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A direct algorithm to compute rational solutions of "rst
order linear q-di$erence systems

S.A. Abramov1

Computer Center of the Russian Academy of Science, Vavilova 40, Moscow 117967, Russia

Abstract

We present an algorithm to compute rational function solutions to a "rst order system of
linear q-di$erence equations with rational coe*cients. We make use of the fact that q-di$erence
equations bear similarity to di$erential equations at the point 0 and to di$erence equations
at other points. This allows the combining of known algorithms for the di$erential and
the di$erence cases. This algorithm does not require preliminary uncoupling of the given system.
c© 2002 Elsevier Science B.V. All rights reserved.

R	esum	e

Nous pr1esentons un algorithme calculant les fonctions rationnelles solutions d’un syst3eme du
premier ordre d’1equations aux q-di$1erences lin1eaires 3a coe*cients rationnels. Nous utilisons
le fait que les 1equations aux q-di$1erences ont des similarit1es avec les 1equations di$1erentielles
au point 0 et avec les 1equations aux di$1erences aux autres points. Cela permet de combiner
les algorithmes connus pour ces deux types d’1equations. Cet algorithme ne requiert pas un
d1ecouplage pr1ealable du syst3eme donn1e. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Direct algorithms; Linear q-di$erence equations and systems; Polynomial and rational
solutions; Universal denominator

1. Introduction

Let K be a computable "eld of characteristic zero, q∈K a nonzero element which
is not a root of unity, and x transcendental over K .
A system of "rst order linear q-di$erence equations with rational coe*cients over

the "eld K is a system of the form

p1(x)y1(qx) = a11(x)y1(x) + · · ·+ a1m(x)ym(x) + b1(x)
...

pm(x)ym(qx) = am1(x)y1(x) + · · ·+ amm(x)ym(x) + bm(x):

(1)
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We assume the coe*cients pi(x); aij(x); bj(x) to be polynomials over the
"eld K .

q-Calculus and the theory and algorithms for linear q-di$erence equations are of
interest in combinatorics, especially in the theory of partitions [10,11]. In this paper, we
solve the problem of computing all rational solutions y(x)= (y1(x); : : : ; ym(x))∈K(x)m

of (1). Algorithms for solving this problem in the scalar case (that is the case of a
single scalar linear q-di$erence equation of arbitrary order) have been proposed in
[6,1]. The algorithmic study for the system case is, in general, less well-developed.
The traditional computer algebra approach of solving linear functional systems is via

the cyclic vector method, or other similar elimination methods [14,9]. They "rst convert
the given systems to scalar equations (such a procedure is called the uncoupling).
GrKobner bases technique can also be used to reduce a recurrent system to the uncoupled
form [15]. The major, and well-known problem of this approach is the increase in
size of the coe*cients of the equations. This makes these approaches applicable only
to systems of very small dimension. In this paper, we present an alternative approach
(a direct method) to solve the problem for the q-di$erence case.
It should be noted that there is some progress in solving the analogous problem in

the di$erential and the di$erence cases: direct methods have been proposed in [13] and
in [4,17]. The methods [4,17] are also applicable to the q-di$erence case, except for
the situation where the denominators of some yi(x) are divisible by x.

We will show below that by combining both di$erential and di$erence approaches,
it is possible to solve the problem in the q-di$erence case completely. A characteristic
feature of q-di$erence equations is that they are similar to di$erential equations near
the point 0 and to di$erence equations near other points. This fact was used in the
scalar case in [1].
Similar to the di$erential and di$erence cases, the construction proceeds in two steps.

In the "rst step, we construct a universal denominator, i.e., a polynomial U (x)∈K[x]
such that for all y(x)∈K(x)m, if y(x) is a solution of (1), then U (x)y(x) is a poly-
nomial vector. In the second step, the substitution

y(x)=
1

U (x)
z(x) (2)

into (1) reduces the problem to "nding polynomial solutions of a system in z(x) of
the same type as (1).
If the matrix




a11 : : : a1m
...

