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THE NUMBER of divisions in Euclid’s algorithm can be overbounded by the number of digits 
in writing down the lesser of two given numbers in the position system of calculation with some 
base (1. The dependence of the properties of these estimates on the value of CJ is investigated. 
The release of the memory in the process of using Euclid’s algorithm is also studied. 

1. Let the application of Euclid’s algorithm to the natural numbers au, al, a0 > al, require 
m divisions, including the last division giving a zero remainder. We denote the resulting partial 

quotients by 41, . . . , qm, and the non-zero remainders by a2, . . . , a,. We put a, + 1 = 0. By a 

well-known theorem of Lame [I] , 

where u, + 1 is the (m + I)-th Fibonacci number. From the inequality (1) it is easy to deduce 

*Zh. vfihisl. Mat. mat. Fiz., 19, 3, 756-760, 1979. 
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For the practical application of the estimate (2) we replace the logarithm by the number 
of digits of the natural number 01 in some position system. If an integer 9 greater than unity is 

the base of the system, then we obtain 

(3) 

where nq (al) is the number of digits of al in the q-ary system. 

For the most widespread systems - binary and denary - we obtain the following: 

logc,+,,,,,2= 1.440 . . . . mG2nz(at), 

b&,+ Js,,210=4.i84 . . . . m~5?~~iJ(a*). 

To simplify the writing we use the notation cq= [log, I+~5j,zq] + 1. The estimate (3) is 
written in the form m Q cqnq(ul). 

For any 9 the estimate (3) is cruder than (2). Choosing a criterion of quality of the estimate, 
we can consider which of the estimates (3) is preferable for two different values of 9. The fact 
that, having chosen two values of 9, we can obtain estimates greatly differing from each other, is 

already demonstrated by comparing the estimates given for 9 = 2 and 9 = 10. 

For fairly large al the denary estimate is better than the binary estimate. But the binary 

estimate admits of localization in the following sense: for i = 1,2, . . . , m-2 we have oi > 2ui+2 
(and even ai > 2ai+2; proof: Uicqi+I~i+l+~i+2~~i+2+a,+2>2a,+2). But the statement 

aj > 1 Oaf+5 is in general untrue (example au = 49, al = 30, i = 1). The binary estimate can be 

improved: indeed the inequality rn < 2n2(ul) is satisfied (this will be proved below; but the 
example au = 13 shows that in the denary estimate it is impossible to replace the sign <by <. 

It is easy to see that for fairly large al we have cqnq(al)cc,nP(a~), if (I-{log,,+~s,,2q})/ 

h(l+w/2Q is less than the similar quantity for p (in this case for fairly large 01 the inequality 

c,(log, at + 1) c cP log, ai) will be satisfied). Using this we arrange the values of ~2, . , ~10 in 
order of decrease of accuracy of the estimate m < cqnq(ul) for fairly large al: ck=3, cio=5, co=& 

cg=4, cI)=5, cg-4, c7=5, cg-3, c2=2. 

It is clear that for any 9 we can find a Q such that for any natural p > Q the estimates 
m Q cpnp(al) is for large al more accurate than m < cqnq(al). 

It is not so simple in the general case to establish the possibility of localizing and improving 
the estimates. In this section it will be shown that the class of estimates of the form (3) admitting 
of localization, is identical with the class of estimates of the same form admitting of improvement. 
We will formulate the necessary and sufficient conditions which 9 must satisfy for the corresponding 
estimates to belong to this class. 

By induction using the equation a,=qiila,+l+a,+2 for i = 1,2, . . , , m it can be proved 
that 

where Qo, Qr , . . . are the Eulerian polynomials: 
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Qo=l, Qi (zi) =zi, 

Qn (I,,. . . , sn) =znQn-, (~1,. . . , zn-i) +Qn--l(zir . . . , G-Z). 

Since for any collection of natural 42, . . . , qi we have Q,-l (92,. . . , gJ )Q,Ls (I, ,. . , i)=uit 
we obtain as a corollary that for i = 1,2, . . . , m the inequality atZu,ai+~-la~+~ holds and 

all the more 

Remark. If a0 = urn+ 2, al = u, + 1, then (4) is transformed into the well-known identity 
for Fibonacci numbers: 

Gnrf =U,Um-i+Z+Ui-lUm-i+i. 

Relations (4), (5) permit us to describe all the 4 for which the estimate (3) permits of 
localization. 

Theorem 1 

Let i 2 2. For every real E > 0 natural numbers a0 and a1 can be chosen such that Euclid’s 
algorithm ap;lied to them requires not less than i - 1 divisions and thereby al /ai < Ui + E will 

be satisfied. 

Proof: We choose N so large that tci_ 1 IN < E is satisfied, and consider the sequence of 
numbers defined recursively: 

vi=1, v2=1v, V,=v~__ItVn__2. 

We now put a0 = vi+2, al = Vi+l. We have 41 =. . . =qi_ 1 = 1 and by (4), 

a1 
ai=UiUi+Ui-l and -= U{ + 

W-1 
- < Ui t e. 

ai N 

Comparison of the statement of Theorem 1 with inequality (5) permits two corollaries 
to be obtained. 

Corollary 1. For i > 2 and for any ag, al such that Euclid’s algorithm does not end after 
i - 1 divisions the inequality al /ai > Ui holds. At the same time it is possible to choose a0 and 
al such that Euclid’s algorithm does not end after i - 1 divisions and al /ai < Ui + 1. 

