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Abstract. We consider linear ordinary differential systems over a dif-
ferential field of characteristic 0. We prove that testing unimodularity
and computing the dimension of the solution space of an arbitrary sys-
tem can be done algorithmically if and only if the zero testing problem
in the ground differential field is algorithmically decidable. Moreover, we
consider full-rank systems whose coefficients are computable power series
and we show that, despite the fact that such a system has a basis of for-
mal exponential-logarithmic solutions involving only computable series,
there is no algorithm to construct such a basis.

1 Introduction

Linear ordinary differential systems with variable coefficients appear in various
areas of mathematics. Power series are very important objects in the represen-
tation of the solutions of such systems as well as of the systems themselves. The
representation of infinite series lies at the core of computer algebra. A general
formula that expresses the coefficients of a series is not always available and may
even not exist. One natural way to represent the series is the algorithmic one,
i.e., providing an algorithm which computes its coefficients. Such algorithmic
representation of a concrete series is not, of course, unique. This non-uniqueness
is one of the reasons for undecidability of the zero testing problem for such
computable series.

At first glance, it may seem that if we cannot decide algorithmically whether
a concrete coefficient of a system is zero or not, then we will not be able to solve
any more or less interesting problem related to the search of solutions. However,
this is not completely right: at least, if we know in advance that the system is of
full rank then some of the problems can still be solved. For example, we can find

� Supported in part by the Russian Foundation for Basic Research, project no. 13-01-
00182-a. The first author thanks also Department of Mathematics and Informatics
of XLIM Institute of Limoges University for the hospitality during his visits.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014



2 S.A. Abramov and M.A. Barkatou

Laurent series [3] and regular [6] solutions. Some non-trivial characteristics can be
computed as well, e.g., the so called “width” of the system [3]. Nevertheless, many
of the problems are undecidable. For example, we cannot answer algorithmically
the following question: does a given full-rank system with power series coefficients
have a formal exponential-logarithmic solution which is not regular?We prove this
undecidability in the present paper. It is also shown that if exponential-logarithmic
solutions of a given full-rank system exist then there exists a basis of the space of
those solutions such that all the series which appear in the elements of the basis are
computable; the exact formulation is given in Proposition 7 of this paper.

So, we know that there exists a basis of the solution space which consists
of computable objects, but we are not able to find this basis algorithmically.
This is analogous to some facts of constructive mathematical analysis. In fact,
the notion of a constructive real number (computable point) is fundamental
in that discipline: “... an algorithm which finds the zeros of any alternating,
continuous, computable function is impossible. At the same time, there cannot
be a computable function that assumes values of different signs at the ends of
a given interval and does not vanish at any computable point of this interval
(a priori, it is impossible to rule out the existence of computable alternating
functions whose zeros are all ‘noncomputable’). These results are due to Tseitin
[21] ...” ([14, p. 5], see also [16, §24]).

We prove in the same direction that testing unimodularity, i.e., the invertibil-
ity of the corresponding operator and computing the dimension of the solution
space of an arbitrary system can be done algorithmically if and only if the zero
testing problem in the ground differential field is algorithmically decidable. As
a consequence, these problems are undecidable when the coefficients are power
series or Laurent series which are represented by arbitrary algorithms.

If the algorithmic way of series representation is used then some of the prob-
lems related to linear ordinary systems are decidable while others are not. Note
that the above mentioned algorithms for finding Laurent series solutions and reg-
ular solutions are implemented in Maple [23]. The implementation is described
in [3,6] and, is available at http://www.ccas.ru/ca/doku.php/eg.

The rest of the paper is organized as follows: After stating some prelimi-
naries in Section 2, we give in Section 3 a review of some results related to
systems whose coefficients belong to a field K of characteristic zero. The field K
is supposed to be a constructive differential field, i.e., there exist algorithms for
the field operations, differentiation, and for zero testing. The problems that are
listed in Section 3 can be solved algorithmically. On the other hand, we show
in Section 4 that the same problems are algorithmically undecidable, if the field
K is semi-constructive, i.e., there exist algorithms for the field operations and
differentiation but there is no algorithm for zero testing. Finally, we consider in
Section 5 semi-constructive fields of computable formal Laurent series in the role
of coefficient field of systems of linear ordinary differential systems.

