Matrices of Scalar Differential Operators: Divisibility and Spaces of Solutions

S. A. Abramov ${ }^{\text {a,* }}$, M. A. Barkatou ${ }^{b, * *}$, and M. Petkovšek ${ }^{c, * * *}$
${ }^{a}$ Dorodnicyn Computing Centre, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Moscow, 119333 Russia
${ }^{b}$ University of Limoges, CNRS, XLIM UMR 7252, Limoges cedex, 87060 France
${ }^{c}$ University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia
*e-mail: sergeyabramov@mail.ru
**e-mail: moulay.barkatou@unilim.fr
***e-mail: Marko.Petkovsek@fmf.uni-lj.si

Received July 31, 2019; revised August 15, 2019; accepted September 18, 2019

Abstract

We investigate the connection between divisibility of full-rank square matrices of linear scalar differential operators over some differential field K, and the solution spaces of these matrices over the universal Picard-Vessiot extension of K. We establish some properties of the solution spaces of the greatest common right divisor and the least common left multiple of such matrices.

Keywords: computer algebra algorithms, differential operator matrices, divisibility of square matrices of differential operators, solution space, greatest common right divisor, least common left multiple
DOI: 10.1134/S0965542520010030

1. INTRODUCTION

In [9, p. 82] it is shown that if R is a principal right ideal ring then so is the ring $\mathbf{M}_{m}(R)$ of square matrices of size m with entries in R (the same holds for principal left ideal ring). This is enough for the existence of the (right and left) greatest common divisor and least common multiple for any pair (A, B) of matrices of this type (even if they are not of full rank). This is in particular the case for $R=K[\partial]$ the ring of scalar linear differential operators over a given differential field K. Later, in [5, Section 9.3], algorithms for finding the greatest common right divisor (gcrd) and the least common left multiple (lclm) of Ore operator matrices were given in the same way as it has been done earlier for matrices of polynomials [6]. Those algorithms are based originally on the algorithm FF [5]. A simplified version of FF is the RowReduction algorithm presented in [4],-for short, we will use the abbreviation RR in the sequel.

However, as far as we know, the relations between the divisibility properties of differential operator matrices (i.e., of matrices of scalar differential operators) and their spaces of solutions were not investigated in detail in those publications. In the present paper, we are interested in studying such relationships in the case of differential full-rank operator matrices over a differential field K of characteristic zero. We assume that Const (K), the constant field of K, is algebraically closed and we fix a universal Picard-Vessiot extension Λ of $K[14]$. With each differential operator matrix $A \in \mathbf{M}_{m}(K[\partial])$ we associate its solution space V_{A} over Λ (that is the set of vector-column $y=\left(y_{1}, \ldots, y_{m}\right)^{\mathrm{T}} \in \Lambda^{m}$ satisfying $A(y)=0$).

Note that the solution space of a full-rank operator matrix is finite-dimensional over $\operatorname{Const}(K)$, as it follows from [2]. We prove that for any given finite set $F \subset \Lambda^{m}$ there exists an operator matrix whose solution space is generated by F (the entries of that matrix are, in general, in Λ, not necessarily in K). We use this first result and some matrix divisibility properties to prove that for any full-rank matrices $A, B \in \mathbf{M}_{m}(K[\partial])$ we have $V_{A}+V_{B}=V_{\mathrm{lclm}(A, B)}$. It seems that this has so far been explicitly stated and proved in the scalar case, i.e. $m=1$, but even there the proof is nontrivial (see the comment to [11, Lemma 1] where it is noted that the proof can be based on [10, Lemma A.6]).

So again, although the definition and computation of gcrd and lclm of operator matrices are not newas we have noted, a very similar exposition can be found in [5], [9]-the connection to solution spaces does not appear to have been studied so far.

We would like to note that some of the statements of our paper can be proved in a different way with the methods of differential algebra, in particular by using some statements from [12]. Our current proofs are quite elementary, and from them the algorithms of interest to us can often be extracted with little or no additional effort.

2. PRELIMINARIES: OPERATOR MATRICES

Let (K, ∂) be a differential field of characteristic 0 with an algebraically closed constant field Const $(K)=\{c \in K \mid \partial c=0\}$. We denote by Λ a fixed universal Picard-Vessiot differential extension field of K (see [14, Section 3.2]). This is a differential extension Λ of K with $\operatorname{Const}(\Lambda)=\operatorname{Const}(K)$ such that any linear differential equation of order n with coefficients in K has a fundamental set of solutions in Λ.

Let m be a positive integer, L an operator matrix from $K[\partial]^{n \times m}$. We denote by V_{L} the Const(Λ)-vector space of solutions of L (i.e., solutions of the equation $L(y)=0$) belonging to Λ^{m}. Its dimension will be denoted by $\operatorname{dim} V_{L}$.

The rows of an operator matrix $C \in K[\partial]^{n \times m}$ having indices $i_{1}, \ldots, i_{s}, s \leq n$, are said to be independent over $K[\partial]$, if the equality $f_{1} C_{i, *}+\ldots+f_{s} C_{i s, *}=0$ with $f_{1}, \ldots, f_{s} \in K[\partial]$, implies that $f_{1}=\ldots=f_{s}=0$. Here $C_{i, *}$, for $1 \leq i \leq n$, denotes the $1 \times m$ matrix which is the i th row of C.

Analogously, one can define the independence of columns, but then f_{1}, f_{2}, \ldots must be used as right factors. For a matrix C we can define the row rank as the maximal number of independent rows of the matrix and its column rank as the maximal number of its independent columns. For any matrix those two ranks are equal [8, Ch. 8.1, Theorem 1.1] (note that if f_{1}, f_{2}, \ldots were used as the left coefficients of the columns of C then the claim about equality of the two ranks would not hold). We will use below the term rank for this number. A matrix from $K[\partial]^{n \times m}$ is said to be of full rank if its rank is equal to $\min \{n, m\}$.

