
Linear difference operators with coefficients in the form of infinite
sequences

©2021 S. A. Abramova,∗,1, M. A. Barkatoub,∗∗, M. Petkovšekc,∗∗∗,2

aDorodnicyn Computing Centre, Federal Research Center
“Computer Science and Control” of the Russian Academy of Sciences;

Vavilova str., 40, Moscow, 119333, Russia;
bUniversity of Limoges ; CNRS ; XLIM UMR 7252 ; MATHIS

123, Av. A. Thomas, 87060 Limoges cedex, France;
c University of Ljubljana, Faculty of Mathematics and Physics,

Jadranska 19, SI-1000 Ljubljana, Slovenia

∗e-mail: sergeyabramov@mail.ru
∗∗e-mail: moulay.barkatou@unilim.fr

∗∗∗e-mail: Marko.Petkovsek@fmf.uni-lj.si

Abstract

Some properties of linear difference operators whose coefficients
have the form of infinite two-sided sequences over a field of character-
istic zero are considered. In particular, it is found that such operators
are deprived of some properties that are natural for differential oper-
ators over differential fields. In addition, we discuss questions of the
decidability of certain problems arising in connection with the algo-
rithmic representation of infinite sequences.
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1 Introduction

The need to consider linear difference operators with coefficients in the form
of sequences (or equivalence classes of sequences) arises, in particular, in
connection with the universal Picard-Vessiot extensions of difference fields
[8, 5]. As has been noticed already in [4], one has to consider difference-ring
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extensions of difference fields. In the context of such extensions, questions
arise naturally about properties of operators with such coefficients.

In [5, Appx. A], it is found that some properties that are natural for
differential operators over differential fields ([9]) are not satisfied in the case
of difference operators over rings – in particular, over rings of sequences.
Additionally, we point out undecidability of a number of problems related to
linear difference operators with sequences as coefficients.

The rest of the paper is organized as follows. Sect. 2 contains some
preliminary information. In Sect. 3 we consider the question whether for
any m linearly independent sequences there exists an operator of order m
whose solution space is generated by these sequences. It is shown that for
any m there are m linearly independent sequences such that any operator
annihilating these sequences has an infinite-dimensional solution space. In
the same section it is shown that the space of solutions of the least common
left multiple of operators L1, L2 can be infinite-dimensional while the solution
spaces of L1 and L2 have finite dimension. The final Sect. 4 discusses the use
of computable sequences (for each such sequence, an algorithm is known that
computes elements from their indices) as operator coefficients. A number of
questions of decidability of certain problems arising in connection with the
algorithmic representation of infinite sequences is investigated: the problem
of testing invertibility of an operator, testing divisibility of one operator by
another, and testing existence of a nonzero common left multiple of two given
operators.

A preliminary version of this work was presented as [2].

2 Preliminaries

Below, R = QZ stands for the ring of two-sided sequences having rational-
number terms, with addition and multiplication defined termwise, and σ is
the shift automorphism on R acting by σc = d with d(k) = c(k + 1) for all
k ∈ Z. Clearly, the ring of constants of R is the field Q. By 1 we denote the
sequence in R all of whose terms are equal to 1. For k,m ∈ Z with m ≥ 1
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we define two-sided sequences δk, ωm ∈ R by

δk(n) =

{
1, n = k,

0, otherwise,

ωm(n) =

{
1, n ≡ m (mod m+ 1),

0, otherwise;

here δk(n) is the well-known Kronecker delta.
The ring R[σ] is the ring of linear difference operators with coefficients

in R. The order of L ∈ R[σ] denoted by ordL is the non-negative integer
equal to the degree of the (skew) polynomial L in σ (cf. [7, 3]); conventionally
ord 0 = −∞. For L ∈ R[σ], we denote the Q-linear space of all f ∈ R s.t.
L(f) = 0 by VL.

3 Dimension of solution spaces of operators

in R[σ]

3.1 A useful lemma

Lemma 1 Let m be a positive integer. The sequence ωm is such that if L
is an operator with ordL ≤ m, then the equality L(ωm) = 0 implies that
dimVL =∞.

Proof. Let L be of the form

L = am(n)σm + · · ·+ a1(n)σ + a0(n) ∈ R[σ].