...
am1 : : : amm


 ; (3)

which corresponds to (1) is not invertible over K(x), then there exists a non-trivial
linear combination over K[x] of the rows of this matrix that is equal to zero. Suppose
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that the mth coe*cient of this combination is a non-zero polynomial. Then, the last
equation of the original system can be replaced by an equation of the form

f1(x)y1(qx) + · · ·+ fm(x)ym(qx)=fm+1(x);

f1(x); : : : ; fm+1(x)∈K(x). After the substitution q−1x for x we get

h1(x)y1(x) + · · ·+ hm(x)ym(x)= hm+1(x);

h1(x); : : : ; hm+1(x)∈K(x). The coe*cient hm(x) is not equal to zero, and we can elim-
inate ym(x) in the "rst m− 1 equations of the original system. This gives us a system
with a reduced number of unknowns. If the matrix of this system is not invertible over
K(x), then we apply the described procedure again. Hence, for the rest of this paper,
we can assume that the matrix (3) is invertible.
From time to time we will need to "nd the largest non-negative integer n such that

qn is a root of a given polynomial with coe*cients in K . Therefore, we assume that K
is a q-suitable /eld, meaning that there exists an algorithm which, for a given p∈K[x];
"nds all non-negative integer n such that p(qn)= 0. For instance, if K = k(q) where
q is transcendental over k, we can proceed as follows: Let p(x)=

∑d
i=0 cixi where

ci ∈ k[q]. Compute s=min{i; ci �=0} and t=max{j; qj | cs}. Then, p(qn)= 0 only if
n6 t, and the set of all such n can be found by testing the values n= t; t−1; : : : ; 0 [7].
An algorithm for solving the equation p(qn)= 0 in the case where q is an algebraic
number is considered in [5].
A preliminary version of this paper has appeared as [3].

2. Universal denominators

2.1. Factors other than x

Here, we show the q-modi"cation of algorithm [4]. Algorithm [17] also allows such
a modi"cation. In this paper, we do not compare algorithms [4,17], and choose the
former simply because its description is shorter.
We name the modi"cation qUD. First of all we set A(x) to be equal to

lcm(p1(q−1x); : : : ; pm(q−1x))

and compute B(x) as lcm of the denominators of the elements of the matrix in-
verse of (3). Then compute qUD(A; B). Let the polynomial V (x) be the result of the
computation:

V (x) :=1;
R(n) :=Resx(A(x); B(qnx));
if R(n) has some non-negative integer roots then
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N := the largest non-negative integer root of R(n);
for i=N; N − 1; : : : ; 0 do

d(x) :=gcd(A(x); B(qix));
A(x) :=A(x)=d(x);
B(x) :=B(x)=d(q−ix);
V (x) :=V (x)d(x)d(q−1x) · · ·d(q−ix)

od

fi.

If the rational functions F1(x); : : : ; Fm(x) are such that

p1(x)F1(qx)− a11(x)F1(x)− · · · − a1m(x)Fm(x)
...
pm(x)Fm(qx)− am1(x)F1(x)− · · · − amm(x)Fm(x);

(4)

are polynomials and A(x); B(x) are not divisible by x, then the denominators of
F1(x); : : : ; Fm(x) (taken in the reduced form) divide V (x).
The proof is similar to that of Theorem 3 in [4]. All arguments that were given n

[4] will still hold if we replace the shifts

x → x + i; x → x − i;

where i is a non-negative integer by the q-shifts

x → qix; x → q−ix

and if we ignore the factor x when we consider the irreducible factors of the polyno-
mials A(x) and B(x):
Another approach to work with the denominators is as follows. Let the polyno-

mials A(x); B(x), the non-negative integer N be computed as at the beginning of
qUD, and d(x)= gcd(A(x); B(qNx)). Set f(x)=d(x) if N =0; and f(x)=d(x)d(q−N x)
otherwise. After the substitution

y(x)=
1

f(x)
z(x)

into (1), we obtain a new system. We can again "nd A(x); B(x) and write down
the equation R(n)= 0. It is possible to show that this equation cannot have any
integer root ¿N . Thereby, at some step such a substitution gives us a system
such that the corresponding equation R(n)= 0 has no non-negative integer root. Such
a system cannot have non-polynomial rational solutions. Therefore, it is su*cient
to "nd the polynomial solutions of the obtained system and execute the inverted
substitutions.
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We would like to emphasize that the algorithm qUB and the one just described, both
work only if A(x) and B(x) are not divisible by x. The factor x has to be considered
separately since the polynomial x and qx are not relatively prime over K , though any
other irreducible polynomial r(x) is relatively prime to r(qx).

