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Abstract

By definition, the coefficient sequence ¢ = (¢,,) of a d’Alembertian
series — Taylor’s or Laurent’s — satisfies a linear recurrence equation
with coefficients in C(n) and the corresponding recurrence operator
can be factored into first order factors over C(n) (if this operator
is of order 1, then the series is hypergeometric). Let L be a linear
differential operator with polynomial coefficients. We prove that if
the expansion of an analytic solution u(z) of the equation L(y) = 0 at
an ordinary (i.e., non-singular) point zy € C of L is a d’Alembertian
series, then the expansion of u(z) is of the same type at any ordinary
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point. All such solutions are of a simple form. However the situation
can be different at singular points.

1 Introduction

If one finds a finite number of coefficients of a power series solution of a
differential equation at a fixed point, then this gives an approximate (or
asymptotic) representation of this solution. If one finds a dependence of
coefficients on values of the index n, and if this dependence can be described
by some simple tools, e.g. as a function of n in a closed form, then one receives
a full representation of the solution by an infinite series, though it may be that
the solution itself as an analytic function has no closed form representation
via elementary functions and quadratures. The opportunity of using such
series for representing of differential equations solutions extends the notion
of closed form solutions. A typical example is given by hypergeometric series.
In this paper we consider more general type of d’Alembertian series which
will be defined below.

Let E be the shift operator acting on sequences of complex numbers
c = (¢,) as E(c) = b, where the sequence b = (b,) is defined by the equality
bn = Cp+1-

Definition 1 The sequence c is d’Alembertian if for large enough values
of the index n the elements ¢, of the sequence satisfy a linear recurrence
equation M (c) = 0, where

M= (E—-ri(n))o(E—ry(n))o...o(E—ryu(n)), (1)

ri(n),r2(n),...,rm(n) € C(n). Any operator of the form (1) will be called
completely factorable.

Notice that any sequence with finite support (i.e., a sequence which has only
finite set of non-zero elements) is d’Alembertian: we can take any completely
factorable M in this case.

It is known that the elements (with large enough values of the index) of
a d’Alembertian sequence can be explicitly represented by a function of the
index n using only rational functions, the gamma function and finite sums



(1]), e.g. if M = (E + 5-5;) o (E — 3) then the equation M(y) = 0 is

2(n+12)
satisfied when n > 0 by two linearly independent sequences

27" and 27" z”: ﬂ
= L(k+1)

Definition 2 A power series Y., ¢, (z — z)"™ is d’Alembertian if the sequence
(cn) 1s d’Alembertian (this notion generalizes the notion of hypergeometric
series, where the order m of the operator (1) is 1).

Let .
L= ay(z)D* € C[z, D], (2)
k=0

D= d% =", Assume that the leading coefficient a,4(z) is a non-zero polynomial
(so ordL = d), and that ag(2),. .., aq(z) do not have a non-constant common
factor. Recall that 2y € C is an ordinary point of L if ay4(zg) # 0, otherwise 2
is singular; this definition can be reformulated so as it will make sense when
the coefficients of L are rational functions: zy is ordinary if the rational
functions

ag(z) a1(z) ag—1(2)

aq(2) aqg(z)" 7 aq(z)
have no pole at zy, otherwise zj is singular. If 2 is an ordinary point of L
then any formal power series y = Y, ¢, (2 — 20)" satisfying L(y) = 0 is a
convergent Taylor series, and the dimension of the C-space of solutions of
this type is d = ord L.