Corollary 2. The estimate for the number of divisions m < c,n,(al) admits of localization, 

that is, a,/a,p+i2q if and only if 

uc,+1zg. (6) 

Returning to the estimate m < Snlo(ql), we see that it does not permit localization: 
24 = 8 < 10. The eSthIMte 111 < h&l) pemitS 1OCabtiOn Since U3 = 2. We give a ht of au the 
values of q not exceeding 10 for which estimate (3) permits localization: 2,3,5,7,8. 
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Theorem 2 

The estimate m Q cqnq permits localization if and only if for some natural t 

( I+15 1 
t-1 

< q Q u;+1. 
2 

In this case cq =r-I,thatis,mG(t-l)n&l). 

The proof follows from corollary 2 and the inequality 

v+y5) 
t-1 

(1+15) 
t 

2 
<&+I< - 

2 ’ 

valid for all natural t. 

Theorem 3 

Let the estimate m < cqnq(al) not permit localization. Then it is unimprovable in the 
following sense: we can choose au, al such that the application to them of Euclid’s algorithm 
requires exactly c4ns(ol) divisions. 

Proof: By Theorem 2 we can fiid a natural t such that 

ut<q< (A+E)Y 

We choose a0 =ut+l,al =ut, Then rl,(ai)=l. c,=[log~~-~~,;?q]+l=l-l; the number of 
divisions is t - 1. 

lleorem 4 

Let the estimate m < cqnq(czl) permit localization, Then it is improvable: the inequality 
m <cqrrq(al) is satisfied. 

Proof: Let q5- 1 d al < q5 for some natural s. We proceed by induction with respect to s: 

1) s = 1; using (6) and (l), we obtain 

from which c4 > m, which is what is required; 

2) s > 1; if c4 > m, then there is nothing to prove; otherwise, since the estimate permits 
. . 

locallzatron, we have aCp+ i< qa-l. 

By the inductive hypothesis 

m-cqCcpnp(acq~i), 
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from which we obtain 

The proof is complete. 

2. From the inequality ai > 2ai+2 it follows that the passage from the pair of numbers 
ai. ai+l to the pair ai+l, ai+ reduces the total number of digits in the binary formula for the 
numbers by at least I, that is, at each step of Euclid’s algorithm clearly 1 bit of the memory 
carrying out this algorithm is freed. The memory freed can be occupied by other calculations. 
Some algorithms are known which are executed step by step in parallel with Euclid’s algorithm, 
for example the construction for two integers a0 and al of integers s and t such that ags t al t = 
GCD (~0, al). To obtain s and t we construct in succession so, to; $1, tl ; such that 
~O~i+~lti=~i.Itisobviousthat~g=t~=l,s~=t0=Oandthatfori=2,3,...,mwehave 

S,=(-l)‘Qt-z(q29 . * I qi-l)t i?i=(-l)'+'Qi-*(Qi! *. .t Qi-I). 

A particular case of this algorithm is the algorithm for the inversion of a natural u in the field of 
residues with respect to the prime modulus p for a <p: ps t at = 1, implies at s 1 (mod p), here 
the value of s is of no interest. 

We estimate the memory capacity necessary for the application of the last algorithm. Let 

the binary system be chosen for recording the numbers. It will be shown that 2n&) + 4 places 
are sufficient to solve the problem. Retaining the system of notation introduced at the beginning 

of the paper, we consider that a0 = p, al = II. Theorem 5 plays a basic role in deriving the 

estimate. 

Theorem 5 

Fori=O,l,... , m the inequalities N:( It,l) +)?:(u~) <rf:.(no)+l. n~(lt!l)+nz(q,)+n~(a,,,) 

<n2(a0) +2 are satisfied. 

Proof: Usingthefactthat ao=Qm(qi,...,qm), It!I=Q,_,(q, ,..., q,_,). u~+~=Q~-~.._~ 
(q,&?, . , qm). we have 

n*(lt,i)+l7:(u,)=([logZ Ir,/]+l)+([log*a,]t1) 

9log2 If,la,+2=log2 Qz-i(Q$, (. I q+i)Qm-i(qitl,. , Qm) +2clogz aot2. 

Since n2 (Itil) + n2(Ui) is an integer, ~z(It,I)+n~(ai)~[logz.a~]+2=t~~(a~)+1 is satisfied. 
Also 

and as before we obtain 

The theorem is proved. 
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Dividing “at the corner” or by ai+1 it is possible to obtain the partial quotient qi+ 1 and 
the remainder ai + 2 at the place where ai was situated: the places occupied by ai are obviously 
sufficient for this. For the calculation of I tit2 I ==ql+j I ti+l I + I ti I we use the location occupied 
by Itr( and qi+2 : the digits of the number qi+ 1 beginning with the lowest in the calculation 
of the product “by the column” become unused one after the other. If the storage of the 
algorithm being satisfied is this order sequence of binary digits, then it is desirable that each of 
the numbers considered occupy several consecutive places. For even i the numbers considered 
may be arranged as follows: 

lclaii &+lalti+ll \ _ 
nz(ad+Z ndadt? 

places places 
(7) 

The superscript arrow + means that the digits of the number go in succession (from left to right) 
beginning with the highest order digit, the arrow + denotes the opposite order; the letter (Y 

everywhere denotes groups of figures of no interest. For odd i the quantities with subscripts i 

and i + 1 change places. 

The transformation of the content of the first n2 (a~) t 2 binary digits in (7) for the 

transition from quantities with subscript i to quantities with subscript i + 2 proceeds as follows: 

IXlaq 
4 + 
,Alaa,+2 

Theorem 5 guarantees that there are sufficient places for this transformation, 

If the last value of I I, I is on the right (that is, m is odd), then cm is a negative number 

and to find the element inverse to Q it is also necessary to calculate I fm I from p. However, this 
fact by no means compels us to remember the value of p to the end of the calculations: it is 

easy to see that p = rm + 1. 

The author thanks V. D. Podderyugin for advice. 

Trailsbred by J. Berry. 
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