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Abstract—Linear ordinary differential equations with the coefficients in the form of truncated formal
power series are considered. It is discussed what can be learned from the equation given in this from
about its solutions belonging to the field of Laurent formal series. We are interested in the information
about these solutions that is invariant to possible prolongations of those truncated series that represent
the coefficients of the equation.
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1. INTRODUCTION
Series play a fundamental role in the theory and application of differential equations. In particular, the

coefficients of a linear ordinary differential equation are often represented by series and the task may be
to find solutions of this equation in the form of series of some kind.

Below, the role of the coefficients of an equation will be played by formal power series and the role of
the coefficients of these series will be played by elements of a given field  of characteristic 0. The solu-
tions of our interest belong to the field of formal Laurent series over K. Such solutions will be called Lau-
rent solutions. The questions of the convergence of these series will be beyond our interest.

The algorithmic aspect of this kind of problems involves the representation of infinite series, in partic-
ular, series playing the role of the coefficients of equations. In [1–3], an algorithmic representation was
considered: the series  was specified by an algorithm that determines  from a given n. It was found
that some problems concerning the solutions of equations specified in this way are algorithmically unsolv-
able and, at the same time, other problems can be successfully solved. In particular, the problem of finding
Laurent solutions is solvable. (In these works, not only individual scalar equations were discussed, but sys-
tems of equations as well.) In [3, 5], problems of constructing solutions were considered under the
assumption that the series playing the role of the coefficients of a given equation or a system of equations
are represented in approximate, namely, truncated form. For example, in [5], it was found out what trun-
cation of the coefficients of a system will be sufficient for calculating a given number of the leading terms
of the series entering into exponential and logarithmic solutions of the system. In [3], this problem was
considered for constructing truncated Laurent solutions. In this paper, we are interested in information
about Laurent solutions that are invariant to possible prolongations of truncated series representing the
coefficients of the equation. Here, we propose an algorithm that calculates the maximum possible number
of terms of Laurent solutions, the correctness of which is guaranteed in this sense.

Details of the problem statement are given in Section 2. The proposed algorithm is presented in Section
6. Its implementation in the Maple environment (see [6]) is described in Section 9.

2. PROBLEM STATEMENT
First, we introduce some concepts and notation. Let K be a field of characteristic 0. The following

notation is standard:
 is the ring of polynomials with the coefficients from K;

 is the ring of formal power series with the coefficients from K;
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 is the field of fractions of the ring .

In K[x], K[[x]], and K((x)) the differentiation D =  is defined.

Definition 1. The elements of the field  are formal Laurent series. For a nonzero element
, its valuation  is defined as ; and, . Let

; the -truncation  is obtained by discarding all terms  of degree higher than l; if
, then .

We will consider operators and differential equations written using the notation . In the original
operator

(1)

the coefficients have the form

(2)

where  is a nonnegative integer greater than or equal to ,  (if , then
 = 0 for ). It is assumed that the constant term of at least one of the polynomials

, ..., ar(x) is nonzero.

Definition 2. Let  have form (1) and the polynomial  (the leading coefficient of the differential
operator ) be nonzero. A prolongation of the operator  will be understood as any operator

 for which

(3)

(i.e., ), .
If  is some differential operator, then solutions of the operator  will be understood as solutions of the

equation .
We will propose an algorithm the input of which is the operator  and nonnegative integers

 have the same meaning as in (2). As a result, the algorithm gives, in particular, finite sets of inte-
gers,  and having the following properties (the solutions are assumed to
belong to ):

• for each , there is a solution  of the operator , for which ;

• if  is such a solution of the operator  that , 1 ≤ i ≤ k, then, for any prolongation 
of the operator , there is a solution  for which

(4)

• if  is a solution of some prolongation  of the operator  and , , then there
is a solution  of the operator , for which

(5)
and, consequently, (4) is satisfied;

• the values , , are the maximum possible values related in the aforementioned sense with
 and .

