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Abstract. We consider linear ordinary differential equations, each of
the coefficients of which is either an algorithmically represented power
series, or a truncated power series. We discuss the question of what can be
learned from equations given in this way about its Laurent solutions, i.e.
solutions belonging to the field of formal Laurent series. We are interested
in the information about these solutions, that is invariant with respect to
possible prolongations of the truncated series which are the coefficients
of the given equation.
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1 Introduction

We will consider operators and differential equations written using the operation
θ = x d

dx . In the original operator

L =

r∑
i=0

ai(x)θ i, (1)

as well as in the equation L(y) = 0, for each ai(x), i = 0, 1, . . . , r, one of two
possibilities is allowed: ai(x) can be

– an infinite series represented algorithmically: the series
∑
anx

n is defined by
an algorithm computing an by n,

or
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– a truncated series

ai(x) =

ti∑
j=0

aijx
j +O(xti+1) (2)

where ti is an integer such that ti ≥ −1 (if ti = −1 then the sum in (2) is 0).
We call ti the truncation degree of the coefficient ai(x) represented in the
form (2). Note that a coefficient in (1) can be of the form O(xm), m ≥ 0.

We assume that at least one of the constant terms of a0(x), . . . , ar(x) is
nonzero.

The coefficients of series belong to a field K of characteristics 0. The following
notations are standard:

K[x], K[x, x−1] are the rings of polynomials and, resp., Laurent polynomials
with coefficients from K;

K[[x]] is the ring of formal power series with coefficients from K;
K((x)) is the quotient field of the ring K[[x]]; the elements of this field are

formal Laurent series with coefficients from K.

Definition 1. The degree deg f(x) of a polynomial f(x) from K[x] or K[x, x−1],
is defined as the largest degree of x belonging to f(x) (conventionally, deg 0 =
−∞). Note that the degree of a Laurent polynomial is in some cases non-positive,
even when this polynomial is not a constant: deg(2x−2 +x−1) = −1, deg(3x−1 +
1) = 0, etc.

The solutions we are interested in, belong to the field of formal Laurent series
with coefficients from K. We will call such solutions as Laurent. A more exact
specification for the problem of finding such solutions will be given later in this
introductory section. We will not discuss the questions of convergence of series.

A discussion of the algorithmic aspect of problems of this kind involves con-
sidering the question of representing infinite series, in particular the series which
play the role of the coefficients of the equation.

In [1–3], an algorithmic representation was considered. It was detected that
some problems associated with the solutions of equations given in this way turn
out to be algorithmically unsolvable, though, at the same time, the other part
is successfully solvable. For example, the problem of finding Laurent solutions is
solvable: these solutions can be represented algorithmically in the same sense as
the representation of the coefficients of the equation. (In the mentioned papers,
not only scalar equations were discussed, but also systems of equations.)

In [3, 8], the authors considered the problems of constructing solutions under
the assumption that all series playing the role of the coefficients of a given
equation or system are represented in the truncated form. In [8] it was found
out which truncation of the system coefficients will be sufficient to calculate
a given number of initial terms of the series, included in the exponentially-
logarithmic solutions of the system. In [5, 6] we considered this problem as the
task of constructing truncated solutions; it was shown how to construct the
maximum possible number of initial terms of the series included in the Laurent
and regular solutions of the equation.
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In this paper, we admit the presence in the original equation of such co-
efficients that are of two different kinds indicated below formula (1). We are
interested in information on Laurent solutions that is invariant with respect
to possible prolongations of the truncated series representing the coefficients of
the equation. But everything is not so simple already with the definition of the
concept of ”solution” for an equation which, in the presence of truncated coeffi-
cient, is, in fact, not completely specified. We introduce the concept ”truncated
Laurent solution”.

