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Abstract. Systems of linear ordinary differential equations of arbitrary
orders of full rank are considered. We study the change in the dimension
of the solution space that occurs while differentiating one of the equa-
tions. Basing on this, we show a way to compute the dimension of the
solution space of a given full rank system. In addition, we show how the
change in the dimension can be used to estimate the number of steps of
some algorithms to convert a given full rank system into an appropriate
form.

1 Introduction

Given a system of linear homogeneous differential equations with the coefficients
from some “functional” field. Suppose we differentiate one of its equations. What
would then happen to the solution space of the system? Would it remain un-
changed or would we always get some extra solutions?

In the scalar case, when we differentiate equation L(y) = 0, the resulting
equation (L(y))′ = 0 has a larger order than the original one. Let the coefficients
of the equations belong to some differential field K, and the solutions be in some
“functional” space Λ. If K and Λ are such that every equation of order m has
a solution space of dimension m then equation (L(y))′ = 0 has more solutions
than equation L(y) = 0.

For the systems of linear ordinary differential equations the problem is not as
simple as for scalar equations. Indeed, the solution space of a system of equations
is the intersection of the solution spaces of all the equations of the system. Thus,
the fact the solution spaces of the individual equations becomes larger does not
imply that their intersection becomes larger too.
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In the present paper we prove that differentiating one of the equations in a full
rank system, one increases the dimension of the solution space by one (Section
3). In Section 4 some applications of this are discussed.

In Appendix the difference case is briefly considered.

2 Preliminaries

The ring of m×m matrices with entries in a ring R is denoted by Matm(R). By
Im we denote the identity matrix of order m. The notation MT is used for the
transpose of a matrix (vector) M .

Let (K, ∂), ∂ =′, be a differential field of characteristic 0 with an algebraically
closed constant field Const(K) = {c ∈ K | ∂c = 0}. We denote by Λ a fixed
universal differential extension field ofK (see [9, Sect. 3.2]). This is a differential
extension Λ of K with Const(Λ) = Const(K) such that any differential system

∂y = Ay, (1)

with A ∈ Matm(K) has a solution space of dimension m over the constants.
If, e.g.,K is a subfield of the fieldC((x)) of formal Laurent series with complex

coefficients with ∂ = d
dx then we can consider Λ as the quotient field of the ring

generated by expressions of form eP (x)xγ(ψ0+ψ1 log x+ · · ·+ψs(log x)
s), where

in any such expression

– P (x) is a polynomial in x−1/p, where p is a positive integer,
– γ ∈ C,
– s is a non-negative integer and ψi ∈ C[[x1/p]], i = 0, 1, . . . , s.

Besides first-order systems of form (1) we will consider differential systems of
order r � 1 which have the form

Ary
(r) +Ar−1y

(r−1) + · · ·+A0y = 0. (2)

The coefficient matrices
A0, A1, . . . , Ar (3)

belong to Matm(K), and Ar (the leading matrix of the system) is non-zero.

Remark 1. If Ar is invertible in Matm(K) then the system (2) is equivalent to
the first order system having mr equations: Y ′ = AY , with

A =

⎛
⎜⎜⎜⎝

0 Im . . . 0
...

...
. . .

...
0 0 . . . Im
Â0 Â1 . . . Âr−1

⎞
⎟⎟⎟⎠ , (4)

where Âk = −A−1
r Ak, k = 0, 1, . . . , r − 1, and

Y =
(
y1 . . . , ym, y

′
1 . . . , y

′
m, . . . , y

(r−1)
1 , . . . , y(r−1)

m

)T

. (5)

Therefore if the leading matrix of the system (2) is invertible then the dimension
of the solution space of this system is equal to mr.
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Denote the ring Matm(K [∂]) by Dm. System (2) can be written as L(y) = 0
where

L = Ar∂
r +Ar−1∂

r−1 + · · ·+A0 ∈ Dm. (6)

System (2) can be also written as a system of m scalar linear equations

L1(y1, . . . , ym) = 0, . . . , Lm(y1, . . . , ym) = 0, (7)

with

Li(y1, . . . , ym) =

m∑
j=1

lij(yj), lij ∈ K [∂] , i, j = 1, . . . ,m, max
i,j

ord lij = r.

(8)
When a system is represented in form (7) we can rewrite it in form (2) and
vice versa. The matrix Ar is the leading matrix of the system regardless of
representation form. We suppose also that the system is of full rank, i.e., that
equations (7) are independent over K [∂], in other words the rows

�i = (li1, . . . , lim), (9)

i = 1, . . . ,m, are linearly independent over K [∂]. We say that an operator
L ∈ Dm is of full rank if the system L(y) = 0 is. The leading matrix of L is the
leading matrix of the system L(y) = 0.

