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Linear ordinary differential equations with formal power series coeflicients represented in a
truncated form are considered. We discuss the information on solutions belonging to the field
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PaccmarpuBatoTcst uHeiiHble OOBIKHOBEHHBIE AuddepeHInaIbHble YpaBHEHUsI ¢ Kodddu-
LMEHTaMH B BHJIE€ yCE€YEHHBIX (POPMAIbHBIX CTEIEHHBIX PsinoB. O6GCy»KIaeTcsi BOIPOC O TOM,
YTO MOXKHO y3HaTb U3 3aJaHHOIO TAKHM 0Opa30M ypaBHEHHsI O €ro PEIIeHHsIX B 1oJie (op-
MaJbHBIX psigoB Jlopana. IIpu sTom Hac uHTepecyer mHOpPMaIus 00 STUX PEIIEHUSAX, HHBA-
pUaHTHasdA OTHOCUTEJIBHO BO3MOXKHBIX IIPDOJOJI?2KEHUU TeX YCEeYEHHBIX PfAJO0B, KOTOPBIMU IIpe-
cTaBJIeHbl KO3 UIMEHTHI ypaBHEHUsI.

KimroueBble CJI0Ba: CUMBOJIbHBIE BBIUHUC/ICHUsI, KOMIbIOTE€pHas ajrebpa, auddepeHiu-
aJIbHbIEe YpaBHCEHU, 6eCKOHe‘IHbIe CTeIIeHHBbIe PsAJbI, YyCeUYeHHbIEe CTEIIeHHBbIe DAJAbl, CUCTEeMbl
KOMIIBIOTEPHOMN ajre6pbl.

1. Introduction

Power and Laurent series play a very important role in the theory and application
of differential equations. In particular, the coefficients of a linear ordinary differential
equation are often represented by series, and the problem can be to find such solutions
to this equation which are series of some fixed kind.

Below, the formal power series will be used as coefficients of a given equation, and,
the coefficients of these series themselves, will be elements of a given differential field K
of characteristic 0. The solutions we are interested in, will belong to the field of formal
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Laurent series over K. Such solutions we will call Laurent solutions. We will not be
interested in the questions of convergence of series.

The algorithmic aspect of problems of this kind involves consideration of the question
of the representation of infinite series, in particular, of series, playing the role of the
coefficients of the equation. In the works [1-3] the algorithmic representation was
considered: the series > ana™ is represented by an algorithm that calculates an by a
given n. It was found that some problems related to the solutions of the equations
given in this way are algorithmically unsolvable, but, at the same time, the other part
is successfully solvable. In particular, the problem of finding Laurent solutions turns
out to be solvable. (In the mentioned papers, not only individual scalar equations were
discussed, but also systems of equations.)

A number of problems of constructing solutions were also considered, on the as-
sumption that series playing the role of coefficients of a given equation or system are
presented in an “approximate”, namely, in truncated form. For example, in [4] it is estab-
lished what a truncation of the coefficients of the system is enough to calculate a given
number of initial terms of the series that are included in the exponential-logarithmic
solutions of the system. In [1] this problem is considered for constructing truncated
Laurent solutions. In the present paper, for such solutions we indicate how many coef-
ficients of a built Laurent solution can be trusted regardless of those coefficients of the
original series, which disappeared during the truncation. We are interested in informa-
tion on the solutions of the equation, invariant with respect to possible prolongations
of the initially given truncated series representing the coefficients of the equation. The
algorithm proposed by us obtains the maximal possible number of terms of Laurent
solutions, which is guaranteed in this sense.

Details of the problem statement, see below in Section 2. The proposed algorithm is
implemented in the Maple [5]. The implementation and some experiments are described
in Section 7.

2. Formulation of the problem

First, introduce some notation. Let K be a field of characteristic 0 and K[x] the ring
of polynomials with coefficients in K. We denote by K]{[z]] the ring of formal power
series with coefficients in K and K((z)) its quotient field; the elements of K((x)) are
Laurent series. For a nonzero element a(z) = > a;x* of K((x)) the valuation vala(z) is
defined by vala(z) = min {i | a; # 0}. By convention val0 = co. Let | € ZU{—o0}, the
I-truncation a'V () is obtained by vanishing all the coefficients of the terms of degree
larger than [ in the series a(x); if | = —oco then a(?) (z) = 0.