Let R be a ring. Denote
-by $\mathbf{M}_{m}(R)$ the matrix ring $R^{m \times m}$,
-by \mathbf{M}_{m} the matrix ring $K[\partial]^{m \times m}=\mathbf{M}_{m}(K[\partial])$,
-by ord M the order of a given matrix $M \in \mathbf{M}_{m}$, i.e., the maximum of the orders of its entries,
-by $\boldsymbol{\Phi}_{m}$ the multiplicative semigroup of all full-rank matrices from \mathbf{M}_{m}, and,
-by \mathbf{X}_{m} the group of unimodular (i.e., invertible) matrices from \mathbf{M}_{m}.
Evidently, $\mathbf{r}_{m} \subset \boldsymbol{\Phi}_{m}$.
In the following proposition, we recall two results that will be used later and whose proof is based on [2, Theorem 2] (remark however that (2) can also be proven using [13, Theorem 3]).

Note that the first Eq. (1) can serve as a replacement for the equality $\operatorname{ord} A B=\operatorname{ord} A+\operatorname{ord} B$ valid for scalar operators A and B, but not in the general case of operator matrices (due to existence of zero divisors in $\mathbf{M}_{m}(K)$).

Proposition 1. Let $A, B \in \boldsymbol{\Phi}_{m}$. Then
(i) [3, Theorem 3] We have the equality

$$
\begin{equation*}
\operatorname{dim} V_{A B}=\operatorname{dim} V_{A}+\operatorname{dim} V_{B} . \tag{1}
\end{equation*}
$$

(ii) [3, Proposition 2(ii)] We have the equivalence

$$
\begin{equation*}
A \in \mathbf{Y}_{m} \Leftrightarrow V_{A}=0 \tag{2}
\end{equation*}
$$

Remark 1. If we consider only solutions belonging to a subfield F of Λ then (1) does not hold in general even in the scalar case. Indeed, take $m=1, K=F=\overline{\mathbb{Q}}(x), A=x \partial-1, B=x^{2} \partial+1$. The solution space $\mathrm{Sol}_{F} A$ of A whose elements belong to F is generated over constants by x, and $\operatorname{Sol}_{F} B=\operatorname{Sol}_{F} A B=0$; so $\operatorname{dim} \operatorname{Sol}_{F} A B=0$ while $\operatorname{dim} \operatorname{Sol}_{F} A+\operatorname{dim} \operatorname{Sol}_{F} B=1+0=1$.

We assume that the field K is computable, i.e., there exist algorithms to execute the field operations and an algorithm for zero testing in K. The following known algorithms are important in the context of our paper:
\mathbf{A}_{1} : Given $C \in K[\partial]^{n \times m}$, the algorithm RowReduction from [5] (algorithm $R R$ in the sequel) allows one in particular to find a matrix $U \in \mathbf{r}_{m}$ such that the number of nonzero rows of $U C$ is equal to the rank of C, and those rows are the first rows of $U C$. Since U is unimodular, the nonzero rows of $U C$ are independent over $K[\partial]$ ([4], [5]).
\mathbf{A}_{2} : Given $A \in \boldsymbol{\Phi}_{m}$, the algorithm from [2] can be used to compute $\operatorname{dim} V_{A}$.
\mathbf{A}_{3} : Given $A \in \boldsymbol{\Phi}_{m}$, the algorithm discussed in [1,3] allows one to test whether A is unimodular, and to construct A^{-1} if the answer is positive.

The following lemma will also be useful in the sequel:
Lemma 1 ([5]). Let $A \in \boldsymbol{\Phi}_{m}, B \in \mathbf{M}_{m}$. Let

$$
C=\binom{A}{B} \in K[\partial]^{2 m \times m} .
$$

Then one can construct $U \in \mathbf{P}_{2 m}$ such that the first m rows of $U C$ are independent over $K[\partial]$ while its last m rows are zero.

The matrix U can be constructed by the algorithm RR (see \mathbf{A}_{1}).

3. THE GREATEST COMMON RIGHT DIVISOR

Definition 1. Let $A, B, D \in \mathbf{M}_{m}$. Then
$-D$ is a right divisor of A (we write $\left.D\right|_{r} A$) if there exists $Q \in \mathbf{M}_{m}$ such that $A=Q D$,
$-D$ is a common right divisor of A, B if $\left.D\right|_{r} A$ and $\left.D\right|_{r} B$.
Lemma 2. Let $A \in \mathbf{\Phi}_{m}, Q, D \in \mathbf{M}_{m}$ and $A=Q D$. Then $Q, D \in \mathbf{\Phi}_{m}$.
Proof. First, if $Q \notin \boldsymbol{\Phi}_{m}$ then there exist $f_{1}, \ldots, f_{m} \in K$, such that $\exists_{i, 1 \leq i \leq m} f_{i} \neq 0$ and $f_{1} Q_{1, *}+\ldots+f_{m} Q_{m, *}=0$. The equality $A=Q D$ implies that $f_{1} A_{1, *}+\ldots+f_{m} A_{m, *}=0$, and $A \notin \boldsymbol{\Phi}_{m}$.

Second, if $D \notin \boldsymbol{\Phi}_{m}$ then there exist $f_{1}, \ldots, f_{m} \in K$, such that $\exists_{i, 1 \leq i \leq m} f_{i} \neq 0$ and $D_{*, 1} f_{1}+\ldots+D_{*, m} f_{m}=0$. The equality $A=Q D$ implies that $A_{*, 1} f_{1}+\ldots+A_{*, m} f_{m}=0$, and $A \notin \boldsymbol{\Phi}_{m}$.

Lemma 3. Let $A, B \in \mathbf{M}_{m}$. Then
(i) $V_{D} \subseteq V_{A} \cap V_{B}$ for any common divisor D of A, B.
(ii) If $A \in \boldsymbol{\Phi}_{m}$ then there exists a common right divisor $D \in \boldsymbol{\Phi}_{m}$ of A and B such that $V_{D}=V_{A} \cap V_{B}$.
(iii) If $A \in \mathbf{\Phi}_{m}, D$ is as in (ii) and $V_{A}=V_{D}$ then $D=T A$ with $T \in \mathbf{r}_{m}$.

