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Abstract—The approach we used earlier to construct Laurent and regular solutions enables one, in
combination with the well-known Newton polygon algorithm, to find formal exponential-logarithmic
solutions of linear ordinary differential equations the coefficients of which have the form of truncated
power series. (Thus, only incomplete information about the original equation is available.) The series
involved in the solution are also represented in truncated form. For these series, the combined
approach proposed enables one to obtain the maximum possible number of terms.
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1. INTRODUCTION
This article is a continuation of our works [1, 2]. Here, we again consider issues concerning the con-

struction of solutions of linear differential equations specified approximately: the coefficients of the equa-
tions are represented by power series for which only the leading terms are known. Each coefficient is given
in the form , where  is a polynomial, . Again we are interested in information
about solutions (this time, about formal exponential-logarithmic solutions: the definition is given in Sec-
tion 2.2) that does not depend on the unknown “tails” of the coefficients, i.e., information that is invariant
to all possible prolongations of the available truncated series.

Thus, the original equation is specified not completely. As a result, the solution is also obtained in
incomplete from, but the available initial information is used as much as possible. Namely, we are trying
to ensure that the maximum possible number of terms is determined in the series involved in the solution.

The approach used in [1, 2] is based on the involvement of symbolic coefficients in the construction of
solutions. Those are the symbols used to represent unspecified coefficients hidden behind the symbols .
We call these added symbolic coefficients literals; they can also be called literal coefficients. Briefly speak-
ing, our method of literal coefficients consists in successive calculation of the coefficients of the series
entering into the solutions, and these calculations use the quantities known from the equation and are per-
formed as long as the values of the literals have no effect on the quantities that appear in the solutions. This
approach is used in this article in combination with the well-known Newton polygon method [3–6].

In our article, the Newton polygon method is used to find the exponential parts, and the method of
literal coefficients, to find the regular parts of the sought-for solutions; the necessary definitions are given
in Section 2.2.

As already noted in [2], A.D. Bryuno in [7] proposed a method based on the Newton polygons, which
enables one to find any number of terms for the series entering into the solution. This approach was further
developed in [8]. The equations (in the general case, nonlinear) are defined using the explicitly specified
analytic functions of one or several variables. Obviously, this is a somewhat different problem.

The aim of our approach is to obtain the maximum possible number of terms of the series entering into
the solutions of the equation, which, in fact, is specified not completely: the series that specify the coeffi-
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1610 ABRAMOV et al.
cients of the equation are known only in truncated form. This maximality is justified in this article by
Propositions 1, 2, and 3.

Section 6 describes our implementation of the algorithm proposed in Section 5. Examples of its use are
presented. The algorithm was implemented using the Maple 2019 software [9].

2. PRELIMINARY INFORMATION
2.1. Basic Concepts

Let  be an algebraically closed field of characteristic . We will use the following standard notation:
•  is the ring of polynomials in  over K,
•  is the ring of formal power series in  over K,
•  is the field of formal Laurent series in  over K, which is the field of quotients of the ring

.
The degree  of a polynomial  is determined as usual, and . For elements of the

ring  and the field , the concept of valuation is introduced: for , we set

and .

In , the differentiation  is defined. We will consider operators and dif-

ferential equations written using the operation . In the original operator

(1)

the polynomial coefficient  will be assumed below to have the form

where  is a nonnegative integer greater than or equal to ,  (if , then
 for ). The powers of the operator  in (1) are understood as compositions

 with  left and right parentheses.
Henceforward, we put into correspondence to the truncated differential equation

(2)

, , operator (1) and a set of numbers . An operator

with the coefficients represented by series

will be denoted by letter . An operator with polynomial coefficients will be denoted by letter .
Definition 1. A prolongation of Eq. (2) will be understood as any equation  with the operator

for which , i.e., , .
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TRUNCATED SERIES AND FORMAL EXPONENTIAL-LOGARITHMIC SOLUTIONS 1611
If  (or ) is some differential operator, then the solutions of the operator  (or ) will be understood
as the solutions of the equation  (correspondingly, ).