It has been shown in [2] that if at an ordinary point of L the expansion

of a solution u(z) of L is a hypergeometric series, then u(z) has one of three
possible forms:

f(2)

(z —¢)f

f(2) +p(2)e”, f(2) +p(2)(z = )", +p(2) log(z — o),

where f(z),p(z) € C[z], v,w,c € C, | € N. Furthermore any such a solution
can be expanded into a hypergeometric series at any ordinary point of L.
In the present paper we generalize this result proving that if the expansion
of an analytic solution of the equation L(y) = 0 at an ordinary point zy is
a d’Alembertian series, then the expansion of this analytic solution is of the



same type at any other ordinary point. As a consequence, the dimension
of the space of d’Alembertian series solutions of L(y) = 0 is the same for
all ordinary points of the operator L. We also prove that if L(y) = 0 has
a d’Alembertian series solution at an ordinary point zg then it has also a
solution of the form

2oneo Enlz — 20)"

R )

where the numerator is a hypergeometric series and the denominator f(z)
is a polynomial (however a hypergeometric series solution does not exist
in general; it might be that this looks quite surprising because it is well
known that if a linear recurrence equation with polynomial coefficients has
a d’Alembertian sequence solution, then it has a hypergeometric sequence
solution as well). In addition, if zy is an ordinary point of L then all
d’Alembertian series solutions at zy represent some analytic solutions which
are of the form

gl(z)/gg(z)/.../gm(z) dz...dzdz,

with m < ordL, and g;(2) is either of the form r(2)e"* or of the form r(z)(z—
c)¥, with r(z) € C(z) \ {0}, v,w,c € C (here r(z),v,w,c depend on i,
i=1,2,...,m).

It follows from the results of the present paper that solutions in the form
of d’Alembertian series at ordinary points are of limited interest, since they
represent quite simple functions, and, additionally, at each ordinary point we
get d’Alembertian series expansion of the same solutions. So going from an
ordinary point to another we get nothing new in this respect. As a contrast,
the singular points of L can be of particular interest. However there is only a
finite number of singular points, and one can check them using a step-by-step
examination.

We also consider the point at infinity and, as it is usually done in the
theory of linear ordinary differential equations, distinguish the cases of or-
dinary and singular point of L at infinity. It turns out that if the point at
infinity is ordinary, then it is not improbable that there exists an analytic
solution which has d’Alembertian series expansion at infinity while its Taylor
expansion at any finite ordinary point is not a d’Alembertian series. Notice
that up to Section 5 we consider only finite (i.e., belonging to C) points.



In the rest of this paper L will always denote operator (2). For short, we
will say about solutions of L instead of solutions of the equation L(y) = 0
and will use the same style in the recurrence operator case.

2 Preliminaries

We denote by C[z, 2!, D] the non-commutative ring of polynomials in z, 2!

and D. The multiplication corresponds to the composition of operators and
it is characterized by the following rules :

e Dz=2D+1
e Dxl=2"1D— 272
e the rings C[z, 2z !] and C[D] are commutative.

We denote by C[n, E, E~!] the non-commutative ring of polynomials in n,
E and E~!'. The multiplication corresponds to the composition of operators
and it is characterized by the following rules :

e Fn=(n+1)FE
e Fln=(n-1)E"!
e the ring C[n| and C[E, E~!| are commutative.

The correspondence z — E~Y D+ (n+ 1)E, 27! — E defines an iso-
morphism R from Clz, 27!, D] onto C[n, E, E~1].

We will also consider the field

of power series of the form
Y 2", meZ, ¢eC. (5)
The coefficient sequence of (5) is the double-sided sequence
0,0, ¢y g1y - - (6)
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(so we set ¢, = 0 for all k& < m).

It is well known that the application of L to (5) gives a series, whose
coefficient sequence is the result of the application to (6) of the recurrence
operator

!
R=> q(n)E* € Cn,E,E™"] (7)
k=t
which is the R-image of L (see, e.g., [3]). We suppose that ¢ (n),q(n) # 0
in (7) (note that it is possible that ¢ < 0 and even [ < 0).

For R of the form (7) we set ordR =1 — t.

In the sequel we will use some facts proven in [2, 3], the main of those
facts can be formulated as in the following theorem.