The results of this paper supplement known results on the zero testing problem
and some algorithmically undecidable problems related to differential equations
(see, e.g., [10], [13]).
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2 Preliminaries

The ring of m × m matrices with entries belonging to a ring R is denoted by
Matm(R). We use the notation [M ]i,∗ , 1 � i � m, for the 1×m-matrix which is
the ith row of an m×m-matrix M . The notation MT is used for the transpose
of a matrix (vector) M .

If F is a differential field with derivation ∂ then Const (F ) = {c ∈ F | ∂c = 0}
is the constant field of F .

2.1 Differential Universal and Adequate Field Extensions

Let K be a differential field of characteristic 0 with derivation ∂ =′.

Definition 1. An adequate differential extension Λ of K is a differential field
extension Λ of K such that any differential system

∂y = Ay, (1)

with A ∈ Matm(K) has a solution space of dimension m in Λm over Const (Λ).

If Const (K) is algebraically closed then there exists a unique (up to a dif-
ferential isomorphism) adequate differential extension Λ such that Const (Λ) =
Const (K) which is called the universal differential field extension of K [18,
Sect. 3.2]. For any differential field K of characteristic 0 there exists a differ-
ential extension whose constant field is algebraically closed. Indeed, this is the
algebraic closure K̄ with the derivation obtained by extending the derivation of
K in the natural way. In this case, Const (K̄) = Const (K) (see [18, Exercises
1.5, 2:(c),(d)]). Existence of the universal differential extension for K̄ implies
that there exists an adequate differential extension for K, i.e., for an arbitrary
differential field of characteristic zero.

In the sequel, we denote by Λ a fixed adequate differential extension of K,
and we suppose that the vector solutions of systems in the form (2) lie in Λm.

In addition to the first-order systems of the form (1), we also consider the
differential systems of arbitrary order r � 1. Each of these systems can be
represented, e.g., in the form

Ary
(r) +Ar−1y

(r−1) + · · ·+A0y = 0, (2)

where the matrices A0, A1, . . . , Ar belong to Matm(K), m � 1, and Ar (the
leading matrix of the system) is non-zero. The system (2) can be written as
L(y) = 0 where

L = Ar∂
r +Ar−1∂

r−1 + · · ·+A0. (3)

The number r is the order of L (we write r = ordL). The operator (3) can be
alternatively represented as a matrix in Matm(K[∂]):

⎛
⎝
L11 . . . L1m

. . . . . . . . .
Lm1 . . . Lmm

⎞
⎠ , (4)
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Lij ∈ K [∂], i, j = 1, . . . ,m, with maxi,j ordLij = r. We say that the operator
L ∈ Matm(K [∂]) (as well as the system L(y) = 0) is of full rank, if the rows
(Li1, . . . , Lim), i = 1, . . . ,m, of matrix (4) are linearly independent over K [∂].
The matrix Ar is the leading matrix of both the system L(y) = 0 and operator
L, regardless of representation form.

2.2 Universal Differential Extension of Formal Laurent Series Field

Let K0 be a subfield of the complex number field C and K be the field K0((x))
of formal Laurent series with coefficients in K0, equipped with the derivation
∂ = d

dx . As it is well known [20, Sect. 110], if K0 is algebraically closed then the
universal differential field extension Λ is the quotient field of the ring generated
by expressions of the form

eP (x)xγ(ψ0 + ψ1 lnx+ · · ·+ ψs(lnx)
s), (5)

where in any such expression

– P (x) ∈ K0[x
−1/q], q is a positive integer,

– γ ∈ K0,

– s is a non-negative integer and

ψj ∈ K0[[x
1/q ]], (6)

j = 0, 1, . . . , s.

In fact, system (1) has m linearly independent solutions b1(x), . . . , bm(x) such
that

bi(x) = ePi(x)xγiΨi(x), (7)

where the factor ePi(x)xγi is common for all components of bi, and

γi ∈K0, qi is a positive integer, Pi(x) ∈ K0[x
−1/qi ], Ψi(x) ∈ Km

0 [[x1/qi ]][ln x],

i = 1, . . . ,m.