2.2. Formal Exponential-Logarithmic Solutions

The notation  is used below for the set of positive integers.
Definition 2. Formal exponential-logarithmic solutions of a differential equation are solutions of the

form

(3)

where , , , and , as well as finite sums of solutions
of form (3).

We will call  the exponential part of formal solution (3); correspondingly,  will be called
the exponent of the exponential part and , the regular part of formal solution (3). In [3, 4], an algo-
rithm for constructing  linearly independent formal exponential-logarithmic solutions of form (3) for

 was discussed.
In the Introduction, we have already outlined an approach based on the use of literal coefficients or,

as we agreed to call them in short, literals. It was said that, in this article we are using this approach in com-
bination with Newton polygon method. It is therefore appropriate to provide some general information
about this method. In this section, we assume that the equation is completely defined, i.e., in our context,
that the series representing the coefficients of the equation are fully known to us. Let us give the definition
of the Newton polygon from [3, 4]: our consideration below is based on this definition of the Newton
polygon. (A slightly different definition is used in [7, 8].)

Definition 3. Suppose that, in the plane , for , the points  are marked, where
, , and the set  is defined. Let  be the union of

all  for . The Newton polygon for  is the convex hull of the set . This polygon will
be denoted by .

Let  have  vertices ( , ), , where  for , . We denote the side with
the vertices ( , ) and ( , ) by  and assign to it its slope . Let us give a
brief description of the algorithm from [3, 4] for constructing formal exponential-logarithmic solutions
for .

If  has a side with a slope 0, then the side  has vertices  and , where . Then, the
original equation has  solutions of form (3), in which  and . Such solutions are called regular.
The classical algorithms for constructing regular solutions can be found, e.g., in [10; 11, Ch. II, VIII; 12,
Ch. IV]. Such algorithms were also proposed in [7].

If some side  has a slope , then (see, e.g., [4, Ch. 3]) the original equation has  different
formal solutions with the exponent of the exponential part

where ; the ellipsis replaces here a finite number of terms containing smaller than  rational
degrees of . The number  is a root of the characteristic equation associated with the side :

(4)

where the notation  means that the point  belongs to the side . We will call  the
leading term of .

Suppose that the leading terms in the exponential parts of all formal solutions are specified via ,
i.e., , , , are defined. For each nonzero slope 
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( , i.e.,  and  are coprime) and each root  of characteristic equation (4) in the original
equation, we make the substitution

(5)

where  is a new unknown and  is a new independent variable. After reducing by , we
obtain the equation  of order  with coefficients from . Denote by  the minimum
value of valuations of all coefficients of . If , we multiply the coefficients of the equation by

 to obtain the equation with the coefficients from . We apply to the new equation the algorithm
for constructing formal exponential-logarithmic solutions, but, in this case, we will consider in 
only those sides whose slope is smaller than . For each thus constructed solution  of the equation

, we obtain the following solution of the original equation :

Remark 1. In [5, 6], an efficient algorithm is proposed for constructing formal solutions of the equation
, where the field  in the general case is not algebraically closed. This algorithm, call by the

authors rational Newton’s algorithm, constructs solutions in the form

(6)

where , , , and . The field  is a finite algebraic exten-
sion of . For , formula (6) gives at least  different solutions of form (3). For each side  with
a slope , with which the characteristic equation  is associated, substitutions (5) are
replaced with the substitutions

where  is the root of the divisor irreducible over  of the polynomial . In the computer implementa-
tion of our algorithm, we use the algorithm from [6].

3. EXPONENTIAL PART OF THE SOLUTION OF AN EQUATION
WITH TRUNCATED COEFFICIENTS

For Eq. (2) with truncated coefficients, we set , , . Suppose that the valuation
of all coefficients of this equation are the same for all prolongations, i.e.,  and  for

. Then, for any prolongation  of Eq. (2)  and the characteristic equations asso-
ciated with its sides will also coincide with  and the characteristic equations for , where  is
defined by (1). For all prolongations of Eq. (2), the sets of all leading terms of the exponential parts of the
formal solutions will be the same.