Theorem 1 Let 0 be an ordinary point of L and R = RL. Suppose that
R have no nonzero solution with finite support. If R is right divisible in
C(n)[E, E7Y] by a first order monic operator E — r(n), r(n) € C(n) \ {0}
then

(i) the operator E — r(n) has one of the forms:

E —v, (8)
v C(n+1)
E_n—l-l C(n) ~ )
v C(n+1)
n+1 C(n) (n = w), (10)

where v € C\ {0}, w € C\ N, C(n) € C[n] \ {0},

(i) according to the cases (8), (9), (10) the operator L either can be repre-
sented in the form L' o (z7' —w), L' € Clz, 27, D), or is right-divisible
in C(z)[D] by a monic first-order operator of one of two forms:

D- (p/(z) +v>, (11)

p(z)
P (55 - 1%) 12

where p(z) € C[z] \ {0} and, as in (i), ve C\ {0}, we C\N.
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Remark 1 If L is right-divisible in C(z)[D] by (11) or by (12), then L has

a solution
p(z)e’”, (13)
or, resp.,
p(2)(1 = v2)". (14
Solution (14) can be rewritten in the form
q(2)(z = )",

q(z) € C[z],c € C\ {0}.

Remark 2 Let 0 be an ordinary point of L and R = RL. If R has a non-
zero solution with finite support then L has a non-zero polynomial solution
p(z) and therefore is right-divisible in C(2)[D] by

(15)

We will use also a well-known elementary fact on first order linear differ-
ential operators. Let ' € C|z, D], ordF = 1. If u(z) is a non-zero analytic
solution of F' then

u'(2)

u(2)

and the general solution of an equation F(y) = v(z) with analytic v(z) is

u(z) / ZEz;dz (16)

(the integration constant can be taken arbitrary). If L = Lo F, L € C(2)[D],
and uq,us, ..., uq are linearly independent solutions (analytic functions or
formal Laurent’s series from C((z)) of L such that F'(u;) = 0, then

/ !/ !/
Uy (UQ> , Ul <U3> yeeey U (Ud> (17>
U1l Ui U1l

are linearly independent solutions of L.

€ C(2),



3 Simple points

The statements of this paper are easier to prove, if we formulate them for a
more general case than the case of an ordinary point.

Definition 3 We call zy € C a simple point of L, if there exists | € N such
that the function (z — zy)'u(2) is holomorphic at zy (i.e. without singularities
in a neighborhood of zy) for any solution u(z) of L. The minimal | with such
a property will be called the exponent of L at zy (if the point zy is ordinary
then zo is evidently a simple point, and the exponent of L at z is 0).

If 0 is a simple point of L then the exponent of L at 0 will be referred to
as the exponent of L for short.

Remark 3 Notice that if O is a simple point of L and the exponent of L is
equal to | then, generally speaking, 0 is not an ordinary point of the operator
Lozt However if 0 is a singular point of L o z~', then 0 is an apparent
singularity, and there exists an operator, which, first, is right-divisible in
C(2)[D] by Lo 27!, and, second, 0 is an ordinary point of this operator ([5],
[4]). We will denote by L~ an arbitrary operator having such properties. If
0 is an ordinary point of L o 27!, then we can set L~ = Lo z!.

We will denote the set of d’Alembertian series of the form }>° c,2" by
Ser 4. The notation Ser 4 (L) will be used for the set of solutions of L belonging
to Serq. The sets Sera, Sera(L) are C-linear spaces [1]. We can extend the
notions of hypergeometric and, resp., d’Alembertian series, considering in
addition Laurent series with hypergeometric and d’Alembertian coefficient
sequences. The corresponding C-linear space of d’Alembertian Laurent series
will be denoted by Sery. One has Sery C Ser,. We will also consider the
corresponding solution space Sery(L).

Remark 4 Suppose that 0 is a simple point of L and let o(z) € C((2))
be a formal solution of L. Then p(z) is a convergent series (in a punctured
neighborhood of 0) and its sum ®(z) is an analytic solution of L. This follows
directly from Definition 3.

Lemma 1 Let f(z) € Clz] \ {0} be an arbitrary nonzero polynomial. Then



(i) if 0 is a simple point of L then it is a simple point of L o f(z) and
Lo[f(2)]7";

(ii) dim Ser, (L) = dim Ser, (L o f(z)) = dim Ser; (Lo [f(2)]7}).