Proof. (i) This follows from $A=Q_{1} D, B=Q_{2} D$ for some $Q_{1}, Q_{2} \in \mathbf{M}_{m}$. We have $V_{D} \subseteq V_{A}$ and $V_{D} \subseteq V_{B}$.
(ii) Let $D \in \boldsymbol{\Phi}_{m}$ be the $m \times m$ matrix consisting of the nonzero rows of the $2 m \times m$ matrix $U C$, where U, C are as in Lemma 1. Then $V_{D}=V_{A} \cap V_{B}$. Indeed, $V_{C}=V_{A} \cap V_{B}$ and $V_{C}=V_{U C}$ since U is unimodular; observe that $V_{U C} \subset \Lambda^{m}$ and $V_{U C}=V_{D}$. In addition, $\left.D\right|_{r} A,\left.D\right|_{r} B$, i.e., there exist $Q_{1}, Q_{2} \in \mathbf{M}_{m}$ such that $A=Q_{1} D, B=Q_{2} D$. Indeed, we have $C=U^{-1}(U C)$. Remove from U^{-1} the columns having indices corresponding to zero rows of $U C$, i.e., the last m columns. Denote the resulting $2 m \times m$ matrix by \tilde{U}. Then

$$
\begin{equation*}
C=\tilde{U} D . \tag{3}
\end{equation*}
$$

We can represent \tilde{U} in the block form:

$$
\begin{equation*}
\tilde{U}=\binom{Q_{1}}{Q_{2}}, \tag{4}
\end{equation*}
$$

$Q_{1}, Q_{2} \in \mathbf{M}_{m}$. Then (3) gives us $A=Q_{1} D, B=Q_{2} D$. By Lemma 2, $D \in \boldsymbol{\Phi}_{m}$.
(iii) Let $D \in \boldsymbol{\Phi}_{m}$ be constructed as in (ii). As $A=Q D$ for some $Q \in \boldsymbol{\Phi}_{m}$, it follows from (1) that $\operatorname{dim} V_{Q}=\operatorname{dim} V_{A}-\operatorname{dim} V_{D}=0$, hence $Q \in \mathbf{\Upsilon}_{m}$ by (2) and $D=T A$ with $T=Q^{-1} \in \mathbf{\Upsilon}_{m}$.

Lemma 4. Let $A \in \boldsymbol{\Phi}_{m}, B \in \mathbf{M}_{m}$. Then $\left.A\right|_{r} B \Leftrightarrow V_{A} \subseteq V_{B}$.
Proof. $(\Rightarrow) B=Q A$ for some $Q \in \Phi_{m}$, so each solution of A is a solution of B.
(\Leftarrow) Let D be a common right divisor of A and B such that $V_{D}=V_{A} \cap V_{B}$ (Lemma 3(ii)). Then $V_{D}=V_{A}$ and by Lemma 3(iii) we get $D=T A$ with $T \in \mathbf{\Upsilon}_{m}$, and $\left.(T A)\right|_{r} B$, i.e., $(Q T) A=B$ with $Q T \in \mathbf{M}_{m}$. So, $\left.A\right|_{r} B$.

Proposition 2. Let $A \in \mathbf{\Phi}_{m}, B \in \mathbf{M}_{m}$. Then there exists a common right divisor D of A, B such that any other common right divisor of A, B is a right divisor of D. Such a common right divisor D is defined uniquely up to a left factor from \mathbf{Y}_{m}.

Proof. Let D be as in Lemma 3(ii). Let \tilde{D} be another right common divisor of A, B. By Lemma 2, $\tilde{D} \in \boldsymbol{\Phi}_{m}$. By Lemmas 3(i), 4, we have $\left.\tilde{D}\right|_{r} D$.

Now, let D and \tilde{D} be such that $V_{D}=V_{\tilde{D}}=V_{A} \cap V_{B}$. By Lemma $4(\Leftarrow),\left.D\right|_{r} \tilde{D}$ and $\left.\tilde{D}\right|_{r} D$, i.e., $\tilde{D}=Q D$ and $D=\tilde{Q} \tilde{D}$ for some $Q, \tilde{Q} \in \Phi_{m}$. By $\operatorname{dim} V_{D}=\operatorname{dim} V_{\tilde{D}}$ and (1) we get $\operatorname{dim} V_{Q}=\operatorname{dim} V_{\tilde{Q}}=0$. By (2), $Q, \tilde{Q} \in \mathbf{r}_{m}$.

Definition 2. The greatest common right divisor of $A, B \in \Phi_{m}$, denoted by $\operatorname{gcrd}(A, B)$, is a right divisor D of A, B such that any other common right divisor of A, B is a right divisor of D.

By Proposition 2 for any $A, B \in \Phi_{m}$ the greatest common right divisor $\operatorname{gcrd}(A, B)$ is defined uniquely up to a left factor from \mathbf{Y}_{m}. Thus, $\operatorname{gcrd}(A, B)$ is actually a set of matrices. Instead of $D \in \operatorname{gcrd}(A, B)$, we will write $D=\operatorname{gcrd}(A, B)$ if D belongs to this set.

From the proof of Lemma 3(ii) we have
Proposition 3. For any $A \in \mathbf{\Phi}_{m}, B \in \mathbf{M}_{m}$ we can construct algorithmically $D=\operatorname{gcrd}(A, B)$ belonging to Φ_{m} and $Q_{1} \in \Phi_{m}, Q_{2} \in \mathbf{M}_{m}$ such that $A=Q_{1} D, B=Q_{2} D$. For V_{D}, the equality $V_{D}=V_{A} \cap V_{B}$ holds.