Further (K, D) is a differential field of characteristic 0. We will consider differential
operators and equations written using the notation 8 = xD. We assume that in the
original operator

L= ai(z)0" € K[z][0], (1)
=0

coefficients are
tg
a;(z) = Zaij:cj, t; > dega;(x), fori=0,1,...,r
j=0

(if t; > d; = dega; then a; = 0 for i = d; + 1,d; + 2,...,t;). It is assumed that the
constant term of at least one of the polynomials ag(z), ..., ar(x) is non-zero.

Definition 1 Let L have the form (1), the polynomial ar(z) (the leading coefficient of
the differential operator L) is assumed to be monzero. A prolongation of the operator



L we will call any operator L = S7_ b; ()0 € K[[z]][0] for which
bi(z) — a;(z) = O(a"*1)
(i.e. val(b;(z) —a;(x)) >t;), 1=0,1,...,r.

An algorithm will be proposed whose input is an operator L € K[z][f] and non-
negative integers to,t1,...,tr . As a result of applying the algorithm, two finite sets of
integers becomes known

W= {v1,...,vx}, M={m,...,my}

with the following properties:
e For each v; € W there is a solution y(z), valy(z) = v;, of the operator L.
o If §(x) is a solution of some prolongation L of L and val §j(z) = v;, 1 < i < k, then
there is a solution y(z) of the operator L, for which g(z) — y(z) = O(z™i). The
latter equality can be rewritten as

(@) =y (@) + O@@™). (2)

o If y(x) is a solution of L such that valy(z) = v;, 1 < ¢ < k, then for any prolon-

gation L of the operator L there exists its solution §(z), for which (2) holds.
e The values of m; are the largest of the possible values associated with L in this
way.
The sets W, M contain all the values v;, m;, for which these conditions are satisfied.

If we know the space of Laurent solutions of an operator L (this operator has poly-
nomial coefficients; how to find its Laurent solutions see [6,7]) and the sets W, M, then
we have, thereby, a complete list of valuations of solutions and formulas of the form (2)
invariant with respect to the prolongations of the operator L.

Remark 1 This task is directly related to the representation of infinite series, ad-
dressed in the introduction: the differential equation is given as

(a'r(l’) + O(actTJrl)) 0 y+-- -+ (a1 (z) + O(xt1+1)) Oy + (ao(x) + O(zt‘)Jrl)) y=0, (3)

t; > dega;(z), i = 0,1,...,r. We associate the operator (1) with it, as well as the
set of numbers ¢,,...,%o, and solve the problem of finding W = {v1,...,vx}, the set
M = {m1,...,my} and the formulas (2).

A prolongation of the operator (1) will be called also a prolongation of the equa-
tion (3).

The presentation of the results of the algorithm is discussed in Section 7.

3. Sequences of coefficients of Laurent solutions

Let o denote the shift operator: ocy, = cp41 for any sequence (¢ ). The mapping

z—o !, 0on

transforms an original differential equation

T

> ai(@)0'y =0 (4)

i=0
into the induced recurrent equation uo(n)cn, +u—_1(n)o"ten + -+ = 0 or equivalently
up(n)en +u—1(n)ep—1 + -+ =0, (5)

where



® (Cn)—oco<n<oo Is an unknown sequence such that ¢, = 0 for all negative integers
n with |n| large enough.

e ug(n),u—1(n),--- € Kn|, each of the polynomials is of degree less than or equal
to r.

e up(n) is a non-zero polynomial, it is called the leading coefficient of the equa-
tion (5). Note that, by our supposition, the constant term of at least one of the
polynomials ag(x),...,ar(z) is non-zero. This implies not only that ug(n) is a
non-zero polynomial, but also that it does not depend on a prolongation of the
original operator L.