Proof. We note first that it suffices to prove the lemma for f(z) = z — ¢,
with c € C.

(i): If ¢ # 0 then the exponent of Lo(z—c) does not exceed the exponent [
of L. The exponent of Loz does not exceed [+1. The exponent of Lo(z—c)™*
does not exceed /.

(ii): Let p(z) € Sery, then the coefficient sequence of the series (z—c)p(2)
is the result of action of the linear difference operator P = E~! — ¢ on the
d’Alembertian coefficient sequence of ¢(z). The result is a d’Alembertian
sequence ([1]). If the coefficient sequence of ¢(z) is a solution of a completely
factorable difference operator M, then the coefficient sequence of ¢(z)/(z—c)
is a solution of the operator M o P. This implies that the coefficient sequence
of p(z)/(z—c) is a solution of a completely factorable operator and therefore
is d’Alembertian. So the multiplication by (z — ¢) and the multiplication by
(z — ¢)7! can be viewed as linear maps from Ser; into itself. The kernel of
each of these linear maps is zero. Therefore, the image of a finite-dimensional
subspace of Ser, (e.g., the space Ser;(L)) by each of this transformations, is
a subspace of the same dimension. O

The following proposition is a consequence of Lemma 1.

Proposition 1 Let 0 be a simple point of L and r(z) € C(2) \ {0}. In this
case

(i) 0 is a simple point of L or(z),

(i1) the multiplication by r(z) is a linear transformation of Ser, onto Sery
with zero kernel;

(111) dim Ser, (L) = dim Ser (L o r(z)).

If W is a subset of C((2)) consisting of convergent Laurent series (see
Remark 4), then we will denote by (W) the set of all analytic functions with
a Laurent series expansion (at 0) belonging to .



Lemma 2 Let 0 be a simple point of L and suppose that L = L' o G, where
L' € C(z)[D] and G is a first order operator of the form (11), (12) or (15)
with p(z) = 1. In this case

(i) 0 is a simple point of L';
(11) Sery(L) # 0, and dim Sery (L) = dim Ser,(L’) + 1;

(111) if ®(z) is a non-zero analytic solution of G, then the set of analytic
functions representable by series belonging to Ser, (L) is

(Sera(L) = () | Wdz, (18)

i.€., the set of all functions of the form

o(z) / géz; dz, W(z) € (Ser;(L')).

Proof.
(i): Let ¢1(2),92(2),...,%a(z) € C((2)) be linearly independent solutions
of L such that G(¢1(z)) = 0. Then by formula (17) the Laurent’s series

w0 (55) w0 (55) 0 (35)

are linearly independent solutions of L’ belonging to C((2)).

(ii): First notice that if G is of the form (12) with p(z) = 1, then we can
rewrite any equation G(y) = ¥(2), ¥(2) € C((2)), as G(y) = 1¥(z), where
G = (1—v2)D +vw, () = (1 —vz)y(z). By Lemma 1 1(z) € Ser); implies
(1 — vz)9(2) € Sery. Moreover if L = L' o GG, then 0 is a simple point of L'.
For saving the old notation, we will assume that G has one of two following
forms:

D—-v, (1-v2)D+vw, veC, weC\N. (19)

Set Rz = RG. Evidently ordRg = 1.
The rest of the proof of (ii) will be divided into a few short steps.

a) If p(z) € Ser, then G(p(2)) € Ser, since the coefficient sequence of
G(¢(z)) is obtained by applying the first order difference operator R
to the coefficient sequence of ¢(z).
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b)

If G(¢(2)) = ¥(z) where 1(z) € Sery and p(z) € C((z)), then p(z) €
Ser,. Indeed, let M be a completely factorable operator which anni-
hilates the coefficient sequence of ¥)(z). Then M o Rg annihilates the
coefficient sequence of ¢(z). But M o Rg is a completely factorable,
since R is a first order operator. Therefore ¢(z) € Ser}.

The inequality dim Ser,(L) < dimSer,(L’) 4+ 1 is valid since, first,
dim Ser, (G) = 1, and, second, by a) we have G(¢(z)) € Ser,(L') for
any ¢(z) € Ser,(L).