Definition 2. Let an operator L have the form (1) and

L(y) = 0 (3)

be the equation corresponding to this operator. An expression

f(x) +O(xk+1), (4)

in which f(x) ∈ K[x−1, x] \ {0} and k is an integer greater than or equal to
deg f(x), is called a truncated Laurent solution of (3), if for any specification of
all O(xti+1) (that is, for any replacement of the symbols O(...) by concrete series
having corresponding valuation) included in the coefficients ai(x) of equation (3),
such a specification of the series O(xk+1) in (4) is possible that the specified
expression (4) becomes a Laurent solution to the specified equation. This k in (4)
is the truncation degree of the solution.

We propose an algorithm that allows for an equation L(y) = 0 represented
in the explained form and an integer k to construct all such truncated Laurent
solutions of this equation that have a truncation degree not exceeding k. If the
equation does not have such truncated Laurent solutions then the result of the
algorithm will indicate this.

The algorithm is described in Sect. 5. But first it is shown in Sect. 2 that
both checking the finiteness of the set of those k for which the formulated prob-
lem has a solution, and finding the maximum possible value of k if it exists,
are algorithmically undecidable problems. Our algorithm works with a specific
given k.

Sect. 6 describes the implementation of the algorithm in Maple [9].

2 The Equation Threshold

Definition 3. Let L be of the form (1). Consider the set N of all integers n such
that the equation L(y) = 0 has a truncated Laurent solution whose truncation
degree is n. Let N be nonempty and have the maximal element. We will call this
element the threshold of the equation L(y) = 0. If the set N contains arbitrarily
large integers, then we say that the threshold of the equation is ∞. If this set is
empty, then the threshold is conventionally −∞.
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Remark 1. In Sect. 3 it will be, in particular, shown that if the set N considered
in the previous definition is nonempty, then the subset of its negative elements
is finite.

For demonstrating an example, we will need the notions of the series valuation
and the prolongation of an equation.

Definition 4. For a nonzero formal Laurent series a(x) =
∑
aix

i ∈ K((x)) its
valuation is defined as val a(x) = min{i | ai 6= 0}, with val 0 = ∞. A prolonga-
tion of the operator L of the form (1) is defined as an operator

L̃ =

r∑
i=0

bi(x)θ i ∈ K[[x]][θ]

such that bi(x) = ai(x) if all terms of ai(x) are known and

bi(x)− ai(x) = O(xti+1) (5)

(i.e. val (bi(x)− ai(x)) > ti) for truncated ai(x), i = 0, 1, . . . , r.

Example 1. Consider the equation

(1 +O(x))θy + a0(x)y = 0, (6)

where

a0(x) =

∞∑
j=k

a0jx
j ,

Set k = val a0(x). For k = 0, i.e. for a00 6= 0, truncated Laurent solutions exist
only when a00 is an integer. We will consider the case

k = val a0(x) ≥ 1. (7)

Here, any prolongation of equation (6) has Laurent solutions. If the leading
coefficient of this equation is 1+

∑∞
j=1 a1jx

j then each Laurent solution is of the
form

C

(
1− a0k

k
xk +

a0ka11 − a0,k+1 + a201
k + 1

xk+1 +O(xk+2)

)
,

where C is an arbitrary constant.
Thus, for equations of the form (6) with val a0(x) > 0, the coefficient of xk+1

in all nonzero Laurent solutions depends on coefficients of prolongation of the
original equation (6). Consequently, the number k = val a0(x) is the threshold.

If val a0(x) = ∞, in other words, if a0(x) = 0, then all extensions of the
equation (6) will have Laurent solutions y(x) = C, and the threshold of the
equation (6) is k = val a0(x) =∞.
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Proposition 1. There exists no algorithm that, for an arbitrary equation L(y) =
0 with an operator L of the form (1), finds out whether its threshold is finite or
infinite.

Proof. It is known that there is no algorithm that allows for an arbitrary series
represented algorithmically to check whether this series is zero — this fact fol-
lows from the fundamental results of A. Turing [10]. If there was an algorithm
that allows us to solve the problem formulated in the condition of the present
proposition, then applying it to the equation (6), in which the series a0(x) is rep-
resented algorithmically, would allow us to determine whether the series a0(x)
is zero (first it is necessary to verify that the constant term of this series is
zero: see the assumption made by us when considering the Example 1 (7); if this
constant term is not equal to zero, then, of course, the series is non-zero). The
impossibility of this algorithm follows.