If L(ωm) = 0 then for all n ∈ Z

0 =
m∑
i=0

ai(n)ωm(n+ i) =
m∑
i=0

ai(n)

{
1, n+ i ≡ m (mod m+ 1)

0, otherwise

=
m∑
i=0

{
ai(n), n ≡ m− i (mod m+ 1)

0, otherwise
= ain(n) (1)

where in is the unique i ∈ {0, 1, . . . ,m} such that n ≡ m − i (mod m + 1).
Hence for all n ∈ Z and i ∈ {0, 1, . . . ,m} we have the implication

n ≡ m− i (mod m+ 1) =⇒ ai(n) = 0.

3



Now let c(n) be an arbitrary sequence from R and g(n) ∈ R be the sequence
for which

g(n) =

{
c(n), n ≡ m (mod m+ 1),

0, otherwise.

Note that the set (parameterized by c(n) ∈ R) of all such g(n) is an infinite-
dimensional subspace of the Q-linear space R. Then by (1)

m∑
i=0

ai(n)g(n+ i) =
∑

0≤i≤m
n+i≡m (mod m+1)

ai(n)g(n+ i) = ain(n)g(n+ in) = 0,

so L(g) = 0 for all such g, implying that dim kerL =∞. �
Recall that in the differential case we can find a differential operator L

annihilating elements f1, . . . , fm of a differential field, such that the dimension
of the solution space of L is equal to the maximum number of elements
from among f1, ..., fm that are linearly independent over constants of the
differential field under consideration.

Example 1 Let m = 2. Then ω2(3k) = ω2(3k + 1) = 0, ω2(3k + 2) = 1 for
all k ∈ Z. If L = a2(n)σ2 + a1(n)σ + a0(n) annihilates ω2(n) then

a0(3k + 2) = a1(3k + 1) = a2(3k) = 0.

Such an operator L annihilates also any sequence gs(n) such that gs(3k) =
gs(3k + 1) = 0, gs(3k + 2) = ks. Note that sequences gs(n) for s ∈ Z are
linearly independent over the constants.

3.2 Annihilating operators in R[σ]

Proposition 1 For any positive integer m there exist f1, . . . , fm ∈ R such
that if for some L ∈ R[σ] with ordL ≤ m the equalities

L(fi) = 0

hold for i = 1, . . . ,m, then dimVL =∞.

Proof. This is a consequence of Lemma 1: Any f1, . . . , fm ∈ R such that
f1 = ωm possess the formulated property. �

The following example shows that there are other (but similar) ways for
constructing f1, . . . , fm beside the one used in the proof of Proposition 1.
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Example 2 Consider two sequences f1, f2 where

f1(4k) = 0, f1(4k + 1) = f1(4k + 2) = f1(4k + 3) = 1,

f2(4k + 1) = 0, f2(4k) = f2(4k + 2) = f2(4k + 3) = 1, k = 0,±1,±2, . . .

If L = a σ2 + b σ + c annihilates f1 and f2 then

b(4k) = c(4k) = −a(4k),

b(4k + 1) = −a(4k + 1), c(4k + 1) = 0,

a(4k + 2) = 0, c(4k + 2) = −b(4k + 2),

b(4k + 3) = −c(4k + 3) = a(4k + 3).

This implies that L(y) = 0 for any sequence y which satisfies

y(4k + 1) = y(2)− y(4k),

y(4k + 2) = y(4k + 3) = y(2),

while y(2), y(4k) can be arbitrary constants for all k.

Note that an even stronger form of the statement of Lemma 1 is possible:

Lemma 1∗ There exist sequences, say c, such that if an operator L an-
nihilates c then dimVL =∞.

Indeed, let c(n) be equal to 1 if n = k2 for some integer k, and 0 otherwise.
Using the same idea as in the proof of Lemma 1, it is possible to show that
if L(c) = 0, ordL = m, then L annihilates any sequence d such that the
inequality d(n) 6= 0 implies that n = k2, k >

√
m.

The general consideration is the following: Let ν be a sequence of positive
integers ν(0), ν(1), . . . such that ν(k+1)−ν(k) tends to infinity with k, e.g.,
ν(k) = k2 or ν(k) = 2k. Define c ∈ R by c(n) = 1 if ∃k≥1 : |n| = ν(k),
and c(n) = 0, otherwise. Then the distance between two consecutive 1’s
in c increases and tends to ∞, which is not the case for sequences ωm. –
Accordingly, the statement of Proposition 1 can be strengthened as well.