Now to complete the proof of (ii) it is sufficient to show that for any
P (z) € Ser (L") there exists ¢(z) € Sery such that G(p(z)) = ¢(2).

Let ®(z) be a non-zero analytic solution of G. This function can be
taken in one of two forms: €%, or (1 —wvz)”, v € C, w € C\N. In
addition, let W(z) be a function that is represented by the series 1(z)
(see (i) and Remark 4). Then by formula (16) the equation G(y) = ¥(z)
has the analytic solution

a(2) | ig; dz (20)

(one can take any fixed integration constant). This function is an ana-
lytic solution of L, and must be meromorphic since 0 is a simple point of

L. Therefore the series that represents this function belongs to C((z2)).
By b) this series belongs to Ser,.

(iii): Follows from (16).

O

Proposition 2 Let 0 be a simple point of L and Ser (L) # 0. In this case
any element of Ser, (L) represents a function of the form

hl(z)/hg(z)/.../hm(z) dz .. .dzdz, (21)

with m < ordL, and h;(z) is either of the form r(z)e’* or of the form r(z)(1—
vz)Y, with r(z) € C(z2) \ {0}, v,w € C (where r(z),v,w depend on i), i =

1,2,.

coy MM
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Proof. Follows from (18). O

Definition 4 We call an h-factor a differential operator H of the form
For(z), (22)

where r(z) € C(z) \ {0}, and F is a first order operator of the form (11),
(12) or (15).

Proposition 3 Let 0 be a simple point of L and L = L' o H, where L' €
C(z)[D], and H is an h-factor. In this case

(i) 0 is a simple point of L/,
(11) Sery(L) # 0, and dim Ser, (L) = dim Ser (L") + 1,

(i1i) (Ser (L)) is described by formula (18), where ® is a non-zero analytic
solution of H.

Proof. Let H be of the form (22), and p(z) be a polynomial involved into
F as in formulas (11), (12), (15). We have L = L' o F o p(z) o r1(z), where
r1(z) = [p(z)]7'r(z) € C(z), and L = L' o p(z) o G o ry(z), where G is
represented by one of formulas (11), (12), (15) with p(z) = 1. It is easy to
see that

a) 0 is a simple point of L' o p(z) o G and dimSer, (L o p(z) o G) =
dim Ser, (L) by Proposition 1;

b) 0is asimple point of L'op(z) and dim Ser, (L'op(z))+1 = dim Ser (Lo
p(z) o G) = dim Ser, (L) by a) and Lemma 2;

c) 0 is a simple point of L' and dim Ser, (L) = dim Ser, (L' o p(2)) by b)
and Proposition 1.

The claimed in (i), (ii) follows. The proof of (iii) is the same as in Lemma
2, i.e., by formula (16). O

Proposition 4 Let 0 be a simple point of L, and Ser (L) # 0. In this case

12



(i) L is right divisible in C(2)[D] by an operator of the form

Fo f(2), (23)

where f(z) € Clz|, and F is a first order operator of the form (11),
(12) or (15),

(ii) L has a solution of the form

Yot Cn2"
flz)

where the power series Yo", c,z2" has a hypergeometric coefficient se-
quence and f(z) € C[z].

(24)

Proof.
(i): We can represent L in the right-coefficient form:
d
L =Y DFoby(2), by(2),bi(2),...,ba(z) € Clz]. (25)
k=0

Let f(z) = ged(bo(2),b1(2), ..., ba(2)), L = L' o f(z), L' € C[z, D]. Then 0 is
a simple point of L', since the leading coefficient of L’ divides by(2) = aq(z).
It is sufficient to consider the case deg f(z) = 0: by Lemma 1(i) we have
Ser, (L) # 0 and if L' has a right divisor of the form (23) then evidently L
has a right divisor of such a form too. In the rest of the proof we suppose
that deg f(z) = 0.