Lemma 5. Let $A \in \boldsymbol{\Phi}_{m}, B \in \mathbf{M}_{m}$ and $D=\operatorname{gcrd}(A, B) \in \boldsymbol{\Phi}_{m}$. Then we can construct algorithmically $G, H \in \mathbf{M}_{m}$ such that $G A+H B=D$.

Proof. Let U, as in Lemma 1, be a $2 m \times m$ matrix such that

$$
U\binom{A}{B}=\binom{D}{0}
$$

Write

$$
U=\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)
$$

where $U_{i j} \in \mathbf{M}_{m}$. Take $G=U_{11}$ and $H=U_{12}$.
Definition 3. Two operator matrices $A \in \mathbf{\Phi}_{m}, B \in \mathbf{M}_{m}$ are right coprime if $D=\operatorname{gcrd}(A, B) \in \mathbf{Y}_{m}$. In other words, A and B are right coprime if $V_{A} \cap V_{B}=\{0\}$.

Remark 2. If A and B are right coprime then $\operatorname{gcrd}(A, B)=I_{m}$, the identity matrix.
Proposition 4. Two operator matrices $A \in \mathbf{\Phi}_{m}, B \in \mathbf{M}_{m}$ are right coprime if and only if there exist $G, H \in \mathbf{M}_{m}$ such that $G A+H B=I_{m}$.

Proof. If $G A+H B=I_{m}$ then the only common solution of A and B is 0 .

4. DIVISIBILITY OF OPERATOR MATRICES

Let $A \in \mathbf{\Phi}_{m}, B \in \mathbf{M}_{m}$. Suppose that we want to test whether $\left.A\right|_{r} B$, and if this relation holds then to construct $Q \in \mathbf{M}_{m}$ such that $B=Q A$.

This can be done algorithmically:
(1) Let $D=\operatorname{gcrd}(A, B)$ and $A=Q_{1} D, B=Q_{2} D$ for $Q_{1} \in \boldsymbol{\Phi}_{m}, Q_{2} \in \mathbf{M}_{m}$ (Prop. 3). Note that $\left.A\right|_{r} B$ holds if and only if $Q_{1} \in \mathbf{r}_{m}$.
(2) Use algorithm \mathbf{A}_{3} to test whether $Q_{1} \in \mathbf{Y}_{m}$. If the answer is negative then $\left.A\right|_{r} B$ does not hold;
(3) otherwise compute Q_{1}^{-1} by algorithm \mathbf{A}_{3}. We get $B=Q A$ with $Q=Q_{2} Q_{1}^{-1} \in \mathbf{M}_{m}$.

Remark 3. This algorithm generalizes the algorithm from [1] for inverting matrices: $A \in \mathbf{M}_{m}$ is invertible (unimodular) if and only if $\left.A\right|_{r} I_{m}$ where I_{m} is the identity matrix; the equality $I_{m}=Q A$ implies that $A^{-1}=Q$.

5. THE LEAST COMMON LEFT MULTIPLE

Definition 4. Let $A, B, M \in \boldsymbol{\Phi}_{m}$. Then
$-M$ is a left multiple of A if $\left.A\right|_{r} M$,
$-M$ is a common left multiple of A and B if $\left.A\right|_{r} M,\left.B\right|_{r} M$.
Lemma 6. Let $A, B \in \boldsymbol{\Phi}_{m}$, then there exists a common left multiple M of A, B.
Proof. Let U, C be as in Lemma 1. The last m rows of the matrix U form a $m \times 2 m$ matrix P such that $P C=0$. Let $P=\left(P_{1} P_{2}\right)$, where P_{1}, P_{2} are $m \times m$ matrices. Now

$$
\begin{equation*}
P_{1} A+P_{2} B=0 . \tag{5}
\end{equation*}
$$

Suppose that P_{1} is not of full rank. Then there exists $W \in \mathbf{r}_{m}$ such that the first row of $W P_{1}$ is zero. In this case the first row of $W P_{2} B$ is also zero, and since B is of full rank, the first row of $W P_{2}$ is zero. Hence the first row of $W P$ is zero, which implies that the rows of P are linearly dependent, but this does not hold since the rows of U are linearly independent. So, $P_{1} \in \boldsymbol{\Phi}_{m}$, and similarly $P_{2} \in \boldsymbol{\Phi}_{m}$. Thus $P_{1} A$ (as well as $P_{2} B$) is a common left multiple of A and B.

Proposition 5. Let $A, B \in \boldsymbol{\Phi}_{m}$, then there exists a common left multiple M of A, B such that any other common left multiple of A, B is a left multiple of M. Such a common left multiple M is defined uniquely up to a left factor from \mathbf{X}_{m}.

Proof. By Lemma 6, the set of common left multiples is not empty. Let M be a common left multiple of A, B with the minimal dimension, and let \tilde{M} be an arbitrary common left multiple of A, B. Then $D=\operatorname{gcrd}(M, \tilde{M})$ is also a common left multiple of $A, B, \operatorname{dim} V_{D}=\operatorname{dim} V_{M}$, and $V_{D} \subseteq V_{M}$, hence (as these are finite-dimensional spaces) $V_{D}=V_{M}$. But $V_{D} \subseteq V_{\tilde{M}}$ as well, so $V_{M} \subseteq V_{\tilde{M}}$. By Lemma 4, $\left.M\right|_{r} \tilde{M}$.

Definition 5. The least common left multiple of $A, B \in \boldsymbol{\Phi}_{m}$, denoted by $\operatorname{lclm}(A, B)$, is a left multiple M of A, B such that any other common left multiple of A, B is a left multiple of M.

By Proposition 5, for any $A, B \in \boldsymbol{\Phi}_{m}$ their least common left multiple is defined uniquely up to a left factor from \mathbf{r}_{m}. Thus, $\operatorname{lc} \operatorname{lm}(A, B)$ is actually a set of matrices. Instead of $M \in \operatorname{lclm}(A, B)$, we write $M=\operatorname{lclm}(A, B)$ if M belongs to this set.