Definition 2. Solutions of the form (7) will be called (formal) exponential-log-
arithmic solutions. If q = 1 and P (x) = 0 then the solutions (7) are called
regular.

Remark 1. If K0 is not algebraically closed then there exists a simple algebraic
extension K1 of K0 (specific for each system) such that system (1) has m linearly
independent solutions of the form (7) with γi ∈ K1, Pi(x) ∈ K1[x

−1/qi ], Ψi(x) ∈
Km

1 [[x1/qi ]][lnx], i = 1, . . . ,m.
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2.3 Row Frontal Matrix and Row Order

Let a full-rank operator L ∈ Matm(K[∂]) be of the form (3). If 1 � i � m then
define αi(L) as the biggest integer k, 0 � k � r, such that [Ak]i,∗ is a nonzero
row. The matrix M ∈ Matm(K) such that [M ]i,∗ = [Aαi(L)]i,∗, i = 1, . . . ,m, is
the row frontal matrix of L. The vector (α1(L), . . . , αm(L)) is the row order of L.
We will write simply (α1, . . . , αm), when it is clear which operator is considered.

Definition 3. An operator U ∈ Matm(K[∂]) is unimodular (or invertible) if
there exists Ū ∈ Matm(K[∂]) such that ŪU = UŪ = Im. An operator in
Matm(K[∂]) is row reduced if its row frontal matrix is invertible.

The following proposition is a consequence of [9, Thm. 2.2]:

Proposition 1. Let L ∈ Matm(K [∂]) then there exist U, L̆ ∈ Matm(K [∂]) such
that U is unimodular and L̆ defined by

L̆ = UL (8)

and represented in the form (4), has k zero rows, where 0 � k � m, and the row
frontal matrix of L̆ is of rank m − k over K. The operator L is of full rank if
and only if k = 0, and in this case the operator L̆ in (8) is row reduced.

We will say that the system (2) is unimodular whenever the corresponding
matrix (4) is.

3 When K Is a Constructive Field

Definition 4. A ring (field) K is said to be constructive if there exist algorithms
for performing the ring (field) operations and an algorithm for zero testing in K

This definition is close to the definition of an explicit field given in [11].

Suppose that K is a constructive field. Then the proof of the already men-
tioned theorem [9, Thm. 2.2] gives an algorithm for constructing U, L̆. We will
refer to this algorithm as RR (Row-Reduction).

3.1 The Dimension of the Solution Space of a Given Full Rank
System

Proposition 2. ([1]) Let L ∈ Matm(K [∂]) be row reduced, and denote by α =
(α1, . . . , αm) its row order. Then the dimension of its solution space VL is given
by: dimVL =

∑m
i=1 αi.

Hence, when the field K is constructive we can apply algorithm RR, and
compute, by Proposition 2, the dimension of the solution space of a given full-
rank system.

Note that in the case when K is the field of rational functions of x over a field
of characteristic zero with ∂ = d

dx , some inequalities close to the formula given
in Proposition 2 can be derived from the results of [12].
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3.2 Recognizing the Unimodularity of an Operator and Computing
the Inverse Operator

The following property of unimodular operators is a direct result of Proposition
2.

Proposition 3. [2] Let L ∈ Matm(K [∂]) be of full rank. Then L is unimodular
if and only if dimVL = 0. Moreover, in the case when the row frontal matrix of
L is invertible, L is unimodular if and only if ordL = 0.

Algorithm RR allows one to compute a unimodular U ∈ Matm(K [∂]) such
that the operator L̆ = UL has an invertible row frontal matrix. Proposition 3
implies that L is unimodular if and only if L̆ is an invertible matrix in Matm(K).
In this case (L̆)−1UL = Im, i.e., (L̆)−1U is the inverse of L. Hence the following
proposition holds (taking into account Proposition 1, we need not assume that
L is of full rank):

Proposition 4. Let K be constructive and L ∈ Matm(K [∂]). One can recognize
algorithmically whether L is unimodular or not, and compute the inverse operator
if it is.