An equation of the form (4) has a Laurent solution y(z) = cy2¥ + cyp12?tt 4+ ...
iff the double-sided sequence

.,0, 0, cv, Cot1, ---
of coeflicients of y(z) satisfies the induced recurrent equation of the form (5), i.e.,

ug(v)ey =0,
up(v + 1)cy41 + u—1(v+ 1)cy =0,
uo (v + 2)cpt2 + u—1(v + 2)cp41 + u—2(v +2)cy, =0,

(the proof is given in [8]).

The leading coefficient ug(n) can be considered as a kind of the indicial polynomial
of the original differential equation (4). The set of the integer roots of ug(n) is finite
and contains all possible valuations of Laurent solutions of (4).

4. Additional relations for computed coefficients of the series

If ug(n) # 0 for some integer n then (5) allows to find ¢n by ¢n—1,cn—2,.... If
up(n) = 0 then at such a moment we declare (possibly temporarily) ¢, as an unde-
termined coefficient that is included in the lined up solution. It turns out that the
preceding values of ¢,—1,¢p—2,..., which we would like to look at as finally found,
should satisfy the relation

u—_1(n)epn—1 +u—2(n)cp—2+---=0. (6)

Such relation has only finite number of non zero terms and will probably eliminate
some of the previously undetermined coefficients. Only after incrementing the value of
n does this value exceed the largest integer root of the equation ug(n) = 0, there is a
guarantee that both new undetermined coefficients and relations of the form (6) will
not arise already.

5. Foundation of the algorithm

If the polynomial ug(n) does not have integer roots then none of the prolongations
of the original differential equation has solutions in K ((x)). The algorithm reports this
and stops.

If there are integer roots a; < --- < as then for L and its prolongations, only for
s, the existence of a Laurent solution with such a value is guaranteed. We need to
deal with a,...,as—1. For each of these roots, there are three possibilities:

(a) Laurent solutions exist for all prolongations;

(b) Laurent solutions exist for some, but not for all prolongations; — depending on
the specific prolongation;

(c) Laurent solutions do not exist for any prolongation.



By adding symbolic coefficients (not originally specified), it is possible to determine
for which a; we are considering which of these three possibilities takes place. If it is
(a), then we find the corresponding m. If it is (b) or (c), then we remove «; from
consideration.

As aresult, the set W is determined: W = {v1,...,vi}. For each of these valuations
v, the corresponding m; will be determined as well. So, we have the additional set
M = {ma1,...,my} of integers, for them, the corresponding relations of the form (2)
are satisfied.

If we consider solutions that have a valuation «j, I < s, then, using the induced
recurrence equation, it is necessary to advance in constructing a solution at least to s,
even if already before the moment, in the coefficients of the lined up series appeared
symbolic unspecified coefficients of the prolongation. Using the induced recurrence
equation with n be equal to one of the integer roots of its largest coefficient, gives a linear
relation between the already obtained coefficients of the series, symbolic or belonging to
K — see Section 4. If one reaches the largest integer root and at the same time found out
what are these relations somehow limit the choice of a prolongation (prevents arbitrary
choice), then we exclude from consideration solutions of valuation «;. If the relation
does not limit the choice of a prolongation (for example, all the relations only express
the existing indefinite coefficients in terms of the added unspecified coefficients), then
choose from the constructed segment its initial terms in accordance with the formula (2)
with v; = ay.

Now we can construct a basis for the space of truncated Laurent solutions of valua-
tion greater than or equal to v; in the form of a finite set segments of series, which is
represented as the union of k subsets; the ith subset, 1 < ¢ < k, consists of truncated
solutions, of valuation v;, and the truncated series included in some fixed subset are
linearly independent over the field of constants.

6. Steps of the algorithm

Let’s follow the steps of the proposed algorithm using the operator L = —62 — 26
with tg = t; = t2 = 0 as an example. The construction of the induced recurrent
equation allows obtaining its indicial polynomial ug(n) = —n? — 2n, the set {—2,0}
of its integer roots contains all the valuations of the Laurent solutions of the equation
L(y) = 0. Polynomials u;(n), ¢ = —1,—2,... involve symbolic unspecified coefficients,
which take place in the prolongation of the operator L.