Corollary 1. There is no algorithm that allows for an arbitrary equation L(y) =
0 with the operator L of the form (1), to calculate the value (an integer or one
of the symbols ∞, −∞) of its threshold.

Proposition 2. Let L(y) = 0 be an equation with an operator L of the form (1)
and k ∈ Z. It can be tested algorithmically whether k exceeds the threshold of the
equation or not; if the answer is positive then the threshold h of this equation
can be found. In addition, all such truncated Laurent solutions whose truncation
degree does not exceed h can be constructed.

Proof. We check the existence of invariant initial segments of solutions up to
xk by actually constructing these segments. The construction is considered as
successful, if the resulting coefficients for powers of x do not include unknown
coefficients of the prolongation of the equation (this approach was used in [5]
when considering equations with all coefficients represented by truncated series).
If it was not possible to reach xk then, first, it was established that the value
of k exceeds the threshold of the equation, and, second, it is possible to find
the threshold value and find all the invariant initial segments of the Laurent
solutions.

Remark 2. Thus, if the considered k is such that for a given equation L(y) = 0
with the operator L having the form (1) there does not exist truncated Laurent
solutions of truncation degree k, then this circumstance opens, in particular, the
opportunity of finding the threshold of the original equation — a quantity which
is by Corollary 1 of the Proposition 1 non-computable algorithmically, in case if
one is based only on the original equation.

3 Induced Recurrence Equations

Let σ denote the shift operator such that σcn = cn+1 for any sequence (cn). The
transformation

x→ σ−1, θ → n
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assigns to a differential equation

r∑
i=0

ai(x)θ iy(x) = 0, (8)

where ai(x) ∈ K[[x]], the induced recurrent equation

u0(n)cn + u−1(n)cn−1 + · · · = 0. (9)

The equation (8) has a Laurent solution y(x) = cvx
v + cv+1x

v+1 + . . . if and
only if the two-sided sequence . . . , 0, 0, cv, cv+1, . . . satisfies the equation (9)
(see [4]). In our assumption, for the given operator (1), some of whose coefficients
are truncated series, at least one of the constant terms of a0(x), . . . , ar(x) is not
equal to zero. Thus

u0(n) =

r∑
i=0

ai,0 n
i (10)

is a non-zero polynomial which is independent of any prolongations of the given
operator L. It can be considered as a version of the indicial polynomial of the
given equation. The finite set of integer roots of this polynomial contains all
possible valuations v of Laurent solutions of all prolongations of the equation
L(y) = 0.

If the polynomial u0(n) has no integer roots, then no prolongation of L(y) = 0
has nonzero Laurent solutions. In this case, set the threshold of the equation
L(y) = 0 to be −∞.

Let α1 < . . . < αs be all integer roots of the polynomial u0(n). Then, the
set N from Definition 3 has no element which is less than α1. All prolongations
of the equation L(y) = 0 have Laurent solutions with valuation αs (see, e.g., [5]).
Thus, αs ∈ N , and as a consequence, the threshold is greater than or equal to
αs. The threshold is −∞ if and only if the polynomial u0(n) has no integer root.

4 Computing Coefficients of Truncated Laurent Solutions

Computing elements of the sequence (cn) of coefficients of Laurent solutions can
be performed by successively increasing n by 1, starting with n = α1 which
is the minimum integer root of the polynomial u0(n). Set cn = 0 for n < α1.
If u0(n) 6= 0 for some integer n then (9) allows us to find cn by cn−1, cn−2, . . .
Since cn = 0 when n < α1, relation (9) has a finite number of non-zero terms. If
u0(n) = 0, we declare cn an unknown constant. The previously calculated cn−1,
cn−2, . . ., cα1 satisfy the relation

u−1(n)cn−1 + u−2(n)cn−2 + . . .+ u−n+α1
(n)cα1

= 0. (11)