Set R = RL, Ry = RL~ (see Remark 3 for the definition of L™). If R
has a nonzero solution with finite support then L has a right divisor of the
form (15) and there is nothing to prove. Suppose R has no such a solution.
Then the operators R, Ry have in C(n)[FE, E~'] a common right divisor M of
the form (1) (let ¢ = (¢,) be the coefficient sequence of a nonzero element of
Ser, (L); we can take a completely factorable operator M of minimal order
such that M(c) = 0 for all large enough values of the index n. Therefore R
and R; have a common right divisor of the form F —r(n), r(n) € C(n)\ {0}.
We claim that r(n) ¢ C. Indeed, otherwise r(n) = ¢ € C\ {0}, and L is
right divisible in C[z, 27!, D] by 27! — ¢; this implies that L = L' o (z — %),
where L' € C[z, D] because L € C[z,D]. This contradicts the condition
deg f(z) = 0. So r(n) ¢ C. Since 0 is an ordinary point of L~ the operator

13



E — r(n) has one of the forms (9), (10) by Theorem 1(i). By Theorem 1(ii)
L has a right divisor of one of the forms (11), (12). The claim follows.

(ii): The statement follows from (i), since F' has a series solution with a
hypergeometric coefficient sequence. O

Example 1 Consider the operator L = (z—1)D—(2—2). The space Ser (L)
15 generated by the series

()

This series is equal to
[e's) izn
n=0 pn!

1—=2

9

where the numerator is a hypergeometric series, and the denominator is a

polynomial. The operator L has no hypergeometric series solution. Notice
that L=Do(z—1)—(z—1)=(D—-1)o(z—1).

Remark 5 It follows from the proof of Proposition /(i) that if 0 is a simple
point of L, Sers(L) # 0, and bo(2),b1(2),...,ba(2) in (25) have no common
root, then Ser (L) contains a hypergeometric series solution, which is the
expansion of an analytic solution of one of the forms

p(2)e”, p(z)(c—2)", (26)
p(z) € Clz] \ {0}, v,w € C,c € C\ {0} (we use Remark 1).

As a consequence of Propositions 2, 3, 4 we have the following
Theorem 2 Let 0 be a simple point of L. In this case
(1) if Sery (L) # 0, then L is right divisible in C(z)[D] by an h-factor;
(i1) if L= L"o H, where L' € C(z)[D] and H is an h-factor, then

0 is a simple point of L,
Ser, (L) # 0, and dim Ser (L) = dim Ser,(L’) + 1,

formula (18) is valid where ®(z) is a non-zero analytic solution of

H

Y

14



L has a solution of the form (24);

(15i) if L =L o Hyo...0Hyo Hy, where an operator L' € C(2)[D] is not
right-divisible by any h-factor, and Hy, Hs, ..., H,, are h-factors, then

dim Ser, (L) = m,

(Ser, (L)) is the space of analytic solutions of the operator H,, o
...0O H2 e} Hl,

any element of (Ser, (L)) is an analytic function of the form (21).

As a consequence of Theorem 2 we have Ser, (L) # 0 iff L is right divisible
by an h-factor.

4 Space of d’Alembertian series solutions at
an arbitrary simple point

The aim of this section is an investigation of the spaces of d’Alembertian
series solutions of L at different simple points. We will exploit the fact that
the operator L of the form (2) has a solution Y, ¢,,(z — 20)™ iff the operator

d

Loty =Y ap(z + ) D"
k=0

has the solution Y, ¢,2". It is clear that point zy € C is a simple point of L
iff 0 is a simple point of L., .,.