3 Differentiating of an Equation of a Full Rank System

3.1 Formulation of the Main Theorem

Our nearest purpose is to prove the following theorem:

Theorem 1. Let a system of the form (7) be of full rank. Let the system

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0, L̃m(y1, . . . , ym) = 0, (10)

be such that its first m − 1 equations are as in the system (7) while the m-th
equation is the result of differenting of the m-th equation of (7), thus the equation
L̃m(y1, . . . , ym) = 0 is equivalent to the equation (Lm(y1, . . . , ym))′ = 0. Then
the dimension of the solution space of (10) exceeds by 1 the dimension of the
solution space of (7).

To prove this theorem we consider first the case when a given system has an
invertible leading matrix (in this case the system is certainly of full rank). After
this we consider the general case of a system of full rank.

The set of solutions of (10) coincides with the union of the set of solutions of
all the systems

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0, Lm(y1, . . . , ym) = c, (11)
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when c runs through the set of constants of Λ (any constant c specifies a system).
Note that the fact that the dimension of the solution space of (10) does not
exceed the dimension of the solution space of (7) more than by 1 is trivial: if
c1, c2 are constants and ϕ, ψ ∈ Λm are solutions of the system (11) with c = c1,
resp. c = c2, then c2ϕ − c1ψ is a solution of (7). Thus it is sufficient to prove
simply that the differentiation increases the dimension of the solution space of
a full rank system.

It is also trivial that if (7) is of full rank then (10) is also of full rank. Going
back to (8), (9), let �̃m = ∂lm = (l̃m1, . . . , l̃mm). If u1, . . . , um ∈ K [∂] are such
that u1�1+ · · ·+um−1�m−1+um�̃m = 0 then v1�1+ · · ·+ vm−1�m−1+ vm�m = 0
where v1 = u1, . . . , vm−1 = um−1, vm = um∂, and if ui �= 0, 0 � i � m, then
vi �= 0.

3.2 Invertible Leading Matrix Case

Lemma 1. Let the leading matrix of (7) be invertible. Then the dimension of
the solution space of (10) is larger than the dimension of the solution space of
(7).

Proof. Together with the union of the set of solutions of all the systems (11)
when c runs through the set of constants of Λ, we consider the system

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0,

Lm(y1, . . . , ym) = ym+1, y′m+1 = 0. (12)

Observe that the system (12) is equivalent to the system Ỹ ′ = ÃỸ where the
matrix Ã ∈ Matrm+1(K) is obtained from the matrix (4) by adding the last row
of zeros and the last column (0, . . . , 0, 1, 0)T . The column vector Ỹ is obtained
from Y (see (5)) by adding ym+1 as the last component. The dimension of the
solution space of Ỹ ′ = ÃỸ is equal to mr+1, while the dimension of the solution
space of the original system is equal to mr (Remark 1).

Therefore the system (12) has a solution (ỹ1, . . . , ỹm, ỹm+1) with ỹm+1 �= 0.
Evidently (ỹ1, . . . , ỹm) is a solution of (11) with c = ỹm+1 �= 0, but (ỹ1, . . . , ỹm)
is not a solution of (7) since Lm(ỹ1, . . . , ỹm) �= 0. The claim follows.

Thus the dimension of the solution space of (10) is equal to mr + 1. This
proves the Theorem 1 in the case when the given system has an invertible leading
matrix.

3.3 General Case of a System of Full Rank

In [2] the following proposition has been proved:

Proposition 1. Let L be a full rank operator of the form (6). Then there exists
N ∈ Dm such that the leading matrix of LN is invertible. (In addition, N can
be taken such that LN is of order r).
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Using Lemma 1 and Proposition 1 we can complete the proof of Theorem 1.
Let a given system of the form (2) be represented as L(y) = 0 where L is as in
(6). If the leading matrix Ar of L is invertible then the statement of the theorem
follows from Lemma 1. Otherwise let N be an operator such that the leading
matrix of LN is invertible (Proposition 1). Set

D =

⎛
⎜⎜⎜⎝

0 . . . 0 0
...
. . .

...
...

0 . . . 0 0
0 . . . 0 1

⎞
⎟⎟⎟⎠ ∂ +

⎛
⎜⎜⎜⎝

1 . . . 0 0
...
. . .

...
...

0 . . . 1 0
0 . . . 0 0

⎞
⎟⎟⎟⎠ , (13)

D ∈ Dm.
By Lemma 1 the dimension of the solution space of the system DLN(y) = 0

is larger than the dimension of the solution space of the system LN(y) = 0. This
implies that there exists ϕ ∈ Λm such that N(ϕ) is a solution of the system
DL(y) = 0 but is not a solution of L(y) = 0. In turn this implies that the
dimension of the solution space of the system DL(y) = 0 is larger than the
dimension of the solution space of the system L(y) = 0. Theorem 1 is proved.