In this case, the sets  and  include all the values possessing these properties.
If we know the space of Laurent solutions of the operator  (this operator has polynomial coefficients;

the algorithm for constructing its Laurent solutions is a simple modification of the algorithm from [4, Sec-
tion 6]) and the sets  and  are also known, then we have a complete list of valuations of the solution
and formulas of form (4), invariant to prolongations of the operator .
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Remark 1. When considering the Laurent solutions  of the prolongation  of the operator , for
checking condition (5), it is essential that , i.e., that the operator  also have Laurent solu-
tions with this valuation . In this case, there may be Laurent solutions  with valuations not belonging to .

Remark 2. The last assertion is directly related to the question of representation of infinite series, raised
in Introduction: the differential equation is given in the form

(6)

, . To it, we put into correspondence operator (1) and a set of numbers 
and solve the problem of finding , , and formulas (4).

The prolongation of operator (1) in this case will also be called a prolongation of equation (6).
The form of representing the results of the algorithm will be established in Section 9.

3. SEQUENCES OF THE COEFFICIENTS OF LAURENT SOLUTIONS

Let  denote the shift operator  for any sequence . The transformation

(7)

converts the initial differential equation

(8)

where , into an induced recurrent equation (relation)

Rewrite this equation in the form

(9)

Equation (8) has a Laurent solution  if and only if the two-sided sequence

(10)

satisfies Eq. (9), i.e.,

(see the proof in [4]).
Here,  is a sequence such that  for all negative integers  with sufficiently large ; each

of the polynomials  has a degree less than or equal to ; and  is the leading coef-
ficient of relation (9).

Recall that, by our assumption, the constant term of at least one of the polynomials  is
not zero. Hence,

is a nonzero polynomial. It does not depend on the prolongations of the original operator .
We see that, if the coefficients of Eq. (8) are infinite series, then sum (9) contains an infinite number

of terms. But, since there exists  such that  for all , for each particular , sum (9) is
finite. The leading coefficient  can be considered as some variant of the indicial polynomial of the
original equation. The finite set of integer roots of this polynomial contains all possible valuations  of the
Laurent solutions of Eq. (8).
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4. ADDITIONAL RELATIONS FOR CALCULATED COEFFICIENTS OF THE SERIES

If  for some integer n, then (9) allows one to find  from . If , then, we
declare (possibly temporarily)  an undetermined coefficient entering into the solution under construc-
tion. In this case, it turns out that the previous values  must satisfy the relation

(11)
Such relations have a finite number of terms on the left-hand side and, possibly, will help us to get rid

of some previously introduced undetermined coefficients. Only when, after increasing step by step,  will
exceed the maximum integer root of the equation , there will be a guarantee that new undeter-
mined coefficients and relations of form (11) will no more arise.

5. THE BASIS OF THE ALGORITHM

If the polynomial  has no integer roots, then none of the prolongations of the equation 
has solutions in . The algorithm reports this and stops working.

If there are integer roots , then, when considering both the operator  and its prolonga-
tions, the existence of a Laurent solution with such a valuation is guaranteed only for  and 
require special consideration. For each of these roots, there are three possibilities:

(a) Laurent solutions exist for all prolongations;
(b) Laurent solutions exist for some but not all prolongations;
(c) Laurent solutions do not exist for any prolongation.
First of all, we have to determine which of the three possibilities takes place. In such situations, we use

symbolic unspecified coefficients: we add to each polynomial  of form (2), entering into the operator ,
a certain number of higher degree terms , where  are symbols (letter
designations). Having performed the calculations, we can see whether the values of the expressions from
which we make conclusions (a), (b), or (c) depend on the values .

Thus, adding symbolic coefficients, we can establish for the considered  which of these three possi-
bilities is realized. If (a), then we find . If (b) or (c), then we exclude  from consideration.

As a result, the set of valuations  is determined. For each of these valuations , a specific
number  will be determined. In other words, we have a set  of integers for which the cor-
responding relation of form (4) are satisfied.