Proposition 5 Starting from L one can construct an operator L € C(z)[D]
of order m, 0 < m < ordL, which has the form L=H,o...0oHyoH,, where
H; =G;ori(z), ri(z) € C(2) \ {0}, G; is a monic first-order operator of one
of two forms:

D — v, (27)

D+ (28)

1—wvz
withv € C, w e C\N, i=1,2,...,m. Moreover, for any simple point zy of
L one has

(i) dimSer;(L.,.,) = ordL;

15



(”) Serzjl(LerZo) = Ser;l«z)erZo);

(ii) (Ser(L.4.,)) is the space of analytic solutions of (L),

Proof. We may suppose that 0 is a simple point of L, otherwise we could pick
any simple (e.g., ordinary) point 2’ € C of L and consider L, instead of L.
Then it follows from Theorem 2 that such L can be easily constructed if we
consider zy = 0. Take such L and show that it satisfies the claimed conditions.
Let L' be such that L = L’ o L. The operator L' has no right divisor in the
form of an h-factor. Now let 2y be an arbitrary simple point. We have L., ., =
(L')2420(L) 24 Notice that the operator (L), has no right divisor in the
form of an h-factor, and (L).4., = (Hp)stzg © - 0 (H2)ssz © (Hi)sssy (i€,
m is independent on zp). If H;, 1 <i < m, is of the form (27), then (H;). .,
is of the form (27) as well. Suppose that H;, 1 <i < m, is of the form (28),
then (H;).y., is of the form (28) iff vzg # 1. However (z — 29) (2 — 20)% is
holomorphic at zy for some [ € Niff w € Z. In this case rewrite (G}),, in the
form z=*D o z*. If i = m then joint the factor z=* with (L)...,, otherwise
joint it with (741(2))242, 1.€., With 741(2 + 20). So we can suppose that
(H;)z+z, is of the form (28). The claimed follows from Theorem 2. O

The main result of this paper is

Theorem 3 Let zy be a simple (in particular, an ordinary) point of L. In
this case

(i) if the expansion of an analytic solution u(z) of L is a d’Alembertian
series at zy, then the expansion of u(z) is of the same type at any simple
point;

(i) if the expansion of an analytic solution u(z) of L is a d’Alembertian
series at zg, then u(z) is of the form

91(2)/92(2)/.../gm(2) dz...dzdz, (29)
with m < ordL, and g;(z) is either of the form r(z)e’* or of the form

r(2)(z — ¢)¥, with r(z) € C(z) \ {0}, v,w,c € C (where r(z),v,w,c
depend on i), i =1,2,...,m;
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(#i) if L has a non-zero d’Alembertian series solution

o0

Z (z—20)", (30)

then L has a solution of the form

?LOO n(Z—Zo)

f(2) ’

where the numerator is a non-zero hypergeometric series and the de-
nominator is a polynomial;

() if L has a non-zero d’Alembertian series solution (30) and the right-
coefficient form (25) of L is such that bo(z),b1(2),...,b4(2) have no
common root, then L has a non-zero solution in the form of a hyper-
geometric series Y ..° c 2" which represents a function of one of two
forms (26).

Proof. Let L be the operator which corresponds to L as described in Propo-
sition 5.

(i): By Proposition 5 (iii), since u(z) is a solution of L.

(ii): We can substitute z + 2o for z into (21) and after an easy transfor-
mation receive (29) (the rational functions r;(z) can be changed).

(iii): By Proposition 5 and Theorem 2.

(iv): If 2o is an ordinary point then the statement follows from Remark
5. If the point zy is simple but not ordinary then pick an ordinary point z;.
By (i) Sery(L.+z) # 0 implies Sery(L.+.,). The coefficients of the right-
coefficient form of L., evidently have no common root. By Remark 5
L., has a solution of one of two forms (26), and as a consequence L.,
has a solution of this form (w.l.g. we can assume that z; = 0). It is clear
that p(z)e'” has a hypergeometric expansion at zy. Since zq is a simple point,
the solution p(z)(z — ¢)* must have at zq either no singularity or a pole (¢
can be equal to 0). In both cases the expansion of this solution at z is a
hypergeometric series. O

The following two examples show that the situation at a singular point
can differ from one at ordinary points.
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Example 2 Consider the operator
L= (22+z—2>D2+<z2—z)D— (622+7z).

L has two singular points, z = 1 and z = —2. The point z = 1 is not a
simple point (since local solutions of L at z = 1 contains a logarithm term)
while z = —2 is a simple point of L. A basis of solutions of L is

9 2
(z —1)e*?, (2—1)622/<zi—1) e’*dz.