Recall that in the differential case we can find an operator L, ordL ≤ m,
annihilating given f1, . . . , fm such that the dimension of the solution space
of L is equal to the number of linearly independent elements from f1, . . . , fm.
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3.3 Least common left multiple of operators in R[σ]

Definition 1 We define lclm (L1, L2) as the set of all operators L such that

� L is not zero,

� L is a common left multiple of L1 and L2,

� there is no operator M such that M is not zero, M is a common left
multiple of L1 and L2, and ordM < ordL. �

Remark 1 It can happen that L does not belong to lclm (L,L). For ex-
ample, let L := aσ + 1, where a = ω1. Let f = σ(a). Then fa = 0, so
fL = faσ + f = f is a left multiple of L. Since ord f = 0 is the lowest
possible order for a nonzero operator, f belongs to lclm (L,L), but L itself
does not because ord L = 1. It is easy to see that L is invertible in R[σ] and
L−1 = −aσ+ 1 (since σ(a)a = aσ(a) = 0). This implies that 1 ∈ lclm (L,L).

Note that it is also possible that for two given operators L1, L2 ∈ R[σ],
their only common multiple is 0.

Example 3 Consider the following operators L1 and L2 of order zero: L1

is the sequence c = ω1, and L2 is the sequence d = σω1. Then their only
common multiple is the zero sequence.

Indeed, assume that M1L1 = M2L2 where M1 is an operator whose i-
th term is of the form aiσ

i, and M2 an operator whose i-th term is of the
form biσ

i where ai and bi are arbitrary sequences. Then the i-th term of
M1L1 = M1c is of the form ai(σ

ic)σi = ai(n)c(n + i)σi, and the i-th term
of M2L2 = M2d is of the form bi(σ

id)σi = bi(n)d(n + i)σi. For each i
and n, (exactly) one of c(n + i), d(n + i) is zero. If M1L1 = M2L2 then
ai(n)c(n + i) = bi(n)d(n + i) = 0 for all i and n, hence ai(σ

ic) = bi(σ
id) for

all i, therefore M1L1 = M2L2 = 0.

Proposition 2 There exist first-order operators L1, L2 such that

(i) dimVL1 = dimVL2 = 1,
(ii) there exists a second-order common multiple L of L1, L2,
(iii) for any common multiple A of L1, L2 such that ordA ≤ 2, the relation

dimVA =∞ holds.
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Proof. (i),(iii): Set

L1 = σ − b(n), L2 = σ − 1, (2)

where b(3k) = 1, b(3k + 1) = b(3k + 2) = −1. Then VL1 and VL2 are one-
dimensional: VL1 is generated by the sequence s(n) such that s(3k) = s(3k+
1) = −1, s(3k+2) = 1, while VL2 is generated by the sequence 1. If VL1 , VL2 ⊆
VA for some operator A, then VA contains f(n) = (s(n) + 1(n))/2 = ω2(n).
By Lemma 1, if ordA ≤ 2 then dimVA =∞. Thus, (i) and (iii) are proven.

(ii): It is easy to check that

((1− b(n))σ + b(n+ 1)− 1)L1 = ((1− b(n))σ + b(n)(b(n+ 1)− 1))L2. (3)

It is evident that each of the left- and right-hand sides of (3) is a non-zero
least common multiple of L1, L2. �As a consequence, we have that for
L ∈ lclm (L1, L2) the equality

VL = VL1 + VL2 (4)

does not hold in general.
Recall that in the differential case, when L1, L2 the operators over a differ-

ential field K the equality (4) holds if we consider solutions from the Picard-
Vessiot extension of K. Similarly, this holds also for the case of differen-
tial systems, see [1]. The equality (4) takes place in the scalar difference
case when the coefficients belong to a difference field possessing some special
properties [6].

Remark 2 The statement of Proposition 2 as well as its consequence that
the equality (4) is in general not satisfied, hold if one considers solutions
as sequences having their elements in any extension of the field Q. Indeed,
the leading and trailing coefficients of operators (2) do not vanish and so-
lution spaces of L1 and L2 are one-dimensional, while the solution space of
lclm (L1, L2) has infinite dimension.

4 On some undecidable problems

4.1 A consequence of a classical Turing’s result

Below, we prove undecidability of some problems related to the operators
having coefficients in R. The proofs are in general based on the consequence
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of classical Turing’s result on undecidability of the well-known halting prob-
lem [10]:

Let M be a set containing at least two elements and such that there is
an algorithm to test the equality of any two given elements from M . Then
there is no algorithm to answer the question whether a given computable
sequence (one-sided: c(0), c(1), . . . , or two-sided: . . . , c(−1), c(0), c(1), . . . )
is such that each of its elements is equal to a given u ∈M ; the same for the
case of a sequence having no element being equal to a given element of M .