If we consider solutions having a valuation , , then, using the induced recurrent relation (9), we
need to advance in constructing the solution at least to , even if, before this moment, the coefficients
of the series being constructed acquired symbolic unspecified coefficients of the prolongation. The use of
the induced recurrent equation for  equal to one of the integer roots of its leading coefficient gives linear
relation (11) for the already obtained coefficients of the series, symbolic or belonging to  (see Section 4).
If we have reached the maximum root and have found out that these relations somehow limit the choice
of the prolongation (prevents arbitrary choice), then we exclude from consideration the solution with val-
uation . If the relations do not limit the choice of the prolongation (e.g., all the relation only express the
existing undetermined coefficients via the added unspecified coefficients), then we select from the con-
structed segment its leading terms in accordance with formula (4) with .

After that, it is possible to construct a basis of the space of truncated Laurent solutions of a valuation
greater than or equal to  in the form of a finite set of finite series, which is represented by the union
of  subsets; the th subset, , consists of truncated solutions having a valuation , and truncated
series entering into some fixed subset are linearly independent over the field of constants.

6. STEPS OF THE ALGORITHM
Step 1. Input: differential operator (1) with polynomial coefficients and nonnegative integers

.
Step 2. Set .
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Step 3. Construct the coefficient  of induced recurrent equation (9). Calculate the
set  of integer roots of . If this set is empty, then there are no Laurent solutions.

Step 4. Define  as the difference between the maximal and minimal integer roots of the polynomial

. Calculate the coefficients , , of induced recurrent equation (9).
Note that, for , the found  will contain symbolic unspecified coefficients .

Step 5. For each , calculate the initial coefficients  of the Laurent solution with a possible val-
uation , setting  for all  and gradually increasing , starting with .

5.1. Perform calculations up to  equal to  and determine which of possibilities (a), (b), or (c) from
Section 5 is realized for the given .

5.2. If (b) or (c), then pass to the next root or terminate the loop if the last root has been reached.
5.3. If (a), then add  to  and continue calculations for subsequent , if necessary, calculating addi-

tional , . If the maximum integer root has been passed, then, for each subsequent , the
expression for  will be determined. Stop calculation when the expression for  acquires symbolic
unspecified coefficients. Set .

5.4. Add  to  and assemble from the calculated coefficients  the Laurent solution of the
equation  with valuation  having form (4), including arbitrary constants. After that, pass to the
next root or terminate calculation if the last root has already been reached.

Step 6. Result: the found Laurent solutions together with the sets  and .
Example 1. Let us follow the steps of the proposed algorithm on the example of the operator

(12)

At step 3, we obtain the indicial polynomial  and the set of its integer roots: 
and . At step 4, we construct  and , which contain symbolic unspecified coefficients in
the prolongation of the operator .

At step 5, for the possible valuation , we successively calculate , , and :
• : : the coefficient  remains undetermined;
• : . We have ;
• :  = 0 ·  =  +  =

 + . The coefficient  remains undetermined, while it turns out that 
if . Since  and  depend on unspecified coefficients, here we have
case (b); i.e., Laurent solutions with valuation  exist only if . This value
is discarded.

Step 5 for :
• : : the coefficient  remains undetermined;

• : . We have . In this case,  and, therefore,

 also depend on unspecified coefficients. Since the root , which corresponds to the maximum pos-
sible valuation, has already been passed, further calculations are not required.

Therefore, for the equation , we have  and . For any prolongation of the coef-
ficients, there is a Laurent solution:

(13)

where  is an arbitrary constant. For , this solution is equal to zero, since the valuation of the Lau-
rent solution of operator (12) cannot be positive. Solution (13) can be written in the form .

Example 2. Add to the coefficients of operator (12) several terms:

(14)
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Step 3 for  gives the same results as for (12). At step 4, we obtain

Step 5 for possible valuation  is performed similarly to (12). But, for , we have
 =  + 6) = 0, which means that relation (11)

is an identity  and, therefore, the coefficient  remains undetermined. Accordingly, for the valua-
tion , Laurent solutions exist for any prolongation . Here we have case (a). We obtain c–1 =

. Further calculations are not required, since the root ,
which corresponds to the maximum possible valuation, has been passed and the expressions for all subse-
quent coefficients of the solution will contain unspecified coefficients. Accordingly, for the equation

 with any prolongation of the coefficients, there is a Laurent solution with valuation :

where  and  are arbitrary constants.
Step 5 for :
• : , and the coefficient  remains undetermined;

• : . We have ;

• :  = . We have ;

• : Calculate , where  and  are symbolic unspecified coefficients.