These relations allow to calculate the values of some previously introduced un-
known constants. After the value of n exceeds the greatest integer root of u0(n),
new unknown constants and relations of the form (11) will not occur any longer.
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If L has truncated coefficients then it is possible that for some n ≥ α1 the
left hand side of (9) depends on those unspecified coefficients that are hidden
in (1) in the symbols O (some of coefficients of L may be of the form (2)). These
unspecified coefficients will be called literals. For u0(n) 6= 0, the calculated value
of cn depends on literals. For u0(n) = 0, if the relation (11) depends on literals
then computing previously introduced unknown constants is postponed until n
reaches αs. When n = αs, we obtain

(a) the values of the coefficients cα1
, cα1+1, . . ., cαs

(all of which depend on
unknown constants, some of which may depend on literals as well);

(b) the set of unknown constants;
(c) the set of relations for unknown constants containing literals.

By the set (c) we can find values of unknown constants which are invariant to all
prolongations of the given truncated equation (see [6] for details). The unknown
constants, that did not get values we declare arbitrary constants involved into
the Laurent solution of the differential equation.

5 Algorithm

Input data:

– a differential operator L of the form (1), whose each coefficient is either an
algorithmically represented power series, or a truncated power series,

– an integer number k.

Output result:

– The answer to the question of the existence of truncated Laurent solutions
for the equation L(y) = 0. If there are no such solutions, then the output is
the empty list [ ].

– If the answer to the question is positive then the algorithm computes all the
truncated Laurent solutions, whose truncation degrees do not exceed k; it
is possible that some solutions are computed with bigger truncation degree
(such solutions are found by the algorithm due to the general computation
strategy). If the algorithm finds out that k exceeds the threshold of the
equation L(y) = 0 then the algorithm computes the value h of the threshold
(see Remark 2) and constructs all the truncated Laurent solutions, whose
truncation degrees do not exceed h.

The steps:

1. By (10), compute u0(n). Find the set

α1 < . . . < αs

of all integer roots of u0(n). If the set is empty then there are no truncated
Laurent solutions; stop the work with the result [ ].
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2. d := αs − α1; compute the coefficients

u−j(n) :=

r∑
i=0

ai,j (n− j)i, j = 1, . . . ,max{d, k − α1},

of the induced recurrent equation (9).
3. Compute the coefficients cn, n = α1, α1+1, . . . , αs, of the truncated Laurent

solution using (9) as it is described in Sect. 4.
4. If k > αs then continue computing cn using (9) with n subsequently increased

by 1 while the both following conditions hold
(a) n ≤ k,
(b) a non trivial set of the values of the arbitrary constants exists such that

cn is independent of the literals (it is detailed in [6, Sect. 4.1]).
If (a) is true, but (b) is false for the current n then the threshold of the
equation is computed as h = n − 1. In the latter case, substitute k by
smaller value: k := h. Report the substitution with the value h.

5. Construct the list of all truncated Laurent solutions

cvx
v + cv+1x

v+1 + . . .+ cmx
m +O(xm+1), v ∈ {α1, . . . , αs}, m ≤ k, (12)

containing no literals as described in [6, Sect. 4.1]. (Some elements of the set
{α1, . . . , αs} might be not used in the truncated Laurent solutions (12)).