We compute the solution coefficients for the possible valuation —2, starting from
c_g.

e n=—2: ug(—2)c_2 =0-c_2 =0, the coefficient c_2 remains undetermined.

e n=—1: up(—1)c—1 +u_1(-1)c—a = c—1 + u—1(—2)c—2 = 0. It gives c_1 =
—u_1(—1)c_a.

e n=20: u(0)co+u-1(0)ce1 +u—2(0)c—2 =0co +u—1(0)c—1 + u—2(0)c—2 =
—u_1(0)u—1(—=1)c—24+u—2(0)c—2 = (—u—1(0) u—1(—1) +u—2(0)) c—2 = 0. The
coefficient ¢o remains undetermined, and it appears that if —u_1(0)u—1(—1) +
u—2(0) # 0 then c_3 = 0. As soon as u—1(n) and u—1(n) depends on unspecified
coefficients, the case (b) is faced here, i.e. Laurent solutions with the valuation
—2 exist only if —u_1(0)u—1(—1) +u_2(0) = 0. This valuation is removed.

We compute the solution coefficients for the possible valuation 0, starting from cg .

e n=20: up(0)co =0-co =0, the coefficient ¢y remains undetermined.

e n=1 wu(l)er +u—1(1)co = =3c1 +u—1(1)co = 0. It gives ¢1 = L‘;)CO with

u—1(1) and hence ¢; being depended on the unspecified coefficient. n = 0 corre-
sponding to the maximal possible valuation is passed, so no further computation
is needed.



Thus, it is obtained that W = {0}, m1 = 1 for the equation L(y) = 0. Any
prolongation of the equation has the following Laurent solution:

y(z) = C+ O(x),

where C' is an arbitrary constant.
Consider the following prolongation of the operator L as one more example:

L=(-1+x+2%06%-20,
to = 3, t1 = tg = 2. The construction of the induced recurrent equation for L gives
up(n) = —n? —2n, u_1(n) = (n —1)2, u_a(n) = (n — 2)2.

All the subsequent u;(n) involve symbolic unspecified coefficients already, with u_3(n) =
a(n — 3)2 + b(n — 3), where a and b are such unspecified coefficients.

The computation of the solution coefficients for the possible valuation —2 is similar
to the computation for L, but for n = 0 we have —u_1(0)u—_1(—1) + u—_2(0) = —(0 —
1)2(=1-1)2+(0—2)% = 0, which means that the coefficient c_2 remains undetermined,
and correspondingly Laurent solutions with the valuation —2 exist for any prolongation
of L. The case (a) is faced here. It follows that ¢_1 = —u_j(—1)c o = —(—1 —
1)2¢c_o = —4c_o. The further computation is not needed, since n = 0 corresponding
to the maximal possible valuation is passed, with the expressions for the subsequent
solution coefficients being depended on the unspecified coefficient. So, any prolongation
of the equation L(y) = 0 has the following Laurent solution with the valuation —2:

= — =L 4+ C2+0(2),
xT xT

where C1, Cy are arbitrary constants.
We compute the solution coefficients for the second possible valuation 0, starting
from cg .
e n=20: up(0)co =0-co =0, the coefficient ¢y remains undetermined.
e n=1:up(l)er +u—1(1)co = —3c1 +0co = 0. It gives ¢ = 0.
e n=2 u(2)ca+u_1(2)c1 +u—2(2)co = —8ca+1c1 +0co =0. It gives c2 = 0.
e n=23: u(3)cstu—1(3)ca+u—23)c1+u—3(3)co =—15¢c3+4ca+1c1+0co =0.
It gives c3 = 0. Note, that c3 is happened to be computed in this case in spite
of the fact that u_3(n) involves unspecified coefficients already. It happens since
u—3(3) = 0 for any values of the unspecified coefficients.
The further computation is not needed, since n = 0 corresponding to the maximal
possible valuation is passed, with the expressions for the subsequent solution coefficients
being depended on the unspecified coefficient. So, any prolongation of the equation

i(y) = 0 has the following Laurent solution with the valuation 0:
C + O(z*).

Thus, it is obtained that W = {—2,0}, m1 = 1, ma = 4 for the equation L(y) = 0.
If we consider another prolongation of the operator L

L=(-1+z+2%)6%+(-2+a2)0,

to = 4, t1 = t2 = 2, then the similar computation gives that W = {0}, m1 = 4 for

the equation Z(y) = 0. Any prolongation of the equation has the following Laurent
solution: C' + O(z*). The case (c) is faced here, which leads to removing the possible
valuation —2.