Notice that dim Sery (L) = dimSer(L..,) = 2 for all zy € C\ {1} while
dim Ser,(L,,,) = 1 if 2o = 1. The right-coefficients form of L is

L:[ﬁ(ﬁ+z—2)+D(£—5z—2)—(6£+9z—3)

The right-coefficients of L have no common root and L has a hypergeometric
series solution as expected. Notice also that L can be factorized as L' o F':

L' = ((z2+z—2)D+322—|—22—2)o(z—l),

1
z—1
This example shows that the dimension of the space of d’Alembertian series

solutions at a singular point may be less than the dimension of the space of
d’Alembertian series solutions at an ordinary point.

F=(D-2)o

Example 3 Consider the operator
L=9zD*+6D — 1.

The only singular point is z = 0, which is not a simple point (the roots of the
indicial equation at 0 are % and 0).

One can verifies that L is irreducible over C(z) (check it by using the
command DEtools[DFactor|(L, [D, z]) of Maple). Hence dimSer,(L) =
dimSer, (L.+.,) =0 for all zo € C\ {0}.

If zo = 0, then the space Ser (L.,,) is generated by the hypergeometric

series
o0 zn

nz::OQ”F(n—I—Z/?))F(n—Fl)'

18



Note that the space of all local solutions of L at z = 0 is generated by the
above series and the Frobenius series

n

1/3 - ?
: 7;)9”F(n+4/3)1“(n+1)'

This example shows that the dimension of the space of d’Alembertian
series solutions at a singular point may exceed the dimension of the space of
d’Alembertian series solutions at an ordinary point.

5 The point at infinity
Definition 5 The point z = oo is an ordinary (simple) point of L, if the

point t = 0 is an ordinary (simple) point of the operator L, which can be
constructed by the substitution

1
z = E, D= —t2Dt (31)

into L (here Dy = %). If the point co 1s simple, then each non-zero solution
of L can be expanded into a series

bit® +bpit" N+, keZ (32)
with coefficients from C. FEach such a series gives the solution
bkz_k + bk_HZ_k_l + ... (33)

of L. The series (33) is d’Alembertian if the series (32) is d’Alembertian in
the sense of Definition 2.

In Lemma 3 and Theorem 4 below L is the operator which corresponds
to L as described in Proposition 5.

Lemma 3 Let oo be a simple point of L, and ordL = m > 0. Then
L=Dory(z)o---0Dory(z)oDor/z), (34)
where r;(z) € C(z2), i =1,2,...,m.
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Proof. It follows from Proposition 5. Indeed, using the notation of Propo-
sition 5, if for 4, 1 <4 < m, either

H,=D—wv, v#0,

or

vw
H,=D— , v#£E0,w ¢ Z,
1—wz 7 £
then oo is not evidently a simple point. O

Theorem 4 Let zy € C and oo be simple (in particular, ordinary) points of
L. Let u(z) be an analytic solution of L and suppose that its expansion at z
is a d’Alembertian series. In this case

(i) at any simple point (including o) of L the series expansion of u(z) is
a d’Alembertian series;

(i1) u(z) can be represented in the form (21) with hi(z) € C(z), i =
1,2,...,m;

(iii) L has a solution in C(z).

Proof.
(i): It follows from Lemma 3, Theorem 3, and the fact that the substitu-
tion (31) transforms (34) into an operator of the form

Sma1(t) Dy 0 8y (t) 0 -+ 0 89(t) Dy 0 51(¢),

s1(t), s2(t), ..., Sma1(t) € C(t).
(ii), (iii): By (i). 0

Example 4 Consider the first order operator L = 2> D+1 which has cei, cE

C, as the general solution. Here the point at infinity is an ordinary point and
1

the expansion series of e> at infinity is the hypergeometric series

- n
ngon!z :

However L has no nonzero d’Alembertian series solution at any finite point.
The example shows that one may get nonzero d’Alembertian series solu-
tions at oo even if such solutions do not exist at simple points belonging to

C.
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