Example 1. Consider the truncated equation

Here,
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The polygon  for each prolongation  of this truncated equation has vertices , ,
and . The set of all leading terms of the exponential parts of the formal solutions for each prolongation
is as follows:

Thus, the formal solutions for each prolongation have the form

where the factors  are so far unknown.
Now suppose that, in Eq. (2),  and  for some . Let all  be specified so that the points

 lie inside . In this case, as in the previous one,  for each prolongation  of Eq. (2)
and the characteristic equations associated with the sides  will coincide with  and the charac-
teristic equations for . For all prolongations, the sets of all leading terms of the exponential parts of the
formal solutions will be the same.

Example 2. For a truncated equation

we have

The Newton polygon coincides with the Newton polygon from Example 1. The set of all leading terms of
the exponential parts of the formal solutions for all prolongations is the same as in Example 1.

If, in Eq. (2) the valuation of the leading coefficient may be different for different prolongations (i.e.,
 and  in (2)), then there exists a prolongation  of Eq. (2) such that its order is

lower than  and a prolongation  the order of which is equal to  and the valuation of the leading
coefficient can be either  or any integer greater than . Thus, the last side in  and the corre-
sponding leading coefficients of the exponential part are not invariant to .

Example 3. Consider a truncated equation

For

the set of all leading terms of the exponential parts of formal solutions will be

and, for the prolongation

the set of all leading terms will be the same as in Example 1. Note that, in this example, the first side of
the Newton polygon will be the same for all prolongations, and, therefore, all prolongations will have solu-
tions of the form
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Thus, in some cases, it is possible, knowing only truncated equation (2), to construct the leading terms of
the exponents of the exponential part of some formal solutions that are invariant to all prolongations of
Eq. (2). Suppose that, in Eq. (2), for some , the point  lies outside , where  is defined
by (1). Then, there are prolongations of Eq. (2) such that their Newton polygons will differ from ,
but  will be a subset for each of them. At the same time, they will all be a subset of , where

(7)

Let us construct  and  and determine which of their sides coincide. These and only these sides
will be invariant to all prolongations of Eq. (2), and, if the associated characteristic equations are the same,
then the corresponding coefficients of the leading terms will be invariant to all prolongations of Eq. (2).

Example 4. Consider a truncated equation

(8)

Then, we have

In  and , the common side has vertices  and . It corresponds to the leading terms

These leading terms and only they are invariant to all prolongations of Eq. (8).
Proposition 1. Suppose that, for all prolongations of Eq. (2), the corresponding Newton polygons have a

common side  with the vertices  and , , and this side has a slope . Let there be ,
, such that . Then, there is an prolongation of Eq. (2) for which the leading terms of the

exponents of the exponential parts of all its solutions differ from , where  is the root of the character-
istic equation for (1), associated with the side .

Proof. Consider two prolongations of Eq. (2):  and , where  has form (1) and

The characteristic equations  for  and,  for , associated with the side ,
are different:

We see that , , and . Thus,  and  have no common roots,
which proves the proposition.

4. REGULAR PART OF THE SOLUTION
The regular part of the solution is calculated using the algorithm proposed in [2] for constructing trun-

cated regular solutions of differential equations with coefficients in the form of truncated series. The reg-
ular solution can be written as

where  and , . For Eq. (2), the algorithm from [2] constructs regular
solutions with maximum truncations of the series  entering into them, such that the solutions are
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invariant to various possible prolongations of the equation (the maximality of truncation means that add-
ing terms of higher degree to any of these truncated series entails a loss of invariance to possible prolon-
gations of the equation). The set of possible values of  is determined based on the roots of the character-
istic equation associated with the side of Newton polygon with slope 0, after which the search for trun-
cated regular solutions reduces to finding truncated solutions in  (Laurent solutions), which, in
turn, is performed using the algorithm from [1]. The truncated regular solutions found contain arbitrary
constants.

The algorithms from [1, 2] assume that the constant term of at least one of  is nonzero.
This guarantees that the characteristic equation is invariant to prolongations of the original equation. If
this assumption is not satisfied, then there are no invariant truncations of regular solutions. This follows
from the next proposition.