2.2. A bound for the exponent of x

In the general case, the components of any rational solution y(x)= (y1(x); : : : ; ym(x))
of (1) can be represented in the form

yi(x)=
fi(x)
gi(x)

+
li1
x

+
li2
x2

+ · · ·+ lihi

xhi
; gi(0) �=0; i=1; : : : ; m: (5)

The substitutions of

F (1)
i (x)=

fi(x)
gi(x)

and

F (2)
i (x)=

li1
x

+
li2
x2

+ · · ·+ lihi

xhi
;

into expressions (4) for Fi; i=1; : : : m, give, for each of these expressions, two ra-
tional functions with relatively prime denominators. Thereby, the rational functions
are polynomials. By freeing A(x) and B(x) from the factor x (denote the result by
Ã(x); B̃(x)) we compute qUD(Ã(x); B̃(x)) and obtain V (x) which is divisible by all
gi(x); i=1; : : : ; m.
Now, it is su*cient to "nd an upper bound H for all h1; : : : ; hm and then it will

be possible to use U (x)= xHV (x) as a universal denominator for all rational solutions
of (1).
As for the second algorithm described in the previous subsection for working with

the denominators, we can start with Ã(x); B̃(x) and after all the described substitutions,
execute one more by using xH as the denominator of the right-hand side.

To obtain a bound H one can use the technique of indicial equations. (This technique
is well-known in the theory of linear ordinary di$erential equations.) The main compu-
tational task connected with the construction of the indicial equation in the di$erential
case is to reduce the given system to the super-irreducible form [16,12]. To the author’s
knowledge, the super-irreducible form for q-di$erence systems has not been considered
yet. But in any case we can use a universal approach called EG-eliminations [2]. This
approach allows one, in particular, to construct the indicial equations for di$erential
and q-di$erence equations.
In other words, any rational Solution (5) of system (1) can be considered as a

solution in the class of Laurent series: F (1)
i (x) and F (2)

i (x), i=1; : : : ; m, which are,
resp., regular and singular parts of the Laurent solution. Thus, an upper bound for its
pole order at x=0 can be taken as H . EG-eliminations allow one to "nd such a bound.
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The general scheme of using EG-method is the following (see [2] for details).
Rewrite system (1) in the operator form


p1Q − a11 −a12 : : : −a1m

−a21 p2Q − a22 : : : −a2m
...

...
...

−am1 −am2 : : : pmQ − amm


y(x)= b(x); (6)

where the operator Q is such that Qf(x)=f(qx) for any function f(x). Consider
yi(x); bi(x), i=1; : : : ; m, as Laurent series. Let zi(n); ci(n), i=1; : : : ; m, be the sequences
of coe*cients of these series, −∞¡n¡∞. Consider the mapping Rq :K[x; Q] →
K[qn; E−1] de"ned by

RqQ= qn; Rqx=E−1; (7)

where the operator E is such that Ef(x)=f(x + 1) for any function f(x). (In [8] it
is shown that Rq is an isomorphism from K[x; Q] onto K[qn; E−1].) Applying Rq to
the elements of the operator matrix of (6) we get the operator matrix of the recurrent
system for the column of sequences z(n)= (z1(n); : : : ; zm(n))T. This system can be
rewritten in the form

Plz(n+ l) + Pl−1z(n+ l− 1) + · · ·+ Ptz(n+ t)= c(n); (8)

where l; t are integers, l¿ t; c(n)= (c1(n); : : : ; cm(n))T; Pl; : : : ; Pt are m × m-matrices
over K[n] with Pl and Pt (the leading and trailing matrices of the system) being
nonzero but the determinants of Pl; Pt can vanish for all n. The process of EG-
eliminations in the explicit matrix P=(Pl|Pl−1| : : : |Pt) allows one to transform (8)
into an equivalent system S with nonsingular leading (or analogously, trailing) matrix.
Suppose that by using EG-eliminations we constructed the corresponding system S of
the form (8) with non-singular Pl(n). Then, det Pl(n)= 0 is the indicial equation for
(1) at the point 0. The following theorem can be easily proven in the usual way.

Theorem 1. Let p(n)= det Pl(n) be a nonzero polynomial in qn. Let n0 be the small-
est integer root of p(n)= 0 if such roots exist and n0 = 1 otherwise. Then the pole
orders of a Laurent series solution y(x)= (y1(x); : : : ; ym(x)) of (1) do not exceed
|min{n0 + l; 0}|:

Proof. All zi(n) are equal to 0 for all negative integer n with large enough |n|. Besides,
ci(n)= 0 for all negative n, i=1; : : : ; m. The matrix Pl(n) is invertible for all n¡n0
and we can use recurrence (8) to obtain zi(n)= 0, i=1; : : : ; m, for all n¡n0 + l.