4 When the Zero Testing Problem in K Is Undecidable

It is easy to see that if the zero testing problem in K is undecidable then the
problem of recognizing whether a given L ∈ Matm(K [∂]) is of full rank is unde-
cidable. Indeed, let u ∈ K, then the operator

L =

(
u∂ ∂
0 1

)
=

(
u 1
0 0

)
∂ +

(
0 0
0 1

)

is of full rank if and only if u �= 0, and any algorithm to recognize whether a
given L ∈ Matm(K [∂]) is of full rank can be used for zero testing in K.

Furthermore, it turns out that if the zero testing problem in K is undecidable
then even with a prior knowledge that operators under consideration are of full
rank, many questions about those operators remain undecidable.

Proposition 5. Let the zero testing problem in K be undecidable. Then for
m � 2 the following problems about a full-rank operator L ∈ Matm(K [∂]) are
undecidable:

(a) computing dimVL,
(b) testing unimodularity of L.

Proof. (a) Let u ∈ K and

L =

(
u∂ + 1 ∂

0 1

)
=

(
u 1
0 0

)
∂ +

(
1 0
0 1

)
. (9)

If u = 0 then L is unimodular:
(
1 ∂
0 1

)−1

=

(
1 −∂
0 1

)
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and, therefore, dimVL = 0. If u �= 0 then dimVL = 1 by Proposition 2. We have

dimVL =

{
0 if u = 0,
1 if u �= 0.

This implies that if we have an algorithm for computing the dimension then we
have an algorithm for the zero testing problem.

(b) As we have seen the operator L of the form (9) is unimodular if and only
if u = 0.

As a consequence of Propositions 4, 5 we have the following:

Testing unimodularity and determining the dimension of the solution space of
an arbitrary full-rank system can be done algorithmically if and only if the zero
testing problem in K can be solved algorithmically.

One of the general causes of difficulties in the zero testing problem in K may
be associated with non-uniqueness of representation of the elements of K [11,
Sect. 2]. This is illustrated in Section 5.1.

5 Computable Power Series

5.1 Semi-constructive Fields

Let K be the field K0((x)) where K0 is a constructive field of characteristic
0. The field K contains the set K|c of computable series, whose sequences of
coefficients can be represented algorithmically. That is to say that for each series
a(x) ∈ K|c there exists an algorithm Ξa to compute the coefficient ai ∈ K0

for a given i; arbitrary algorithms which are applicable to integer numbers and
return elements of K0 are allowed. For this set to be considered as a constructive
differential subfield of K, it would be necessary to define algorithmically on K|c
the field operations of the field K, the unary operation d

dx , and a zero testing
algorithm as well. However, in accordance with the classical results of Turing
[22], we are not able to solve algorithmically the zero testing problem in K|c.
As mentioned in Section 4, the undecidability of the zero testing problem is
quite often associated with the fact that the elements of the field (or ring) under
consideration can be represented in various ways, and for some of which the test
is evident while for the others is not. This holds for K|c as well.

Remark 2. The field K|c is smaller than the field K because not every sequence
of coefficients can be represented algorithmically. Indeed, the set of elements of
K|c is countable (each of the algorithms is a finite word in some fixed alphabet)
while the cardinality of the set of elements of K is uncountable.

If the only information we possess about the elements of K|c is an algorithm
to compute their coefficients then the problem of finding the valuation of a
given a(x) ∈ K|c, val a(x), is undecidable even in the case when it is known
in advance that a(x) is not the zero series. This implies that when we work
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with elements of K|c, i.e., with computable Laurent series, we cannot compute
a−1(x) for a given non-zero a(x) ∈ K|c, since the coefficient of x−1 of the
series a′(x)a−1(x) ∈ K|c is equal to val a(x), i.e., is equal to the value that
we are not able to find algorithmically knowing only Ξa. This means that a
suitable representation has to contain some additional information besides a
corresponding algorithm. The value vala(x) cannot close the gap, since we have
no algorithm to compute the valuation of the sum of two series. However, we
can use a lower bound of the valuation instead: observe that if we know that a
series a(x) is non-zero then using a valuation lower bound we can compute the
exact value of val a(x). Thus, we can use as the representation of a(x) ∈ K|c a
pair of the form

(Ξa, μa), (10)

where Ξa is an algorithm for computing the coefficient ai ∈ K0 for a given i, and
the integer μa is a lower bound for the valuation of a(x). A computable Laurent
series a(x), represented by a pair of the form (10) is equal to

∑∞
i=μa

Ξa(i)x
i.