6 Implementation; Examples of Use

We implemented the algorithm in Maple [9] as an extension of LaurentSolution
procedure from the package TruncatedSeries [7]. The first argument of the pro-
cedure is a differential equation L(y) = 0 where L is an operator of the form (1).
Previously, the procedure worked for the case where all the series, which are the
coefficients of the equation, are represented as truncated series. Now it is also
possible to represent them (or a part of them) algorithmically. The application of
θk to the unknown function y(x) is written as theta(y(x),x,k). The truncated
coefficients of the equation, i.e. the coefficients of the form (2) are written as
a_i(x)+O(x^(t_i+1)), where a i(x) is a polynomial of the degree not higher
than t i over the field of algebraic numbers. Algorithmically represented series
might be specified either as a polynomial, or as a finite or infinite power series
in integer powers of x, or as a sum of a polynomial and such power series. The
power series is written in a usual Maple form as Sum(f(i)*x^i,i=a..b), where
f(i) is an expression or a function that implements an algorithm for computing
the number coefficient of the series with the index i, the specified a and b are
the lower and the upper bounds of summation, the upper bound might be infi-
nite which is designated as infinity. The coefficients of both polynomials and
series, as in the case of truncated series, are the elements of the field of algebraic
numbers. Irrational algebraic numbers are represented in Maple as the expression
RootOf(p( Z), index = k), where p( Z) is an irreducible polynomial, whose k-
th root is the given algebraic number. For example, RootOf(_Z^2-2, index=2)
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represents −
√

2. An unknown function of the equation is specified as the second
argument of the procedure.

Concerning the implementation of the algorithm from Sect. 5, the procedure
has got two new optional parameters:

– ’top’=k — where k is an integer number, for which it is needed to determine
whether it exceeds the threshold of the given equation (by default, k equals
the maximum integer root of the indicial polynomial if at least one coefficient
of the equation is non-truncated and k equals the threshold otherwise);

– ’threshold’=’h’ — where h specifies the name of the variable, which will
be assigned to the value of the threshold in the case if it is computed, or to
the value FAIL, if the threshold is not determined, i.e. if it exceeds the given
value k.

The result of the procedure is a list of truncated Laurent solutions with
different valuations. Each element of the list is represented as

cvix
vi + cvi+1x

vi+1 + . . .+ cmi−1x
mi−1 +O(xmi), (13)

where vi is the valuation for which the existence of a truncated Laurent solution
is determined; mi has the previous meaning, ci are the calculated coefficients of
the truncated Laurent solution, which can be linear combinations of arbitrary
constants of the form cj .

The implementation and a session of Maple with examples of using the pro-
cedure LaurentSolution are available at the address

http://www.ccas.ru/ca/truncatedseries

in the section “The next version of the procedure LaurentSolution”.
Below we present six examples, which we combine into one, containing para-

graphs 1-6.

Example 2.
1. In the equation two coefficients are given as a truncated series and one

coefficient is represented algorithmically as the sum of the polynomial and the
power series:
> eq1 := (-1+x+x^2+O(x^3))*theta(y(x), x, 2)+

> (-2+O(x^3))*theta(y(x), x, 1)+

> (1+x+Sum(x^i/i!, i = 2 .. infinity))*y(x);

eq1 :=
(
−1 + x+ x2 +O

(
x3
))
θ(y(x), x, 2) +

(
−2 +O

(
x3
))
θ(y(x), x, 1)

+

(
1 + x+

∞∑
i=2

xi

i!

)
y(x)

> LaurentSolution(eq1, y(x), ’top’ = 2, ’threshold’ = h1_2);

[ ]
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The output means that the equation has no truncated Laurent solutions. The
threshold:
> h1_2;

−∞

The value of the threshold is −∞, and it confirms that there are no truncated
Laurent solutions.

2. The equation has both truncated and algorithmically represented coeffi-
cients. The separate function f is used to specify power series:
> f := (i -> i^2+2*i+1-(i+1)^2):

> eq2 := (-1+x+x^2+O(x^3))*theta(y(x), x, 2)+

> (-2+O(x^3))*theta(y(x), x, 1)+

> (Sum(f(i)*x^i, i = 0 .. infinity))*y(x);

eq2 :=
(
−1 + x+ x2 +O

(
x3
))
θ(y(x), x, 2) +

(
−2 +O

(
x3
))
θ(y(x), x, 1)

+

( ∞∑
i=0

(
i2 + 2i+ 1− (i+ 1)2

)
xi

)
y(x)

> LaurentSolution(eq2, y(x), ’top’ = 2, ’threshold’ = h2_2);[
c1
x2
− 4 c1

x
+ c2 +O(x), c2 +O

(
x3
)]

The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found. The threshold:
> h2_2;

FAIL

It means that the given value k = 2 does not exceed the threshold.