Proposition 6 ([5, Section 9.3]). Let $A, B \in \boldsymbol{\Phi}_{m}$, then the common left multiple of A, B described in the proof of Lemma 6 is $\operatorname{lclm}(A, B)$.

Thus, for any $A, B \in \boldsymbol{\Phi}_{m}$ the operator $L=\operatorname{lclm}(A, B) \in \boldsymbol{\Phi}_{m}$ can be constructed algorithmically, as well as $P_{1}, P_{2} \in \boldsymbol{\Phi}_{m}$ such that $P_{1} A=P_{2} B=L$.

Proposition 7. Let $A, B, L \in \Phi_{m}$ such that $V_{L}=V_{A}+V_{B}$. Then $L=1 \operatorname{clm}(A, B)$.
Proof. We see that $V_{A}, V_{B} \subseteq V_{L}$. By Lemma 4, L is a left common multiple of A, B. Let $M \in \boldsymbol{\Phi}_{m}$ be another left common multiple of A and B. Then $V_{M} \supseteq V_{A}+V_{B}=V_{L}$. This implies that $\left.L\right|_{r} M$. Thus $L=\operatorname{lclm}(A, B)$.

The converse, i.e., $L=\operatorname{lclm}(A, B) \Rightarrow V_{L}=V_{A}+V_{B}$ will be proved later: see Theorem 1.

Example 1. Consider the three operator matrices belonging to $\mathbb{C}(x)[\partial]^{2 \times 2}$ with $\partial=\frac{d}{d x}$.

$$
A=\left(\begin{array}{cc}
\partial & 0 \\
-x & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
\partial-\frac{1}{x} & 0 \\
-x & 1
\end{array}\right), \quad \text { and } \quad L=\left(\begin{array}{cc}
\partial^{2} & 0 \\
-x & 1
\end{array}\right)
$$

One can directly check that V_{A} is generated by $(1, x)^{\mathrm{T}}, V_{B}$ is generated by $\left(x, x^{2}\right)^{\mathrm{T}}$ and $V_{L}=V_{A}+V_{B}$. Thus $L=\operatorname{lclm}(A, B)$ by Proposition 7; we have

$$
L=\left(\begin{array}{ll}
\partial & 0 \\
0 & 1
\end{array}\right) A=\left(\begin{array}{cc}
\partial+\frac{1}{x} & 0 \\
0 & \\
0 & 1
\end{array}\right) B .
$$

6. A MATRIX HAVING A GIVEN SPACE OF SOLUTIONS

Let (K, ∂) be as before a differential field, and denote by \mathscr{b} its constant field. Let n be a positive integer and f_{1}, \ldots, f_{n} be n elements in K. We denote by $\operatorname{Wr}\left(f_{1}, \ldots, f_{n}\right)$ their Wronskian, that is the determinant of the Wronskian matrix

$$
\left(\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
\partial\left(f_{1}\right) & \partial\left(f_{2}\right) & \ldots & \partial\left(f_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial^{n-1}\left(f_{1}\right) & \partial^{n-1}\left(f_{2}\right) & \ldots & \partial^{n-1}\left(f_{n}\right)
\end{array}\right)
$$

Recall that f_{1}, \ldots, f_{n} are linearly dependent over \mathscr{C} if and only if $\operatorname{Wr}\left(f_{1}, \ldots, f_{n}\right)=0$ (for a proof, see [14, p. 9, Lemma 1.12]). We also recall that given n elements $f_{1}, \ldots, f_{n} \in K$ that are linearly independent over \mathscr{C}, there exists an operator $N \in K[\partial]$ of order n such that the space V_{N} of solutions of N is generated over \mathscr{C} by the family f_{1}, \ldots, f_{n}. Such an operator N can be obtained as

$$
N=\left|\begin{array}{ccccc}
f_{1} & f_{2} & \ldots & f_{n} & \partial^{0} \\
\partial\left(f_{1}\right) & \partial\left(f_{2}\right) & \ldots & \partial\left(f_{n}\right) & \partial^{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\partial^{n}\left(f_{1}\right) & \partial^{n}\left(f_{2}\right) & \ldots & \partial^{n}\left(f_{n}\right) & \partial^{n}
\end{array}\right|
$$

We are going to extend this result to the case where f_{1}, \ldots, f_{n} are column vectors in K^{m} where m is an arbitrary positive integer.

For $f_{1}, \ldots, f_{n} \in K^{m}$, we will denote by $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ the \mathscr{C}-vector space generated by f_{1}, \ldots, f_{n}. If $F \in K^{m \times n}$ then we will write $\langle F\rangle$ for the \mathscr{C}-vector space generated by the columns of F.

Lemma 7. Let r be a positive integer and u_{1}, \ldots, u_{r} be \mathscr{C}-linearly independent elements of K. Then for all v_{1}, \ldots, v_{r} in K there exists an operator $\ell \in K[\partial]$ of order at most $r-1$ such that $\ell\left(u_{j}\right)=v_{j}$ for $j=1, \ldots, r$.

Proof. Let $W=W r\left(u_{1}, \ldots, u_{r}\right)$. The matrix W is invertible, since u_{1}, \ldots, u_{r} are \mathscr{C}-linearly independent. We search for $\ell=\sum_{i=0}^{r-1} a_{i} \partial^{i}$ where the a_{i} are elements of K to be determined so that $\ell\left(u_{j}\right)=v_{j}$ for $j=1, \ldots, r$. This yields the system of linear algebraic equations

$$
W^{T}\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{r-1}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{r}
\end{array}\right)
$$

Proposition 8. Let m and n be positive integers, and let f_{1}, \ldots, f_{n} be \mathscr{C}-linearly independent column vectors belonging to K^{m}. Then there exists $N \in \boldsymbol{\Phi}_{m}$ of order at most n, such that $V_{N}=\left\langle f_{1}, \ldots, f_{n}\right\rangle$.