Of course, there exist other ways to represent computable Laurent series. For
example, one can use a pair (Ξa, pa(x)), where the algorithm Ξa represents a
power series that is the regular part of a(x) while pa(x) ∈ K0[x

−1] represents
explicitly its singular part. We can also represent each Laurent series as a fraction
of two power series (the latter are represented algorithmically, this is possible as
the field of Laurent series is the quotient field of the ring of power series). So a
Laurent series can be represented as a couple (a(x), b(x)) of power series with
b(x) nonzero.

We can define the field structure on K|c: all field operations can be performed
algorithmically. Since we do not have an algorithm for solving the zero testing
problem in K|c, we use for K|c the term “semi-constructive field” instead.

Definition 5. A ring (field) is semi-constructive if there are algorithms to per-
form the ring (field) operations, but there exists no algorithm to solve the zero
testing problem.

Observe that if the standard representation form is used for rational functions,
i.e., for elements in K0(x), then the field K0(x) is constructive.

Remark 3. Consider for the ring R = K0[[x]] its semi-constructive sub-ring
R|c of computable power series. In this case we do not need to include a lower
bound for the valuation into a representation of a series a(x) ∈ R|c, since 0 is
such a bound.

5.2 Systems with Computable Power Series Coefficients

Below we suppose thatK0 is a constructive field of characteristic 0,K = K0((x)),
R = K0[[x]], and

K|c, R|c
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are a semi-constructive field and, resp., a semi-constructive ring as in Section
5.1. We will consider systems of the form

L(y) = 0, L ∈ Matm

(
R|c

[
d

dx

])
. (11)

It follows from Proposition 5 that the problems (a) and (b) listed in that
proposition are undecidable if L is as in (11). At first glance, it seems that such
undecidability is mostly caused by the inability to distinguish zero and nonzero
coefficients of operators and systems. However, even if we know in advance which
of the coefficients of an operator L are null, we, nevertheless, cannot solve prob-
lems (a) and (b) of Proposition 5 algorithmically. Let u(x) ∈ R|c and

L =

(
(u(x)x+ 1) d

dx + 1 d
dx

1 1

)
=

(
u(x)x+ 1 1

0 0

)
d

dx
+

(
1 0
1 1

)
.

For such an operator, we know in advance which of its coefficients are equal to
zero, but we do not know whether the power series u(x) is equal to zero. It is
easy to see that

dimVL =

{
0 if u(x) = 0,
1 if u(x) �= 0.

5.3 On Formal Exponential-Logarithmic Solutions

In [3,6], it was proven that the problems of existence of Laurent series solutions
and regular solutions (see Definition 2) for a given system (11) are decidable. A
regular solution has the form xγw(x), where γ ∈ K̄0, and w(x) ∈ K̄0((x))

m[lnx];
in the context of [6], w(x) ∈ (

K̄0((x))|c
)m

[lnx]. In those papers, it was proven
also that if non-zero Laurent series or regular solutions exist then we can con-
struct them, i.e., find a lower bound for valuations of all involved Laurent series
as well as any number of terms of the series; for regular solutions we also find the
corresponding values of γ, the degrees of polynomials in lnx etc. It was shown
also that instead of K̄0 which is the algebraic closure ofK0 some simple algebraic
extension K1 of K0 may be used.

Remark 4. The power series which appear in [3,6] as coefficients of a given
system can be represented not only by algorithms as described above but also as
“black boxes”, i.e., by procedures of unknown internal form.