Remark 2. Theorem 1 is valid for the case of a full rank inhomogeneous system
as well. That is a system of the form L(y) = b, with L ∈ Dm of full rank and
b ∈ K

m
. First of all note that this system has at least one solution in Λm since

by adding to y an (m+1)-st component with value 1, one can transform the given
system into a homogeneous system with a matrix belonging to Matm+1(K). The
set of solutions in Λm of L(y) = b is an affine space over the Const(Λ) and is
given by VL+ f where VL ⊂ Λm is the solution space of the homogeneous system
L(y) = 0 and f ∈ Λm is a particular solution of L(y) = b. When we differentiate
the m-th equation of the system L(y) = b we get a new system L̃(y) = b̃ where
the operator L̃ corresponds to system (10). By Theorem 1 dim VL̃ = dim VL +1.

4 Some Applications

4.1 The Dimension of the Solution Space of a Given Full Rank
System

By Remark 1, if the leading matrix of the system (2) is invertible then the
dimension of the solution space of this system is equal to mr. How to find the
dimension of the solution space in the general case?

We use the notation
[M ]i,∗ , 1 � i � m,

for the (1×m)-matrix which is the i-th row of an (m×m)-matrix M . Let a full
rank operator L ∈ Dm be of the form (6). If 1 � i � m then define αi(L) as the
maximal integer k, 1 � k � r, such that [Ak]i,∗ is a nonzero row. The matrix
M ∈ Matm(K) such that [M ]i,∗ = [Aαi(L)]i,∗, i = 1, 2, . . . ,m, is the row frontal
matrix of L.
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Theorem 2. Let the row frontal matrix of a full rank system L(y) = 0, L ∈
Dm, be invertible. Then the dimension of the solution space of this system is∑m

i=1 αi(L).

Proof. It follows directly from Theorem 1: when we differentiate r−αi(L) times
the i-th equation of the given system, i = 1, 2, . . . ,m, we increase the dimension
of the solution space by mr−∑m

i=1 αi(L), and the received full rank system has
the leading matrix which coincides with the row frontal matrix of the original
system, therefore the obtained system has an invertible leading matrix and the
dimension of its solution space is equal to mr.

In [6,7] algorithms to convert a given full rank system into an equivalent sys-
tem having an invertible row frontal matrix were proposed. It is supposed that
the field K is constructive, in particular that there exists a procedure for recog-
nizing whether a given element of K is equal to 0. Therefore in such situations
we are able to compute the dimension of the solution space of a given full rank
system.

4.2 Faster Computation of l-Embracing Systems

Suppose that K = K(x), ∂ = d
dx , where K is a field of characteristic zero such

that each of its elements is a constant. For any system S of the form (2) the
algorithm EGδ ([4,5]) constructs an l-embracing system S̄:

Ār(x)y
(r)(x) + · · ·+ Ā1(x)y

′(x) + Ā0(x)y(x) = 0,

of the same form, but with the leading matrix Ār(x) being invertible, and with
the solution space containing all the solutions of S. EGδ is used for finding a
finite super-set of the set of singular points of solutions of the given system.

First we describe briefly the algorithm EGδ, and then discuss its improvement
which is due to Theorem 1.

Let the i-th row of the matrix As(x), 0 � s � r, be nonzero and the i-th
rows of the matrices As−1(x), As−2(x), . . . , A0(x) be zero. Let the t-th entry,
1 � t � m, be the last nonzero entry of the i-th row of As(x). Then, the number
(r − s) · m + t is called the length of the i-th equation of the system, and the
entry of matrix As(x) having indices i, t is called the last nonzero coefficient of
the i-th equation of the system.

Algorithm EGδ is based on alternation of reductions and differential shifts.
Let us explain how the reduction works. It is checked whether the rows of the
leading matrix are linearly dependent over K(x). If they are, coefficients of the
dependence v1(x), v2(x), . . . , vm(x) ∈ K[x] are found. From the equations of
the system corresponding to nonzero coefficients, we select the equation of the
greatest length. Let it be the i-th equation. This equation is replaced by the
linear combination of the equations with the coefficients v1(x), v2(x), . . . , vm(x).
As a result, the i-th row of the leading matrix vanishes. This step is called
reduction (the reduction does not increase lengths of the equations).
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Let the i-th row of the leading matrix be zero, and let a(x) be the last nonzero
coefficient of the i-th equation. Let us divide this equation by a(x), differentiate
it, and clear the denominators. This operation is called differential shift of the
i-th equation of the system. Due to the performed division by the last nonzero
coefficient, this operation decreases the length of the i-th equation in the system
(2).