Then,  +  = . We have . Note that,

in this case,  has been calculated despite the fact that  contains unspecified coefficients, since
 for any values of these unspecified coefficients.

Further calculations are not required, since the root , which corresponds to the maximum possi-
ble valuation, has been passed and the expressions for all subsequent coefficients of the solution will con-
tain unspecified coefficients. Accordingly, for the equation  with any prolongation of the coeffi-
cients, there is a Laurent solution with valuation :

(15)

Thus, for the equation , we have found , , and .
Example 3. If we add other new terms to the coefficients of the initial operator (12),

(16)

then similar calculations show that  and  for the equation . For any prolongation of
the coefficients, there is a Laurent solution . Here, we have case (c), which led to discarding the
possible valuation –2.

Let us summarize the consideration of examples 1, 2, and 3. We have the equations , ,
and , the last two of which are prolongations of the first equation in the sense of Definition 2.
As shown in example 1, except for 0, there is no integer value for which any prolongation of the equation

 would have a Laurent solution with a valuation equal to this value. Moreover, although the equa-
tion  has a Laurent solution with valuation –2, the equation  has no solutions with such
valuation. This confirms the correctness of the answer obtained in example 1.

Proposition 1. Suppose that the values ,  have been found by the proposed algorithm for
the equation , where  has form (1) and  . Let  be a positive integer such
that  for some . Then, for the equation , there exists a prolongation  such
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that, for some its solution , , the equality  is not satisfied
for any solution , , of the equation .

Proof. The proposed algorithm finds each of the values , using, in particular, the fact that the terms
with symbolic coefficients added to  appear in expressions for the coefficients of solutions. For dif-

ferent prolongations of the operator , we can obtain different coefficients of the solution  for  when
.

Remark 3. In Proposition 1, it is essential that both  and , i.e., that  also has
Laurent solutions with such valuation . In this case,  may have Laurent solutions with valuations that
are not included in . This is illustrated by examples 1 and 2.

Remark 4. We assume that, in the operator  of form (1), the constant term of at least one polynomial
coefficient is nonzero. This assumption guarantees that the polynomial  in (9) is nonzero. In addi-
tion, it should be noted that, if the minimum valuation of nonzero coefficients of the equation is positive
and equal to  and also if  for each coefficient , including zero coefficients, then we can divide
both sides of the equation by  and replace each  with  and then apply our algorithm.

7. RELATION WITH THE TRUNCATION PROBLEM

It is easy to prove that an equation of the form , , has a solution in  if and
only if the indicial polynomial of the operator  has integer roots (for example, if there are such roots, then
there is a Laurent solution with a valuation equal to the maximum of them). This fact is discussed, in par-
ticular, in [3], where, in addition, the so-called truncation problem is considered: how many leading terms
of the coefficients of the operator  influence a given number of leading terms of the Laurent solution of
the equation ?

Proposition 2 (see [3, Proposition 1 (ii)]). Let l be a nonnegative integer, , ,
. Let the indicial polynomial of the operator L have integer roots, and let  be the largest and

smallest of them. Let  and  Then the equation  has a solution of the form

 if and only if the truncated equation  has a solution of the same form.
Remark 5. In [3] and in this article, the concept of truncation of a series is defined in different ways.

In the statement of Proposition 2, this concept is interpreted in accordance with Definition 1.
Proposition 2 enables one to formulate another approach to solving the problem considered in this

paper. Let  be an operator of form (1) with coefficients (2). Let us set  and find the maximum
integer  for which . Then, the set of valuations of the Laurent solutions of the equation 
and the first  terms of these solutions give the required solution (with this approach, ).

This approach does not require the addition of symbolic coefficients. However, if, e.g.,  (the val-
ues of  are too small), we cannot choose —the approach turns out to be inapplicable. However, the algo-
rithm presented in Section 6 copes with this situation. Let us return to example 1, where 
and, therefore, . In this case, . The approach based on Proposition 2 does not
give a solution to the problem, but the algorithm presented in Section 6 allowed us to obtain a solution in
Example 1.