Proposition 6. Let m be an integer, m � 2, and K0 be a constructive subfield
of C. Then for a given full-rank system of the form (11),

(i) the question whether nonzero Laurent series solutions exist as well as the
question whether nonzero regular solutions exist are algorithmically decidable;

(ii) the question whether nonzero formal exponential-logarithmic solutions ex-
ist is algorithmically undecidable;

(iii) the question whether nonzero formal exponential-logarithmic solutions
which are not regular solutions exist is algorithmically undecidable.
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Proof. (i) This follows from [3,6], as it was explained in the beginning of this
section.

(ii) A given L is unimodular if and only if the system (11) has no non-zero
formal exponential-logarithmic solution, and the claim follows from Proposition
5 (problem (b)).

(iii) A full-rank operator L is evidently unimodular if and only if it has no
regular solution and no exponential-logarithmic solution which is not regular. By
(i), we can test whether the system L(y) = 0 has no regular solution. Thus, if
we are able to test whether this system has no exponential-logarithmic solution
which is not regular then we can test whether L is unimodular or not. However,
this is an undecidable problem by Proposition 5 (problem (b)).

Proposition 7. Let m be an integer number,m � 2, K0 be a constructive subset
of C. Let L(y) = 0 be a full-rank system of the form (11), and d = dimVL. Then
VL has a basis b1(x), . . . , bd(x) consisting of exponential-logarithmic solutions
such that any Ψi(x) from (7) is of the form Ψi(x) = Φi(x

1/qi ) where qi is a
non-negative integer,

Φi(x) ∈ ((K1[[x]]) |c)m [lnx], (12)

and K1 is a simple algebraic extension of K0. In addition to (12), γi ∈ K1,
Pi(x) ∈ K1[x

−1/qi ], i = 1, . . . , d.

Proof. It follows from, e.g., [4,5,8], that for any operator L of full rank there
exists an operator F such that the leading matrix of FL is invertible. The system
FL(y) = 0 is equivalent to a first order system of the form y′ = Ay, A ∈
Matms(K((x))), s = ordFL. It is known ([7]) that for a first-order system
there exists a simple algebraic extension K1 of K0 such that those γi and the
coefficients of Pi(x) which appear in its solutions of the form (7), belong to K1.
The field K1 is constructive since K0 is. Obviously, qi ∈ N.

The substitution
x = tqi , y(tqi) = z(t)ePi(t

qi ),

Pi(t
qi) ∈ K1[1/t], into the original system L(y) = 0 transforms it into a full-rank

system which can be represented as

L̃(z) = 0, L̃ ∈ Matm

(
(K1[[t]])|c

[
d

dt

])
.

The Laurent series that appear in the regular solutions of this new system can
be taken to be computable, as it follows from [3,6] (see the beginning of this
section).

Thus, the series that appear in the representation of solutions are computable
(Proposition 7), but we cannot find them algorithmically (Proposition 6). In fact,
Proposition 7 guarantees existence. However, the operator F mentioned therein
cannot be constructed algorithmically.

Remark 5. In the case of first-order systems of the form (1), the questions
formulated in Proposition 6(ii, iii) are decidable. This follows from the fact that
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for constructing exponential-logarithmic solutions of a system of this form one
needs only a finite number of terms of the entries (which are Laurent series) of
A, and the number of those terms can be computed in advance ([15,7,17]). This
holds also for higher-order systems whose leading matrices are invertible.

It is proven ([19]) that if the dimension d of the space of exponential-logarith-
mic solutions is known in advance then the basis b1, . . . , bd which is mentioned in
Proposition 7 can be constructed algorithmically. The corresponding algorithm
is implemented in Maple.

As we see, if the algorithmic representation of series is used and if arbitrary
algorithms representing series are admitted then some of the problems related to
linear ordinary differential systems are decidable, while others are not. There is
a subtle border between them, and a careful formulation of each of the problems
under consideration is absolutely necessary. A small change in the formulation
of a decidable problem can transform it into an undecidable one, and vice versa.

Acknowledgments. The authors are thankful to S. Maddah, M. Petkovšek, A.
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