Proposition 1 Let the values v1,...,vg, mi,...,myg be found by the proposed algo-
rithm for an equation L(y) = 0, where L has the form (1) and t; > dega;, i =
0,1,...,7. Let m be such a positive integer that m > m; for some 1 < i < k. Then
for L(y) = 0 there ezists a prolongation L(y) = 0 such that for some of its solutions
§(x) € K((x)), val§(z) = vs, the equality §(x) = y¢™= 1 (x) + O(x™) does not hold for
any solution y(z) € K((z)), valy(x) = v; of the equation L(y) = 0.

7. Implementation and usage examples

The algorithm is implemented as the procedure LaurentSolution in Maple environ-
ment. The procedure takes a differential equation as its first parameter. The application
of @% to the unknown function y(z) is specified as theta(y(x),x,k). The truncated co-
efficients of the equation are given as a;(z) + O(x*it1), where a;(z) is a polynomial of
the degree not greater than t;. The unknown function is given as the second parameter
of the procedure.

The procedure returns the list of the truncated Laurent solutions, which correspond
to valuations v; € W. Each element of the list is represented as

o @'+ cyp1aith 4 e 12T+ O(2 ™),

where v; € W is a valuation for which it is guaranteed that there exists Laurent solution
for any prolongation of the given equation; m; has the same meaning. Each c; is the
computed coefficient of Laurent solution, the coefficient might be a linear combination
of the arbitrary constants of the form cg.

Now consider two equations

sin(z) 0y — z cos(z)y =0 (7)
and
(exp(z) — 1) 0y — zexp(z) y = 0. (8)
Both the equations are represented as
(z+0(2?) 8y — (z + O(z?)) y = 0. 9)

We apply the implemented procedure to (9):
> eq := (x+t0(x~2))*(theta(y(x),x,1))-(x+0(x~2))*y(x);

eq = (z+0(?)) 0(y(x), 1) — (z + O(x?)) y(x)
> LaurentSolution(eq, y(x));
[z_c1 +O0(a?)]

The answer means that W = {1}, m; = 2.

Consider the prolongation of the equation (9) in accordance with (7). It gives the
prolongation of the truncated solution up to the degree 22 that corresponds to the series
expansion of the function sin(z), the function is the solution of (7):

> eql := (x+0(x~3))*(theta(y(x),x,1))-(x-x"3/2+0(x~4))*y(x);

3
eql := (z + O(xg)) 0(y(x),z,1) — (ZL“ - % + 0(954)) y(z)
> LaurentSolution(eql, y(x));

[z _c1 + O(z?)]



The answer also means that W = {1}, m; = 3.
Now consider the prolongation of the equation (9) in accordance with (8). It gives

the prolongation of the truncated solution up to the degree 22 that corresponds to the
series expansion of the function exp(z) — 1, the function is the solution of (8).
> eq2 := (x+x~2/2+0(x~3))*theta(y(x),x,1)- (x+x"2+x"3/2+0 (x~4))*y(x);

cai= (a2 +06") ) 0l 1) = (457 + 2 406" ) ole)

> LaurentSolution(eq2, y(x));
2

< .

{x_q +—+ O(m‘g)}
The answer also means that W = {1}, m; = 3.

All the solutions have only one valuation for which there is Laurent solution for any
prolongation of the equation.

Finally consider one more example of the procedure application to the equation that
corresponds to the operator L from Section 6.

> eq3 := (-1+x+x~2+0(x"3))*theta(y(x),x,2)+(-2+0(x"3)*theta(y(x),x,1)+
0(x~4)*y(x);

eq3 = (—1+x + 2%+ 0(2?)) 6(y(x), 2,2) + (—2 4 O(z?)) O(y(z), z, 1) + O(z*)y(=)
> LaurentSolution(eq3, y(x));

c1 4 c1

+ c2+0(z), c1+ 0(14)}

The answer means that W = {—2,0}, m; =1, ma = 4.
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