It is also easy to show that the algorithm from Section 6 can find more terms of the Laurent solutions
than the algorithm based on Proposition 2. For (14), the algorithm based on Proposition 2 instead of (15)

will obtain one fewer terms: 

8. DIFFERENTIATION OPERATIONS  AND 

If the original differential equation is written using  instead of , then, by the substitution ,
this equation can be transformed into an equivalent equation written using : here, we have a useful equal-
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ity for the composition of the operators  and : . It is clear that, if the initial equation
is given in the form

(17)

then, as a result of this transformation, we will come to Eq. (6), but  may differ from .
The coefficients

(18)

for the new equation can be found using symbolic unspecified coefficients, which must not affect (18).
The transition from  to  can be performed without using symbolic unspecified coefficients: we con-

sider operator (17) as an operator with polynomial coefficients , but the degree of each
 is assumed to be equal to , setting, if necessary, the coefficients multiplying some of the highest

degrees to zero; recall that  are truncated series and each  specifies the corresponding
truncation. It cannot be ruled out that, when passing from  to , the coefficient multiplying some  will
arise as a sum of polynomials of various degrees (in this case, the degrees are understood in the aforemen-
tioned sense). In this case, the degrees of these truncated polynomials should be aligned with their lowest
degree. This is fully consistent with the approach based on the use of symbolic unspecified coefficients.

Example 4. When passing from  to  in the operator

(19)

the resulting coefficient multiplying  is represented by the sum of  with  and  with
. When summing, it is necessary to pass to the lower of the truncations. In the given case, the sum is

equal to  with .
Application of the algorithm to the resulting operator

shows that, for any prolongation of the coefficients of the operator , there is a Laurent solution:

When passing from an equation given in form (17) to an equivalent equation given in form (6), it may
occur that, for some  ( ),  even if all  are nonnegative integers. This will mean that
the given equation with truncated coefficients does not contain enough information to obtain a indicial
polynomial as a polynomial of  with coefficients from . In particular, the equation

is equivalent to

(20)
and the indicial polynomial is

(21)

where the coefficient  of Eq. (20) is assumed to be equal to ; in this case, , i.e., the con-
stant term of this coefficient, acts as another variable of the polynomial . Here, we cannot apply the
algorithm from Section 6.

9. PROGRAM IMPLEMENTATION AND EXAMPLES OF USE
The algorithm was  implemented  in the Maple environment (see [6])  in the  form of the

LaurentSolution procedure. The first argument of the procedure is a differential equation of
form (6). An application of  to an unknown function  is written as theta(y(x),x,k). It is also
possible to use ordinary differentiation (operator : see Section 8); in this case, the application of the

θ −1x − −θ = θ −1 1( 1)x x

τ + τ + τ ++ + … + + + + = ,1 01 1 1
1 0( ( ) ( )) ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( ) 0r r

rw x O x D y x w x O x Dy x w x O x y x

…0 1, , , rt t t τ τ … τ0 1, , , r

++ , = …1( ) ( ) 0,1, ,it
ia x O x i r

D θ
…0( ), , ( )rw x w x

( )iw x it
…0( ), , ( )rw x w x it

D θ θi

D θ

= − + + + − + , τ = , τ = , τ =2 3 2
0 1 2( ) ( 3 ) 2 1 3,L x x x D x D

θ − − 21 x x =1 2t − +3 x
=1 1t

−2 =1 1t

− + + θ + − θ, = , = , =3 2
0 1 2( 1 ) ( 2) 3 1 2,x x t t t

L

+ , = =4
1( ) {0}, 3.C O x W m

i ≤ ≤0 i r < 0it τ τ … τ0 1, , , r

n K

( )+ + + + =2 3 2( ( )) ( ) ( ) ( ) 1 ( ) ( ) 0x O x D y x O x Dy x O x y x

+ θ + θ + + =2(1 ( )) ( ) (1) ( ) (1 ( )) ( ) 0O x y x O y x O x y x

,= + + ,2
0 1 0( ) 1u n n a n

θ ( )y x , +1 0 ( )a O x ,1 0a
0u

θk ( )y x
D

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 10  2019



LINEAR ORDINARY DIFFERENTIAL EQUATIONS 1657
operator  to an unknown function  is defined in the form diff(y(x),x$k), standard for Maple.
The truncated coefficients of the equation are given in the form , where  is a polyno-
mial of degree no higher than  over the field of rational numbers. As the second argument of the proce-
dure, an unknown function is specified.