Proposition 2. Let an equation of form (2) be associated with an operator  of form (1) and a set of numbers
 as described in Section 2.1. Let  have a vertex . Let  for some , . Then, for

any , there is a prolongation of Eq. (2) that does not have a regular solution of the form

(9)

where , , and the degree of  as a polynomial in  is lower than .
Proof. If the equation has a solution of form (9), then the characteristic equation associated with the

side with slope 0 of the Newton polygon has a root . Let us consider three cases.
1. . Then,  has a side with vertices , , ; therefore,  has regular

solutions. For , where

the first side  has vertices  and ; i.e., its slope is not 0 and, therefore,  has no
regular solutions.

2. . Then,  and  have the same side with a slope 0 with the vertices  and
. But the characteristic equations  (for ) and  (for ) associated

with this side are different:

Since ,  and  do not have equal roots. This means that  for all solutions
 of the first equation and solutions  of the second equa-

tion.
3.  (hence, ). For  and , where

 and  have a side with a slope 0 with the same vertex . For , this side is associated
with the characteristic equation

Since ,  and  can have only one common root: . This means that, if 
and , then  for all solutions  of the first equation and solutions

 of the second equation.
If , then  does not have the root 0. Therefore,  for all solutions

 of the first equation and solutions  of the second equa-
tion.

If , then . In this case,  has regular solutions (9) with , if and only if 0 is
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and  is such that its characteristic equation associated with a side with slope 0,

has the root 1, i.e., . It is clear that

The equation  has regular solutions (9) with  and does not have such solutions with .
Example 5. Consider a truncated equation

Here,  and . For this equation, there are no  and  such that all prolongations have solutions
of form (9). The prolongation

has the solution  ( , ). The prolongation

does not have solutions of this form. Its solutions are

and

5. THE ALGORITHM
Let us describe a recursive algorithm  for constructing the exponents of the exponential parts and

beginnings of regular parts of formal solutions that are invariant to all prolongations of the given truncated
equation.

Step 1. Input data: differential operator (1) with polynomial coefficients, integers , and num-
ber  (at the first iteration, ).

Step 2. Construct  and  for (1) and (7) and the set  of all their identical sides with a slope
smaller than , such that the conditions of Propositions 1 and 2 are not satisfied; i.e., for each side ,
we have , .

Step 3. If , then
• if the first vertices  and  coincide, then all prolongations do not have regular solutions and

the result is NULL;
• otherwise, no invariant information about exponential-logarithmic solutions of prolongations

exists; the result is FAIL.
Step 4. Set .
Step 5. If  contains a side with slope 0, then, for truncated equation (2), construct by the algorithm

from [2] regular solutions with maximum invariant truncations of the series in them and add the result
to .

Step 6. For each side  with a nonzero slope  ( ), construct the characteristic
equation associated with  and find the set of all its roots, . For each , make the substitution

in Eq. (2) and obtain a new equation with truncated coefficients. Apply to the new equation the algorithm 
with . If the result is FAIL or NULL, add  to ; otherwise, for each element 
from the resulting set, add  to .

Step 7. The result is the set .
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Example 6. Applying the algorithm  to the truncated equation from Example 1, we obtain the follow-
ing set of five elements:

where  is an arbitrary constant generated by the algorithm for constructing truncated regular solutions
from [2].

To complete this example, we rename the arbitrary constants and compose a general truncated formal
exponential-logarithmic solution:

At each iteration of the recursive algorithm , when constructing the leading term of the exponential part
of the formal solution, we use the sides  for (1), which are invariant to all prolongations along with
the characteristic equations associated with them. When constructing the regular part, we use the algo-
rithm from [2], which obtains the maximum possible number of terms of the series. All this gives us to the
following proposition.

Proposition 3. Suppose that the operator  has form (1), , , and the application
of the algorithm  to truncated equation (2) made it possible to conclude that, for any prolongation of this equa-
tion, there is a formal exponential-logarithmic solution with the exponent  of the exponential
part. Suppose that the substitution , , gave a new equation with truncated coeffi-
cients, for which regular solutions were found by the algorithm from [2]. Then, each of the resulting formal
exponential-logarithmic solutions of Eq. (2) contains truncated series with the maximum possible number of
terms invariant to the prolongations of Eq. (2).