4.2 Testing for invertibility and divisibility of opera-
tors in R[σ]

The problem of representing infinite sequences is an important one in com-
puter algebra. A general formula for the n-th element of a sequence is not
always available and may even not exist. Another way to represent a se-
quence is the algorithmic one, where a sequence is given by an algorithm
for computing its elements from their indices. We will call such sequences
computable. The algorithmic representation of a concrete sequence is not, of
course, unique. This non-uniqueness is one of the reasons for the undecid-
ability of the zero-testing problem for such computable sequences.

Lemma 2 Testing for an arbitrary computable sequence c ∈ R and a positive
integer r the truth of the statement

P(c, r) = ∃k∈Z, k≥0 ∀n∈Z : (c(n)c(n+ r)c(n+ 2r) · · · c(n+ kr) = 0 )

is algorithmically undecidable.

Proof. Define the sequence a(n) as follows. For n ≥ 0 we set

a(n) =


c(0) if n = 0,

0, if n > 0 and c(n) = 0,

a(n− 1), otherwise.

(5)

For n < 0 we set a(n) = 0. The condition that c is a computable sequence
implies that the sequence a is computable too. The sequence a is such that
if there is no zero element in

c(0), c(1), c(2), . . . (6)
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then ∀n∈Z,n≥0: a(n) 6= 0, hence also ∀n,k∈Z,n,k≥0: a(n)a(n+r) · · · a(n+kr) 6= 0.
On the other hand, if c(m) = 0 for some m ≥ 0, then we have

∀k≥dm
r
e, n∈Z: (a(n)a(n+ r) · · · a(n+ kr) = 0)

since the product a(n)a(n+ kr) is the zero sequence. Thus, P(a, r) is true if
and only if there is at least one zero element in (6).

If an algorithm A allows us to test for the truth of P for any sequence
from R and any positive integer r then using this algorithm we could test
for the existence of a zero element in a given sequence of the form (6): one
could apply A to the sequence

c̃(n) =

{
c(n) if n ≥ 0,

0, otherwise.

The sequence (6) has a zero element if and only if P(c̃, r) is true (r can be
an arbitrary positive integer). However testing for the existence of a zero
element in an arbitrary computable sequence is undecidable (see Sect. 4.1),
therefore A cannot exist. �

Proposition 3 Let r be a nonnegative integer. There exists no algorithm
for testing for an arbitrary L ∈ R[σ], ordL = r, whether L is invertible in
R[σ].

Proof. If r = 0 then L is a sequence from R. The sequence is invertible if
and only if the sequence does not contain zeros. There is no algorithm to
test this property.

Let r > 0. Consider the set of operators of the form

1− c(n)σr, (7)

where c ∈ R is such that c(0) = 1 and thus c is a nonzero sequence. The
order of each L of the form (7) is r. If the inverse L−1 for L exists then there
exists k ≥ 1 such that L−1 has the form

1+c(n)σr+c(n)c(n+r)σ2r+· · ·+c(n)c(n+r)c(n+2r) . . . c(n+(k−1)r)σ(k−1)r,

with
∀n∈Z : ( c(n)c(n+ r)c(n+ 2r) . . . c(n+ kr) = 0 ). (8)

Therefore, L of the form (7) is invertible if and only if (8) holds. So, if
we have an algorithm for testing invertibility then we can use it for testing
validity of (8). By Lemma 2, the problem is undecidable. �
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Remark 3 Let r be a nonnegative integer number. Then there exists an
invertible operator of order r in R[σ]. Indeed, if r = 0 then 1 · 1 = 1.
Otherwise, (1− δ0(n)σr)(1 + δ0(n)σr) = 1.

Proposition 4 Let s, r be nonnegative integer numbers. There exists no
algorithm for testing for arbitrary L1, L2 ∈ R[σ], ordL1 = s, ordL2 = r
whether L1 is right-divisible by L2 in R[σ] or not.

Proof. If such an algorithm existed then one could use it to test for
invertibility of a given L ∈ R[σ] of order r. Indeed, take any operator M of
order s, for example, M = σs. It is evident that L is invertible if and only if
M and M +1 are both right-divisible by L. So, if one can test for divisibility
then one can test for invertibility. But by Proposition 3, the latter problem
is undecidable. �

4.3 On testing for existence of a nonzero common mul-
tiple

Below, we discuss the problem of possibility or impossibility of algorithms
for testing for existence of a nonzero common multiple for given L1, L2 ∈ R.

Notice that the impossibility of a general algorithm for testing for exis-
tence of a common nonzero multiple can be proven easily by considering the
case of zero-order operators, i.e., the case of sequences.