Apply the procedure to the given equation again with k = 5:
> LaurentSolution(eq2, y(x), ’top’ = 5, ’threshold’ = h2_5);[

c1
x2
− 4 c1

x
+ c2 +O(x), c2 +O

(
x6
)]

It is seen that the truncated solution with the valuation −2 is not changed, and
the truncation degree of the one with the valuation 0 is increased. The threshold:
> h2_5;

FAIL

It means that the given value k = 5 does not exceed the threshold. The function
f, which is used to specify the series coefficient of y(x), computes 0 coefficient
for any index value i. Therefore the coefficient of y(x) equals 0. The threshold
of the equation is ∞, and any value k will not exceed the threshold. Note that
the zero series might be specified just as the polynomial 0, or the term with y(x)
might be absent in the equation.
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3. The equation has also both truncated and algorithmically represented
coefficients. The algorithmically represented coefficient of y(x) is written as the
polynomial:
> eq3 := (-1+x+x^2+O(x^3))*theta(y(x), x, 2)+

> (-2+O(x^3))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq3 :=
(
−1 + x+ x2 +O

(
x3
))
θ(y(x), x, 2) +

(
−2 +O

(
x3
))
θ(y(x), x, 1)

+
(
x+ 6x2

)
y(x)

> LaurentSolution(eq3, y(x), ’top’ = 2, ’threshold’ = h3_2);[
c1
x2
− 5 c1

x
+ c2 +O(x), c2 +

1

3
x c2 +

5

6
x2 c2 +O

(
x3
)]

The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found again. The threshold:
> h3_2;

FAIL

It means that the given value k = 2 does not exceed the threshold.

Apply the procedure to the given equation with k = 5:
> LaurentSolution(eq3, y(x), ’top’ = 5, ’threshold’ = h3_5);[

c1
x2
− 5 c1

x
+ c2 +O(x), c2 +

1

3
x c2 +

5

6
x2 c2 +

13

30
x3 c2 +O

(
x4
)]

The threshold:
> h3_5;

3

It is seen that the threshold is achieved in the computed truncated solutions
with the valuation 0.

4. The equation is a prolongation of the equation eq3:
> eq4 := (-1+x+x^2+9*x^3+O(x^4))*theta(y(x), x, 2)

+(-2+(x^3)/2+O(x^4))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq4 :=
(
−1 + x+ x2 + 9x3 +O

(
x4
))
θ(y(x), x, 2)+(

−2 +
1

2
x3 +O

(
x4
))
θ(y(x), x, 1) +

(
x+ 6x2

)
y(x)

> LaurentSolution(eq4, y(x), ’top’ = 5, ’threshold’ = h4_5);[
c1
x2
− 5 c1

x
+ c2 +

1

3
x c2 +O

(
x2
)
, c2 +

1

3
x c2 +

5

6
x2 c2 +

13

30
x3 c2

+
95

144
x4 c2 +O

(
x5
)]
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The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found again. These truncated solutions are the prolonga-
tions of the computed truncated solutions of the equation eq3. The threshold:
> h4_5;

4

It is seen that the threshold is achieved in the computed truncated solutions
with the valuation 0.

5. The equation is another prolongation of the equation eq3:
> eq5 := (-1+x+x^2+RootOf(z^2-2, z, index = 2)*x^3+O(x^4))*

> theta(y(x), x, 2)+(-2+2*RootOf(z^2-2, z, index = 2)*x^3+

> O(x^4))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq5 :=
(
−1 + x+ x2 + RootOf

(
Z2 − 2, index = 2

)
x3 +O

(
x4
))
θ(y(x), x, 2)

+
(
−2 + 2RootOf

(
Z2 − 2, index = 2

)
x3 +O

(
x4
))
θ(y(x), x, 1)

+
(
x+ 6x2

)
y(x)