Proof. We will proceed by induction on m. The result is true for $m=1$. Let $m \geq 2$ and suppose that the result is true for any family of vectors belonging to K^{m-1}. Consider $f_{1}, \ldots, f_{n} \in K^{m}$ and denote by $F=\left(f_{i j}\right)$
the $m \times n$ matrix whose columns are f_{1}, \ldots, f_{n}. Let $r=\operatorname{dim}\left\langle f_{11}, f_{12}, \ldots, f_{1 n}\right\rangle$. We have $0 \leq r \leq n(r=0$ means the first row of F is zero). Without loss of generality we can assume that $f_{1, j}=0$ for $j>r$. We denote by \tilde{F} the submatrix of F, obtained by deleting the first row and the r first columns of F. We then can apply the induction hypothesis to the $n-r$ columns of \tilde{F} : there exists $\tilde{N} \in \boldsymbol{\Phi}_{m-1}$ of order at most $n-r, V_{\tilde{N}}=\langle\tilde{F}\rangle$. Put $M=\operatorname{diag}(1, \tilde{N}) \in \boldsymbol{\Phi}_{m}$. It is clear that ord $M \leq n-r$ and $V_{M}=\left\langle f_{r+1}, \ldots, f_{n}\right\rangle$. If $r=0$ then we are done because we can take $N=M$.

Suppose that $r \geq 1$ and let $\ell_{11} \in K[\partial]$ denote the monic scalar operator of order r whose solution space is generated by the family $\left\{f_{11}, \ldots, f_{1 r}\right\}$. By Lemma 7 , we know that for each $i=2, \ldots, m$ there exists a scalar differential operator $\ell_{i 1} \in K[\partial]$ of order at most $r-1$ such that $\ell_{i 1}\left(f_{1 j}\right)=f_{i j}$ for $j=1, \ldots, r$. Let R be the following full rank $m \times m$ matrix

$$
R=\left(\begin{array}{ccccc}
\ell_{11} & 0 & 0 & \ldots & 0 \\
-\ell_{21} & 1 & 0 & \ldots & 0 \\
-\ell_{31} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\ell_{m 1} & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

One can check that $V_{R}=\left\langle f_{1}, \ldots, f_{r}\right\rangle$. Now we claim that $N:=M R$ has the requested properties, namely N is of full rank, ord $N \leq n$ and $V_{N}=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. Indeed, one can check easily that f_{1}, \ldots, f_{n} belong to V_{N}. This is clear for f_{1}, \ldots, f_{r} as they are solutions of R. As for f_{r+1}, \ldots, f_{n}, we note that they are fixed by R, i.e., $R\left(f_{j}\right)=f_{j}$ for $j=r+1, \ldots, f_{n}$ (since they have their first component equal to zero), hence $N\left(f_{j}\right)=M R\left(f_{j}\right)=M\left(f_{j}\right)=0$. We conclude by noting that $\operatorname{dim} V_{N}=\operatorname{dim} V_{M}+\operatorname{dim} V_{R}=n$.

Note that a similar result, whose proof uses the notion of Dieudonné determinant, can be found in [7, Lemma 1.41]. However, our proof of Proposition 8 is completely different, more elementary and constructive.

Remark 4. The operator matrix $N=\left(\ell_{i j}\right)$ constructed in the above proof is a lower triangular matrix belonging to $\boldsymbol{\Phi}_{m}$ of order at most n such that $\sum_{i=1}^{m} \operatorname{ord}\left(\ell_{i i}\right)=n$ and its off-diagonal entries are of order at most $n-1$. This can be proven by a double induction on m and n. Indeed, it suffices to observe that N can be partitioned into four blocs

$$
N=M R=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{N}
\end{array}\right)\left(\begin{array}{cc}
\ell_{11} & 0 \\
-\tilde{\ell} & 1
\end{array}\right)\left(\begin{array}{cc}
\ell_{11} & 0 \\
-\tilde{N} \tilde{\ell} & \tilde{N}
\end{array}\right),
$$

where $\tilde{\ell}=\left(\ell_{21}, \ldots, \ell_{m 1}\right)^{\mathrm{T}}$ and $V_{\tilde{N}}=\left\langle f_{r+1}, \ldots, f_{n}\right\rangle$.
By construction, we have ord $\ell_{11}=r$, ord $\tilde{\ell} \leq r-1$ and by induction \tilde{N} is a lower triangular operator matrix of order at most $n-r$ whose off-diagonal elements are of order at most $n-r-1$ and the sum of the orders of its diagonal entries is $n-r$. We conclude by remarking that ord $\tilde{N} \tilde{\ell} \leq n-r+r-1=n-1$.

Example 2. Consider the differential field $K=\mathbb{Q}(x)$ equipped with the derivation $\partial=\frac{d}{d x}$.
(1) Let us apply the method described in the above proof to the family $\left\{f_{1}, f_{2}\right\}$ where $f_{1}=(1, x)^{\mathrm{T}}$ and $f_{2}=\left(x, x^{2}\right)^{\mathrm{T}}$. The first components of f_{1}, f_{2} are linearly independent over \mathscr{C}, since $f_{11}=1, f_{12}=x$. Thus, we take $\ell_{11}:=1 \operatorname{clm}(\partial, \partial-1 / x)=\partial^{2}$; then we look for ℓ_{21} of order 0 such that $\ell_{21}(1)=x$ and $\ell_{21}(x)=x^{2}$ and get $\ell_{21}=x$. Hence, we obtain

$$
R=\left(\begin{array}{rr}
\ell_{11} & 0 \\
-\ell_{21} & 1
\end{array}\right)=\left(\begin{array}{cc}
\partial^{2} & 0 \\
-x & 1
\end{array}\right), \quad V_{R}=\left\langle f_{1}, f_{2}\right\rangle
$$

(2) Consider a third column vector $f_{3}=\left(0, x^{3}\right)^{\mathrm{T}}$ and apply our method to the family $\left\{f_{1}, f_{2}, f_{3}\right\}$. The matrix F is given by

$$
F=\left(\begin{array}{ccc}
1 & x & 0 \\
x & x^{2} & x^{3}
\end{array}\right)
$$

Here $r=2$ and $\tilde{F}=\left(x^{3}\right)$. Thus, $\tilde{N}=(\partial-3 / x)$ and R is as in item 1. Hence

$$
N=\operatorname{diag}(1, \tilde{N}) R=\left(\begin{array}{cc}
1 & 0 \\
0 & \partial-3 / x
\end{array}\right)\left(\begin{array}{cc}
\partial^{2} & 0 \\
-x & 1
\end{array}\right)=\left(\begin{array}{cc}
\partial^{2} & 0 \\
-x \partial+2 & \partial-3 / x
\end{array}\right)
$$

Example 3.