The result of the procedure is a list of truncated Laurent solutions corresponding to valuations .
Each element of the list is represented as

(22)

where  is a valuation that guarantees the existence of a Laurent solution for any prolongation of the
given equation,  has the previous meaning, and  are the calculated coefficients of the Laurent solution,
which can be linear combinations of arbitrary constants of the form .

Below we present eight examples, which we combine into one, containing paragraphs 1–8.
Example 5.
1. Each of the equations

(23)

(24)
can be represented in the form

(25)
Apply the implemented procedure to (25):
> eq1:=(x+O(x^2))*(theta(y(x),x,1))+(–x+O(x^2))*y(x);

> LaurentSolution(eq1,y(x));

The answer obtained here means that  and .
2. Add to the coefficients of Eq. (25) some terms corresponding to coefficients (23). We obtain a trun-

cation of the solution to the degree , which corresponds to the expansion in a power series of the func-
tion , which is a solution of (23):

> eq2:=(x+O(x^3))*(theta(y(x),x,1))+(–x+x^3/2+O(x^4))*y(x);

> LaurentSolution(eq2,y(x));

The answer obtained also means that, here,  and .
3. Now add to the coefficients of Eq. (25) some terms corresponding to coefficients (24). We obtain a

truncation of the solution up to the degree , which corresponds to an expansion in power series of the
function , which is a solution of (24):

> eq3:=(x+x^2/2+O(x^3))*theta(y(x),x,1)+(–x–x^2–x^3/2+O(x^4))*y(x);

> LaurentSolution(eq3, y(x));

The answer obtained also means that  and .
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4. For each of the equations in paragraphs 1–3, there is only one valuation for which Laurent solutions
exist for any prolongation of the equation. Consider application of the procedure to an equation specified
by operator (14):

> eq4:=(–1+x+x^2+O(x^3))*theta(y(x),x,2)+(–2+O(x^3))*theta(y(x),x,1)+
(x+6*x^2+O(x^4))*y(x);

> LaurentSolution(eq4,y(x));

The answer obtained means that , , and .
5. Does it make sense to consider, e.g., the case of pairwise different  entering into (6), or is

it enough to restrict the consideration to the case of equality of these numbers? In other words, can the
replacement in (6) of each  by  lead to a reduction in the accuracy of the algorithm? The fol-
lowing example shows that such a reduction is possible. Thus, the time expenditures caused by the rejec-
tion of the a priori assumption of equality of all  may be justified.

For the following equation, we obtain five terms of the solution:
> eq5:=(1+O(x))*(theta(y(x),x,1))+(x^4+O(x^5))*y(x);

> LaurentSolution(eq5,y(x));

If we set , then we will obtain one term of the solution:
> eq6:=(1+O(x))*(theta(y(x),x,1))+O(x)*y(x);

> LaurentSolution(eq6,y(x));

6. An example of an equation that has no Laurent solutions under any prolongations:
> eq7:=(2+O(x))*(theta(y(x),x,1))+(1+O(x))*y(x);

> LaurentSolution(eq7,y(x));

The answer is an empty list, i.e., the absence of solutions.
7. If the indicial polynomial depends on the unspecified coefficients of the equation (see Section 8), then

the answer will be :
> eq8:=(x^2+O(x^3))*diff(y(x),x,x)+O(x)*diff(y(x),x)+(1+O(x))*y(x);

> LaurentSolution(eq8,y(x));

In this case, as a result of the transition to the operation  in the equation, the constant term of the
coefficient multiplying the first degree of  is unspecified.

8. Apply the procedure to operator (19) with :

> eq9:=(–x+x^2+x^3+O(x^4))*(diff(y(x),x,x))+(–3+x+O(x^2))*
(diff(y(x),x))+O(x^3)*y(x);
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> LaurentSolution(eq9,y(x));

The answer obtained also means that  and .
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