6. IMPLEMENTATION AND EXAMPLES OF USE
The algorithm proposed above for constructing the invariant part of formal solutions for a trun-

cated differential equation was implemented in the Maple 2019 environment in the form of procedure
FormalSolution as an extension of the TruncatedSeries package presented in [2, 13].
The package and the Maple session with examples of using its procedures are available at
http://www.ccas.ru/ca/TruncatedSeries.

The first argument of the procedure is a differential equation of form (2). Application of  to an
unknown function  is written as theta(y(x),x,i). The truncated coefficients of the equation are
given in the form of expressions , where  is a polynomial of degree not higher than 
over the field , i.e., over the field of algebraic numbers.

The second argument of the procedure is the unknown function, e.g., y(x).
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The result of the procedure is as follows:
• Maple constant FAIL if there are no invariant initial parts of solutions of the given equation;
• Maple constant NULL if there are no invariant initial parts of solutions of the given equation and no

prolongation of this equation has regular solutions;
• a list of truncated formal solutions that are invariant to prolongation of the given equation.

The truncated formal solution is a finite sum of expressions of the form  and/or , where

• , where  is the invariant part of the exponent of the exponential part of the formal
solution;

• , where  denotes an arbitrary constant;

• , where  denotes the part of the formal solution that is not invariant to all prolongations
of the given equation;

•  is a finite sum of expressions of the form

where ,  , , for .
Algebraic numbers are represented using the standard Maple construct RootOf. In the following

example,  and . (The presence of
similar constructs in the original differential equations is also possible.)

> (x+O(x^3))*theta(y(x),x,2)+(x^2+O(x^3))*theta(y(x),x,1)+
(2+O(x^2))*y(x):

> FormalSolution(%,y(x));

The following equation has solutions containing both an exponential and logarithms:
> (x^2+x^5+O(x^6))*theta(y(x),x,2)+(2*x+x^4+O(x^5))*theta(y(x),x,1)+

(1–x+x^3+O(x^4))*y(x):
> FormalSolution(%, y(x));

Let us illustrate the work of procedure FormalSolution by a few more examples.
1. An equation the solutions of which has no invariant initial parts:
> O(x^4)*theta(y(x),x,2)+O(x)*theta(y(x),x,1)+O(1)*y(x):
> y(x)=FormalSolution(%,y(x));

2. Let us add some terms to the last coefficient of the previous equation. The procedure returns the
Maple constant NULL, i.e., all continuations have no regular solutions. In the Maple 2019 session, the
result has the form

> O(x^4)*theta(y(x),x,2)+O(x)*theta(y(x),x,1)+(2+O(x^2))*y(x):
> y(x)=FormalSolution(%,y(x));

Below, in examples 3–8, we continue to add new terms to the coefficients (“refine the coefficients”)
of the original equation.
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3. As a coefficient at , we take :
> O(x^4)*theta(y(x),x,2)+(3*x+O(x^2))*theta(y(x),x,1)+

(2+O(x^2))*y(x):
> FormalSolution(%,y(x));

4. Now, as a coefficient at , we take :
> O(x^4)*theta(y(x),x,2)+(3*x+O(x^3))*theta(y(x),x,1)+

(2+O(x^2))*y(x):
> FormalSolution(%,y(x));

5. In the previous version, we additionally refine the leading coefficient: we take it equal to
:

> (4*x^4+O(x^5))*theta(y(x),x,2)+(3*x+O(x^3))*theta(y(x),x,1)+
(2+O(x^2))*y(x):

> FormalSolution(%,y(x));

6. Once again we refine the leading coefficient: we take it equal to :
> (4*x^4+O(x^8))*theta(y(x),x,2)+(3*x+O(x^4))*theta(y(x),x,1)+

(2+O(x^2))*y(x):
> FormalSolution(%,y(x));

7. We additionally refine the coefficient at : we take it equal to :
> (4*x^4+O(x^8))*theta(y(x),x,2)+(3*x+O(x^5))*theta(y(x),x,1)+

(2+O(x^2))*y(x):
> FormalSolution(%,y(x));

8. We refine the coefficients of all terms of the equation:
> (4*x^4+O(x^9))*theta(y(x),x,2)+(3*x+O(x^6))*theta(y(x),x,1)+

(2+O(x^4))*y(x):
> FormalSolution(%,y(x));
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