(1) Now, instead of the three previous vectors, consider the columns of the matrix

$$
G=P F=\left(\begin{array}{ccc}
x & x^{2} & x^{3} \\
1 & x & 0
\end{array}\right)
$$

where P is the following permutation matrix

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

For G, we have $r=\operatorname{dim}\left\langle x, x^{2}, x^{3}\right\rangle=3$ so we take

$$
\ell_{11}:=\operatorname{lclm}\left(\partial-\frac{1}{x}, \partial-\frac{2}{x}, \partial-\frac{3}{x}\right)=\partial^{3}-3 x^{-1} \partial^{2}+6 x^{-2} \partial-6 x^{-3}
$$

Now we should find $\ell_{21}=a_{0}+a_{1} \partial+a_{2} \partial^{2}$ such that $\ell_{21}(x)=1, \ell_{21}\left(x^{2}\right)=x$ and $\ell_{21}\left(x^{3}\right)=0$. For this we have to solve the following linear system

$$
\left(\begin{array}{ccc}
x & 1 & 0 \\
x^{2} & 2 x & 2 \\
x^{3} & 3 x^{2} & 6 x
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
x \\
0
\end{array}\right)
$$

We find $a_{0}=0, a_{1}=1, a_{2}=-x / 2$. Hence $\ell_{21}=-\frac{x}{2} \partial^{2}+\partial$. This yields the matrix operator

$$
R=\left(\begin{array}{cc}
\ell_{11} & 0 \\
-\ell_{21} & 1
\end{array}\right)=\left(\begin{array}{cc}
\partial^{3}-\frac{3}{x} \partial^{2}+\frac{6}{x^{2}} \partial-\frac{6}{x^{3}} & 0 \\
\frac{x}{2} \partial^{2}-\partial & 1
\end{array}\right)
$$

which satisfies $V_{R}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$. It follows that the operator

$$
N^{\prime}=P R P=\left(\begin{array}{cc}
1 & \frac{x}{2} \partial^{2}-\partial \\
0 & \partial^{3}-\frac{3}{x} \partial^{2}+\frac{6}{x^{2}} \partial-\frac{6}{x^{3}}
\end{array}\right)
$$

satisfies $V_{N^{\prime}}=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.
(2) Since $V_{N}=V_{N^{\prime}}$, we should have $N^{\prime}=T N$ for some $T \in \mathbf{Y}_{2}$. This is indeed the case, with

$$
T=\left(\begin{array}{cc}
\frac{x^{2}}{2} & \frac{1}{2}(x \partial+1) \\
x \partial & \partial^{2}
\end{array}\right)
$$

7. THE SOLUTION SPACE OF $\operatorname{lclm}(A, B)$

Theorem 1. Let $A, B, L \in \Phi_{m}$. Then $V_{L}=V_{A}+V_{B}$ if and only if $L=\operatorname{lc} \operatorname{lm}(A, B)$.

Proof. The "only if" condition was proved in Proposition 7. Now suppose that $L=\operatorname{lc\operatorname {lm}(A,B)\text {andlet}}$ $f_{1}, \ldots, f_{n} \subset \Lambda^{m}$ be a basis for $V_{A}+V_{B}$. By Proposition 8, there exists an operator matrix $N \in \boldsymbol{\Phi}_{m}(\Lambda)$ such that $V_{N}=V_{A}+V_{B}$. By Lemma 4, the matrix N is a common left multiple of A and B if one considers them as matrices over Λ. Thus $\left.L\right|_{,} N$ and $V_{L} \subseteq V_{A}+V_{B}$. Taking into account that $V_{A}, V_{B} \subseteq V_{L}$ we obtain $V_{L}=V_{A}+V_{B}$.

Corollary 1. $\operatorname{dim} V_{\operatorname{lclm}(A, B)}=\operatorname{dim} V_{A}+\operatorname{dim} V_{B}-\operatorname{dim} V_{\operatorname{gcrd}(A, B)}$.
Example 4. Consider the two operators

$$
A=\left(\begin{array}{cc}
\partial^{2} & 0 \\
-x & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
\partial-1 / x & 0 \\
-x \partial+2 \partial-3 / x
\end{array}\right) .
$$

One has

$$
V_{A}=\left\langle(1, x)^{\mathrm{T}},\left(x, x^{2}\right)^{\mathrm{T}}\right\rangle, \quad V_{B}=\left\langle\left(x, x^{2}\right)^{\mathrm{T}},\left(0, x^{3}\right)^{\mathrm{T}}\right\rangle, \quad V_{A} \cap V_{B}=\left\langle\left(x, x^{2}\right)^{\mathrm{T}}\right\rangle .
$$

Let $L=\operatorname{lclm}(A, B)$ and $D=\operatorname{gcrd}(A, B)$. Then

$$
V_{L}=\left\langle(1, x)^{\mathrm{T}},\left(x, x^{2}\right)^{\mathrm{T}},\left(0, x^{3}\right)^{\mathrm{T}}\right\rangle, \quad V_{D}=\left\langle\left(x, x^{2}\right)^{\mathrm{T}}\right\rangle .
$$

The operators L and D can be constructed using the method in Section 6:

$$
L=\left(\begin{array}{cc}
\partial^{2} & 0 \\
-x \partial+2 & \partial-3 / x
\end{array}\right), \quad D=\left(\begin{array}{cc}
\partial-\frac{1}{x} & 0 \\
-x & 1
\end{array}\right) .
$$

Remark 5. If instead of considering solutions in Λ^{m} we consider only the solutions in F^{m} where F is a field such that $K \subset F \subset \Lambda$ then the statement of Theorem 1 is not in general correct (compare with Remark 1). Indeed, the solution space of $L=\operatorname{lc} \operatorname{lm}(A, B)$ in F^{m} can be larger than the sum of the solution spaces of A and B over F as illustrated by the following example.