Proposition 5 There is no algorithm for testing for existence of a non-zero
common multiple of two given sequences a, b ∈ R.

Proof. First, we prove that there is no algorithm for testing the relation

∀n∈Z : (a(n)b(n) = 0) (9)

for given computable sequences a, b. Indeed, if we had an algorithm for test-
ing this relation, this would make it possible to test algorithmically whether
the sequence a is identically zero. If we take b such that b(n) = 1 for all n,
then (9) holds if and only if a is identically zero.

Now we show that the problem of testing the existence of a nonzero
common multiple is undecidable even in the case of zero-order operators, i.e.
when the operators L1, L2 are some sequences a and b. It is easy to see that
a and b have a non-zero common multiple if and only if (9) does not hold. In
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fact, the proof of the absence of a non-zero common multiple in the case (9)
is similar to the proof from Example 3. If for some n the product a(n)b(n)
is not equal to zero, then a(n)b(n) is a non-zero common multiple. �

This implies that an algorithm for testing for existence of a non-zero
common multiple of given arbitrary operators L1, L2 is not possible. We will
prove a stronger statement:

Proposition 6 Let r, s be nonnegative integers. Then there is no algorithm
for testing the existence of a non-zero common multiple of given operators
L1, L2 ∈ R[σ] of the form

L1 = arσ
r + ar−1σ

r−1 + . . . , L2 = bsσ
s + bs−1σ

s−1 + . . . , (10)

with nonzero sequences ar, bs.

The proof is based on the following lemma.

Lemma 3 Let a, b be nonzero sequences and r, s nonnegative integer num-
bers, r ≥ s. Then aσr, bσs have a nonzero left common multiple if and only
if there exists an integer m such that

a(m) 6= 0, b(m+ r − s) 6= 0. (11)

Proof:
=⇒ : Let Uaσr = Wbσs where both sides are nonzero operators. Let

u = ordU , w = ordW . Clearly

u+ r = w + s. (12)

Let cσu and dσw be the leading terms of U and W , respectively. The nonzero
sequences c(n)a(n + u) and d(n)b(n + w) are equal. This implies that the
equality

c(n− u)a(n) = d(n− u)b(n+ w − u)

holds for all n. By (12), the latter equality can be represented as

c(n− u)a(n) = d(n− u)b(n+ r − s).

Since the left and right sides of the latter equality are nonzero sequences,
there exists an integer m such that

c(m− u)a(m) = d(m− u)b(m+ r − s) 6= 0.
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This implies that a(m) 6= 0, b(m+ r − s) 6= 0.
⇐= : If m exists then we set U := 1

a(m)
δm(n) and W :=

1
b(m+r−s)δm(n)σr−s. We obtain

Uaσr = Wbσs = δm(n)σr.

�
Proof of Proposition 6: First, we prove the following: Let t be a nonnegative
integer. There is no algorithm At for testing for arbitrary a, b ∈ R whether
there exists an m ∈ Z such that a(m)b(m+t) 6= 0. We show that if At existed
then one could use this algorithm for testing whether a given sequence

c = c(0), c(1), c(2), . . . (13)

at least one nonzero element. However, the latter problem is undecidable
(see Section 4.1), and this will imply nonexistence of At.

Let c be as in (13). We define two-sided sequences a and b as follows:

a(n) =

{
c(n), n ≥ 0,

0, n < 0,
, b(n) =

{
c(n− t), n ≥ t,

0, n < t.

Then

b(n+ t) =

{
c(n), n ≥ 0,

0, n < 0
, a(n)b(n+ t) =

{
c(n)2, n ≥ 0,

0, n < 0.

It follows that the two-sided sequence a(n)b(n+t) contains a nonzero element
iff the one-sided sequence c2 contains a nonzero element, and this is true iff
the one-sided sequence c contains a nonzero element.

The sequences a, b are computable and nonzero. It is easy to see that there
exists m ∈ Z such that a(m)b(m + t) 6= 0 if and only if c(m− 2) 6= 0. So, if
the algorithm At existed then for any sequence c one can test algorithmically
the existence of a nonzero element in c. But this problem is undecidable, as
it follows from the statement from Sect. 4.1. This implies that the algorithm
At does not exist for any nonnegative t. By Lemma 3 this means that the
statement of Proposition 6 holds. �
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5 Conclusion

Difference equations are the foundation on which modern numerical methods
are built. The article presents results which indicate that difference equations
with coefficients in the form of sequences are complicated objects that require
very careful handling.
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