> LaurentSolution(eq5, y(x), ’top’ = 5, ’threshold’ = h5_5);[
c1
x2
− 5 c1

x
+ c2 + x

(
1

3
c2 −

35

3
c1

)
+O

(
x2
)
, c2 +

1

3
x c2 +

5

6
x2 c2

+
13

30
x3 c2 + x4

(
19

36
c2 +

1

24
RootOf

(
Z2 − 2, index = 2

)
c2

)
+O

(
x5
)]

The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found again. These truncated solutions are the prolonga-
tions of the computed truncated solutions of the equation eq3, but are different
from the computed truncated solutions of the equation eq4. The threshold:
> h5_5;

4

It is seen that the threshold is achieved again in the computed truncated solutions
with the valuation 0.

The results of the application of the procedure to the equations eq4 and
eq5 show that the earlier computed truncated Laurent solutions of the equation
eq3 contain the maximum possible number of initial terms, since two different
prolongations of the equation eq3 have different truncated Laurent solutions,
which are the prolongations of the found truncated solutions of the equation
eq3.

6. The equation is a prolongation of the equation eq3 as well, and all its
coefficients are represented algorithmically:
> eq6 := (-1+x+x^2+Sum((-1)^i*x^i/i!, i = 3 .. infinity))*

> theta(y(x), x, 2)+(-2+2*(Sum((-1)^i*x^i/i!, i = 3 ..
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> infinity)))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq6 :=

(
−1 + x+ x2 +

∞∑
i=3

(−1)ixi

i!

)
θ(y(x), x, 2)+

(
−2 + 2

( ∞∑
i=3

(−1)ixi

i!

))
θ(y(x), x, 1) +

(
x+ 6x2

)
y(x)

> LaurentSolution(eq6, y(x), ’top’ = 5, ’threshold’ = h6_5);[
c1
x2
− 5 c1

x
+ c2 + x

(
1

3
c2 −

35

3
c1

)

+x2
(

5

6
c2 −

145

48
c1

)
+ x3

(
13

30
c2 −

103

16
c1

)
+ x4

(
25

48
c2 −

2131

576
c1

)
+x5

(
2057

5040
c2 −

4303

960
c1

)
+O

(
x6
)
, c2 +

1

3
x c2 +

5

6
x2 c2

+
13

30
x3 c2 +

25

48
x4 c2 +

2057

5040
x5 c2 +O

(
x6
)]

The two truncated Laurent solutions with the same truncation degree are found,
which are the prolongations of the computed truncated solutions of the equation
eq3. The threshold:
> h6_5;

FAIL

Thus k = 5 does not exceed the threshold. The case when all the coefficients are
represented algorithmically is the case when the threshold of the equation is ∞,
and any value k does not exceed the value of the threshold.

7 Concluding Remarks

This study is a continuation of the studies started in [2, 7], in which it was
assumed that either all the coefficients of a differential equation are represented
algorithmically, and in this sense, are given completely, or are represented in the
truncated form. In the current paper, the presence of both types coefficients is
allowed.

The presence of infinite series in the input data of a problem is a source
of difficulties (the algorithmic impossibility of answering certain natural ques-
tions). This is, e.g., related to the fact that if sequences of coefficients of series
can be specified by arbitrary algorithms, then it is impossible to test algorith-
mically the equality of such series to zero (this is a consequence of the classical
results of A. Turing on the undecidability of the problem of terminating of an
algorithm [10]).

There is nowhere to go from this in the problem considered above, — see
Proposition 1. However, along with this, we must admit that in the situation,
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we are faced, in a certain sense, with a lighter version of the algorithmic unde-
cidability. This undecidability is, so to speak, not too burdensome.

Indeed, we cannot indicate the greatest degree of the truncated Laurent so-
lution existing for a given equation (the threshold of the equation). However, if
we are interested in all solutions of a truncation degree not exceeding a given
integer k then the algorithm proposed in Sec. 5, allows us to construct all of
them.

It would be interesting to try to obtain similar results for solutions of a more
general form — the so-called regular and exponentially logarithmic solutions, and
generalize this to systems of differential equations. We will continue to investigate
this line of enquiry.
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