due to (13), the differentiation of any function in Q(y1, …, yn) with

respect to x yields, due to system (12), a function in Q(y1, …, yn)). Substitute  = 0 in (15) to obtain

k = 1, 2, …, l – 1. Set Ψk(y1, …, yn) = yk + ψk – 1(y1, …, yn), k = 2, 3, …, l. Obviously,

for k = 2, 3, …, l and i = 1, 2, …, n. By the implicit function theorem, the equations Ψk(y1, …, yn) = 0, k = 2,
3, …, l, make it possible to represent y2, …, yl as functions of y1, yl + 1, …, yn for |y1| < ρ, |yl + 1| < ρ, …, |yn| <
ρ where ρ is a sufficiently small real number:

Therefore, for arbitrary y1(0), yl + 1(0), …, yn(0) such that |y1(0)| < ρ, |yl + 1(0)| < ρ, … …, |yn(0)| < ρ, we can
find y2(0), …, yl(0) for which the corresponding solution has the desired property (0) = (0) = … =

(0) = 0.

Return to the linear system y' = Ay considered in Example 1. This system consists of three equations with
constant coefficients. Its general solution is

It has already been mentioned that the 2-rank l of this system is 3 and the only admissible partition of l is
(2, 1). According to Proposition 4, for any a1 and a2, this system has a solution

such that y1(0) = a1, (0) = 0, and y2(0) = a2.

Consider the partition (1, 2), which is inadmissible. If a2 ≠ 0, then y2(0) = a2 , which implies (0) ≠ 0

(because (x) = y2(x)).

This example shows the importance of the feasibility of the partition of l in the condition of Proposition 4.

Remark 1. The solution (y1, …, yn)Ú, which exists according to Proposition 4, can be chosen such that it
satisfies the conditions

(16)

for a certain M, which depends on the initial system and is independent of a1, …, am. Again, we give a proof
for m = 1. Any system having the 1-rank l can be transformed (using a linear transformation of the unknowns
with a constant nonsingular n-by-n matrix T) to a system in which the first l – 1 equations coincide with (14)
and y1 does not change under the action of T. The absolute values of the other variables increase by a factor
not exceeding M, where M is the maximum of the absolute values of the entries of the matrix T. Therefore,
the corresponding solution has property (16).

Remark 2. In the linear (not necessarily autonomous) case, Proposition 4 is valid in a more general form:

there exists a solution such that (0) (i = 1, 2, …, m, j = 0, 1, …, li – 1) have arbitrarily specified values.

yk' yk 1+ ϕk y1 … yn, ,( ),+=

y1
k( ) yk 1+ ψk y1 … yn, ,( ),+=

y1
k( )

yk 1+ ψk y1 … yn, ,( )+ 0,=

Ψk 0 … 0, ,( ) 0 and ∂Ψk

∂yi

----------
y1 … yn 0= = =

δki,= =

yk yk y1 yl 1+ … yn, , ,( ), k 2 3 … l., , ,= =

y1' y1''

y1
l( )

y1 c1ex c2e x– , y2+ c3ex, y3 c1ex c2e x– .–= = =

y1

a1

2
-----ex a1

2
-----e x– , y2+ a2ex, y3

a1

2
-----ex a1

2
-----e x––= = =

y1'

y2'

y2'

yk 0( ) Mρ, k< m 1 m 2 … n,, ,+,+=

yi
j( )
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7. DIFFERENCE SYSTEMS

The results obtained in Sections 1–4 and 6 are also valid for difference systems if, in the functional case,
the differentiation is replaced by the unit shift E with respect to the independent variable: Eϕ(x) = ϕ(x + 1).
In the abstract algebraic situation, E can be any automorphism of the field K. The sequential shifts f [0], f [1],
… of the linear form f along the solutions of the system Ey = Ay are defined similarly to the sequential deriv-
atives in the differential case; by analogy with formulas (2), we have

where Ef [i – 1] is the result of the componentwise shift of the column vector f [i – 1] (again, we identify every
linear form with the column vector of its coefficients in the basis y1, …, yn).

Example 5. Consider the system Ey = Ay with

y = (y1, y2, y3, y4)Ú, and K = �(x). Assume that we are interested in the rational y1 and y2. The general rational
solution of the initial system is the product of an arbitrary constant and the vector (0, 0, 1, x)Ú. The 2-rank
of this system is 3, and we can construct the new system Ez = Bz, where

z = (z1, z2, z3)Ú, z1 = y1, z2 = Ey1, z3 = y2 . The general rational solution of the latter system is the product of
an arbitrary constant and the vector (1/x, 1/(x + 1), x + 1)Ú. Both components y1 and y2 of the solution to the
initial system are rational functions if and only if y1 = c/x and y2 = c(x + 1), where c is a constant.

In the difference case, as well as in the differential one, the algorithms for solving the systems are divided
into two types—those based on reducing the system to a scalar equation of order n and direct algorithms.
For the case when K is the field of rational functions, among the direct algorithms are the ones designed for
the search for rational solutions [14, 10] and for the search for formal regular and irregular solutions [15].
As in the differential case, the algorithms for finding Liouville’s solutions (see [16]) are designed for the
scalar case; for the multidimensional case, uncoupling is used. The algorithms for finding solutions in the
form of hypergeometric terms and their linear combinations [17, 18] are also designed for the scalar case.
However, as claimed by its author, the idea behind the algorithm described in [18] can also be used in the
multidimensional case.

In the difference case, Proposition 4 states that, if the m-rank of a difference autonomous system is l and
(l1, …, lm) is an admissible partition of l, then there exists a ρ (0 < ρ < r) such that, for any a1, …, am satis-
fying the inequalities |ai| < ρ(i = 1, 2, …, m), the system has a solution (y1, …, yn)Ú for which

and

f 0[ ] f , f i[ ] AÚ E f i 1–[ ]( ), i 1 2 …,, ,= = =

A

1 1

x x 1+( )2
----------------------– x– 1

1
x2 2x 1–+

x x 1+( )
-------------------------- x 1–

1 0 1 0

x 1+ 0 0
x 1+

x
------------⎝ ⎠

⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

B

0 1 0

x4 6x3 13x2 14x 4+ + + +
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--------------------------------------------------------------–

2x4 11x3 21x2 17x 4+ + + +

x x 1+( ) x 2+( )2
-------------------------------------------------------------------- 3x2 6x 2+ +

x2 x 1+( )3 x 2+( )
-----------------------------------------

2 1–
x3 3x2 x 2–+ +

x x 1+( )2
-------------------------------------
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⎜ ⎟
⎜ ⎟
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that is,

It is also possible to use ∆ = E – 1 instead of E, which leads to another solution satisfying the conditions

that is,

8. ADJUSTABLE ALGORITHM

The algorithms for constructing the new system with the matrix B of the order coinciding with the m-
rank of the initial system in the differential and the difference cases have much in common. They can be
described in a unified way using the Ore noncommutative polynomials (the use of such polynomials in com-
puter algebra is described, for example, in [19, 20]). For this reason, the algorithm can also be used in the
q-difference case. In such a generalized form, the algorithm was implemented by D.E. Khmel’nov in Maple.
The matrices B for the systems considered in Examples 2 and 5 can be constructed by invoking the same
procedure, which is adjusted to one or another ring of Ore polynomials using some special parameters (in
the case of Examples 2 and 5, the procedure is adjusted to the differential and the difference cases, respec-
tively).
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