The algorithm EGδ is as follows. If the rows of the leading matrix are linearly
dependent over K(x), then the reduction is performed. Suppose that this makes
the i-th row of the leading matrix zero. Then, we perform the differential shift
of the i-th equation and continue the process of alternated reductions and dif-
ferential shifts until the leading matrix becomes nonsingular. (We never get the
equation 0 = 0 since the equations of the original system are independent over
K(x) [∂].)

As we have mentioned no single equation increases its length due to the reduc-
tion. The differential shift decreases the length of the corresponding equation.
Thus the sum of all the lengths is decreased by a “reduction + differential shift”
step. This implies that algorithm EGδ always terminates and the number of
“reduction + differential shift” steps does not exceed (r + 1)m2.

Note that the division by the last coefficient of an equation before differentiat-
ing the equation is produced to ensure decreasing of the length of the equation.
This division and clearing the denominators after the differentiation are quite
expensive. If we exclude this division then the cost of a step “reduction + dif-
ferentiation” will be in general significantly less than the cost of a “reduction +
differential shift” step. By Theorem 1 the corresponding sequence of “reduction
+ differentiation” steps will be finite (thus the new version of EGδ terminates
for any system of the form (2)) and the number k of the “reduction + differenti-
ation” steps does not exceed mr. (By Theorem 1 the dimension of the solution
space of the original system is equal to mr − k; thus we have one more way
to compute the dimension of the solution space besides the one given by Theo-
rem 2). Note that Theorem 1 is applicable since K(x) ⊂ K̄(x) where K̄ is the
algebraic closure of K.

This improvement trick works also in the case of an inhomogeneous system
when the corresponding homogeneous system is of full rank. The corresponding
homogeneous system is transformed independently on the right-hand side when
we produce “reduction + differentiation” steps. Therefore the dimension of the
solution space of the corresponding homogeneous system increases due to every
“reduction + differentiation” step. The upper bound mr keeps valid in the
inhomogeneous case (one can also use Remark 2 for proving this).

In addition, we note that due to Theorem 1 it is not necessary to select an
equation of maximal length in the reduction substep; therefore various strategies
of a row selection on the reduction substep of each “reduction + differentiation”
step are possible. Such strategies make it possible to slow down the growth of
degrees of system coefficients when applying EGδ (due to Appendix this works
also in the case of difference systems, i.e. gives an improvement of EGσ [1,3,5]).
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Appendix: The Difference Case

A statement similar to Theorem 1 is valid in the difference case, when (K, σ)
is a difference field (σ is an automorphism of K) of characteristic 0 with an
algebraically closed constant field Const(K) = {c ∈ K | σc = c}. Let Λ the
universal Picard-Vessiot ring extension of K (see [8, Sect. 1.4]). A system is of
full rank if its equations are independent over the ring K[σ]. The application of
the operator Δ = σ − 1 is used instead of the differentiation of an equation of a
given full rank system.

The proof is a little more complicated since the invertibility of A is
needed to guarantee that the dimension space of a system σy = Ay, A ∈
Matm(K), is equal to m . However there is no problem with proving the ana-
log of Lemma 1. After applying Δ to the last equation of the original system
we get the system σỸ = ÃỸ where the matrix Ã ∈ Matrm+1(K) is obtained
from the matrix (4) by adding the last row (0, . . . , 0, 1) and the last column
(0, . . . , 0, 1, 1)T . If A is invertible then Ã is invertible too. Similarly to the dif-
ferential case the column vector Ỹ is obtained from Y (see (5)) by adding ym+1

as the last component.
Consider a system of order r � 1 which has the form

Arσ
ry +Ar−1σ

r−1y + · · ·+A0y = 0. (14)

The coefficient matrices A0, A1, . . . , Ar belong to Matm(K), and if Ar, A0 (the
leading and trailing matrices of the system) are invertible then the system (14) is
equivalent to the first order system havingmr equations: σY = AY , with A as in
(4), and A is invertible since detA = − det Â0 = detA−1

r detA0 �= 0. Therefore
if both the leading and trailing matrices of the system (14) are invertible then
the dimension of the solution space of this system is equal to mr.

Denote the ring Matm(K [σ]) by Em. System (14) can be written as L(y) = 0
where

L = Arσ
r +Ar−1σ

r−1 + · · ·+A0 ∈ Em. (15)

Similarly to the differential case, we say that the operator L ∈ Em is of full rank
if the system L(y) = 0 is of full rank.

It can be shown (see [5, Sect. 3.5]) that for any full rank operator L of the
form (15) there exists F ∈ Em such that the product FL is an operator of order
r + 1 with both the leading and trailing matrices are invertible. Using adjoint
difference operators we can analogously to the differential case prove that there
exists N ∈ Em such that the operator LN has invertible both the leading and
trailing matrices (N can be taken such that LN is of order r+1). We can consider
the operator D which is obtained from (13) by replacing ∂ by Δ = σ − 1 and
repeat the reasoning given in the last paragraph above Remark 2.
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