3. Polynomial solutions

After performing substitution (2) and clearing the denominators, we need to solve
the problem of "nding polynomial solutions of a system of form (1). It is su*cient
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to "nd an upper bound for the degrees of all y1(x); : : : ; ym(x). Then, all polynomial
solutions of (1) can be found by the method of undetermined coe*cients (the problem
can be reduced to a system of linear algebraic equations). Less costly approaches such
as those proposed for di$erence system in [4] are also possible.
We can construct the corresponding recurrent system for (1). Suppose that we trans-

formed the recurrent system to the system S of form (8) with non-singular Pt(n) using
EG-eliminations. Then det Pt(n)= 0 is the indicial equation for (1) at ∞. The following
theorem can be easily proven in the usual way.

Theorem 2. Let p(n)= det Pt(n) be a nonzero polynomial in qn. Let n1 be the largest
integer root of p(n)= 0 if such roots exist and n1 = − 1 otherwise. Let d=maxm

i=1

deg bi for (1). Then the degrees of the components of polynomial solution
y(x)= (y1(x); : : : ; ym(x)) of (1) do not exceed max{n1 + t; d+ t}:

Proof. For polynomial solutions, all zi(n) are equal to 0 for all large enough n.
Besides, ci(n)= 0 for all n¿d, i=1; : : : ; m. The matrix Pt(n) is invertible for all
n¿n1 and we can use recurrence (8) to obtain zi(n)= 0, i=1; : : : ; m, for all
n¿max{n1 + t; d+ t}.

4. Example

Let us consider the following system of q-di$erence equations:

(−qx + q3x)y1(qx) + (x − q4x)y1(x) + (q4x + 100q4 − q2x − 100q2)y2(x)= 0

(qx + 100)y2(qx)− xy1(x)= 0:

Here

p1(x)=− qx + q3x; p2(x)= xq + 100

and the corresponding matrix (3) is(
x − q4x q4x + 100q4 − q2x − 100q2

−x 0

)
:

The inverse matrix is


0 −1
x

1
q2(q2x + 100q2 − x − 100)

− q2 + 1
(x + 100)q2


 :

Thus,

A(x)=q4x2 + 100q4x − q2x2 − 100q2x; B(x)=− q2x2 − 100xq + q4x2 + 100q3x:
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Freeing them from the factor x

Ã(x)= q2(q2x + 100q2 − x − 100); B̃(x)= q(q3x − xq − 100 + 100q2)

we obtain V = qUD(Ã(x); B̃(x))= x + 100.
Now, we should "nd the exponent of x in the universal denominator. The corre-

sponding recurrent system has the explicit matrix(
0 q2(100q2 − 100) qn+2 − qn − q4 + 1 q2(q2 − 1)

0 100qn −1 qn

)
;

with l=0, t= − 1. EG-eliminations lead to the system with the following leading
matrix:(

100(q2n+4 − q2n+2 + qn+1 − qn+5 + q4 − q2) 0

0 100(q4 − q2)

)
:

The equation 10000(q2n+4 − q2n+2 + qn+1 − qn+5 + q4 − q2)(q4 − q2)= 0 has the
integer roots −1; 1. So the degree of the pole is 6 | − 1 + l|=1 and the universal
denominator is

U (x)= xV (x)= x(x + 100):

After the substitution of the computed universal denominator, the system is

((q2 − 1)x2 + 100(q2 − 1)x)z1(qx)− (q(q4 + 1)x2 + 100(1− q4)x)z1(x)

−(q3(1 + q2)x2 − 100q2((q3 + q2 − 1)x + 100q2 − 100)z2(x)= 0;

(x + 100)z2(qx)− qxz1(x)= 0:

The corresponding recurrent system has the explicit matrix


0 0

q2(10000q2 − 10000) 100qn

100qn+1 − 100qn−1 − 100q4 + 100 −q

q2(100q3 + 100q2 − 100q − 100) qn−1

−q5 + q + qn − qn−2 0

q2(q3 − q) 0




T

with l=0, t= − 2. EG-eliminations lead to the system with the following trailing
matrix:(

0 q2n−2 − q2n−4 − qn+3 + qn−1 + q6 − q4

−q qn−2

)
:

The polynomial −q(q2n−2 − q2n−4 − qn+3 + qn−1 + q6 − q4) has the integer roots 3; 5.
So, the polynomial solutions of the system have degree 6 5+ t=3. It leads us to the
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following solution of the system for "nding the numerators[
100 c1 + x c1 + x2 c2 +

x3 c2
100

; x c1 +
1
100

x3 c2
q2

]
and correspondingly to the solution of the given system[

x2 c2 + 100 c1
x

;
100 c1q2 + x2 c2

(x + 100)q2

]
:

5. Implementation

This algorithm is implemented in Maple V by D.Khmelnov.
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