Example 5. Consider the field $K=\overline{\mathbb{Q}}(x)$ equipped with the derivation $\partial=x \frac{d}{d x}$. Let $f \in \overline{\mathbb{Q}}(x)$ be a nonconstant rational function and consider the following operators in $K[\partial]$:

$$
A=\partial^{2}, \quad B=(1+\partial(f)) \partial^{2}-\partial^{2}(f) \partial .
$$

One has

$$
L=\operatorname{lc} \operatorname{lm}(A, B)=\partial^{2}(f) \partial^{3}-\partial^{3}(f) \partial^{2} .
$$

The solution spaces having components in Λ are, respectively,

$$
V_{A}=\langle 1, \log x\rangle, \quad V_{B}=\langle 1, \log x+f(x)\rangle, \quad V_{L}=\langle 1, f(x), \log x\rangle
$$

while the solution spaces having components in K are, respectively,

$$
\operatorname{Sol}_{K}(A)=\langle 1\rangle, \quad \operatorname{Sol}_{K}(B)=\langle 1\rangle, \quad \operatorname{Sol}_{K}(L)=\langle 1, f(x)\rangle .
$$

8. RIGHT AND LEFT DIVISIONS

In previous sections, we discussed right division: A is the right factor in the product $Q A$. Left division $B=A Q$ may also be of interest. The algorithms described above can be used for left division if we consider adjoint matrices. For a scalar operator $L=a_{k} \partial^{k}+\ldots+a_{1} \partial+a_{0} \in K[\partial]$ its adjoint operator has the form $L^{*}=\left(\partial^{*}\right)^{k} a_{k}+\ldots+\partial^{*} a_{1}+a_{0}$ with $\partial^{*}=-\partial$. For an $m \times m$ matrix

$$
\left(\begin{array}{ccc}
L_{11} & \ldots & L_{1 m} \\
\vdots & \ddots & \vdots \\
L_{m 1} & \ldots & L_{m m}
\end{array}\right),
$$

its adjoint is the $m \times m$ matrix

$$
\left(\begin{array}{ccc}
L_{11}^{*} & \ldots & L_{m 1}^{*} \\
\vdots & \ddots & \vdots \\
L_{1 m}^{*} & \ldots & L_{m m}^{*}
\end{array}\right) .
$$

It is significant that $\left(M_{1} M_{2}\right)^{*}=M_{2}^{*} M_{1}^{*}$, and $M^{* *}=M$. Hence $B=A Q \Leftrightarrow B^{*}=Q^{*} A^{*}$. For example, we can apply the algorithm described in Section 4 to A^{*}, B^{*}. We can observe that B is left divisible by A if and only if B^{*} is right divisible by A^{*}, and if $B^{*}=Q A^{*}$ then $B=A Q^{*}$.

ACKNOWLEDGMENTS

The authors would like to thank Michael F. Singer for his valuable advice.

FUNDING

Abramov's research was supported in part by the Russian Foundation for Basic Research, project no. 19-01-00032-a. Petkovšek's research was supported in part by the Ministry of Education, Science, and Sport of Slovenia research program P1-0294.

REFERENCES

1. S. Abramov, "On the differential and full algebraic complexities of operator matrices transformations," in Proceedings of CASC'2016, Lecture Notes in Computer Science (Springer, Heidelberg, 2016), Vol. 9890, pp. 1-14.
2. S. Abramov and M. Barkatou, "On the dimension of solution spaces of full rank linear differential systems," in Computer Algebra in Scientific Computing: Proceedings of the 15th International Workshop, CASC'2013, Berlin, Germany, September 2013, Lecture Notes in Computer Science (Springer, Heidelberg, 2013), pp. 1-9.
3. S. Abramov and M. Barkatou, "On solution spaces of products of linear differential or difference operators," ACM Commun. Comput. Algebra 48 (4), 155-165 (2014).
4. M. Barkatou, C. El Bacha, G. Labahn, and E. Pflügel, "On simultaneous row and column reduction of higherorder linear differential systems," J. Symb. Comput. 49 (1), 45-64 (2013).
5. B. Beckermann, H. Cheng, and G. Labahn, "Fraction-free row reduction of matrices of Ore polynomials," J. Symb. Comput. 41 (5), 513-543 (2006).
6. B. Beckermann and G. Labahn, "Fraction-free computation of matrix rational interpolants and matrix GCDs," SIAM J. Matrix Anal. Appl. 22 (1), 114-144 (2000).
7. S. Carpentier, PhD Thesis (Massachusetts Institute of Technology, 2017). https://dspace.mit.edu/handle/1721.1/112909
8. P. M. Cohn, Free Rings and Their Relations (Academic, London, 1971).
9. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, rev. ed. (Am. Math. Soc., Providence, RI, 2001).
10. P. A. Hendriks and M. F. Singer, "Solving difference equations in finite terms," J. Symb. Comput. 27 (3), 239259 (1999).
11. M. van Hoeij, "Finite singularities and hypergeometric solutions of linear recurrence equations," J. Pure Appl. Algebra 139 (1-3), 109-131 (1999).
12. E. R. Kolchin, Differential Algebra and Algebraic Groups (Academic, New York, 1973).
13. M. Miyake, "Remarks on the formulation of the Cauchy problem for general system of ordinary differential equations," Tôhoku Math. J. 32 (1), 79-89 (1980).
14. M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations (Springer, Berlin, 2003).
