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1. INTRODUCTION

For the last several decades, the construction of extreme principles has remained a central problem in
mathematical biology. This interest is explained by a number of reasons, of which the most important are
internal (biological) determination and high efficiency. Reviews on this subject can be found in [1, 2].

Interest in this direction is associated with describing the behavior of biological systems and is moti�
vated by the possibility of finding a time�monotone function computed in terms of the parameters of the
system, which substantially simplifies the problem of determining the sector of its motion and sometimes
its direction. This underlies numerous phenomenological extreme principles constructed in biology,
which become teleological concepts when we ignore the situation described in the following section,
which is based on the idea of stability. Their application sometimes gives results that are fairly effective
from the simulation point of view (see [1]).

Extreme principles arise from the formalization of the idea of evolutionary selection and its conse�
quence—evolutionary optimality, which goes back to Darwin’s fundamental work [3]. He managed to
identify some possible triggers and, more importantly, the concept of uncovering internal (at the level of a
population, community, etc.) mechanisms that determine the direction of evolution. The fact that the
competitive struggle within a limited space leads to the elimination of all the species, except for a small
number of ones that are most adapted to the given conditions, makes it possible to construct fundamental
principles of functioning of biological systems.

These principles are based on the hypothesis that stationary states of biological communities formed
in the course of evolution are stable. The ideas underlying the use of this hypothesis in the construction of
evolutionary optimality principles are well known to biologists (see [2]) and are formulated in Section 2.
Within the framework of the simplest finite�dimensional mathematical model, we can uncover the essence
of necessary stability conditions that have the form of extreme relations. The objects to be optimized are
the values of Malthusian functions computed on formed stable equilibrium states. Later, these functions
play the role of reference points in the construction of functionals for more complicated systems.

However, despite the fundamental character of works concerning evolutionary optimality and the seri�
ous mathematical depth of many of them [2, 4], the range of their applications has remained extremely
narrow until recently. As a rule, natural systems equipped with a structure were eliminated from consider�
ation.

First, this is associated with the fact that the most frequently used total population sizes turn out to be
inadequate to reality because of the difference between the population roles of juvenile and adult individ�
uals. A similar problem arises concerning biological communities, whose properties change noticeably
with changing habitat.
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Second, the replacement of continuous distributions by discrete ones (in the case of an age structure,
the Lotka model [5] is replaced by the Leslie model [6]) assumes the presence of a “natural” discretization
scheme, which is absent for most large�scale processes.

Third, attempts to construct acceptable theories directly for continuously distributed systems encoun�
tered serious difficulties of a purely mathematical character. For example, results presented in some pub�
lications that take into account the age structure of populations (see, e.g., [7, 8]) are based on a rescaling
of the linear model. Due to its simplicity, leading asymptotics can be found for each species. However, the
rather natural idea that species with maximal asymptotic characteristics have advantages becomes not
obvious when attempts are made to fit them into the scheme of evolutionary optimality based on the sta�
bility hypothesis. The problem is that we implicitly hypothesize the separation of characteristic times of
age stabilization (fast processes) and evolutionary selection (slow processes). This approach seems quite
natural in the case of appeals to adequate infinite�dimensional analogues of theorems on singularly per�
turbed systems of equations. The lack of indications for the possibility of using such appeals leaves con�
siderable gaps in theories constructed on the basis of this scheme.

In a previously constructed theory (see [9, 10]), the author tried to overcome the above shortcomings
and proposed a construction that relates the stability of steady states of distributed biological systems to
the extremality of values of inherited traits in species surviving in these states. Despite its artificial charac�
ter (the purely technical hypothesis of quasilinearity, i.e., the linearity of unbounded components of the
operators on the right�hand sides of the equations leads to rather unnatural constraints in continuous�
time problems), this theory yields interesting and practically useful results for many important problems.
Some of them are discussed in this paper.

Section 3 gives the most general mathematical statement of the main applied result in the theory of [9]
for the case of autonomous quasilinear systems with continuous time. When constructing this theory, the
author used the possibility of considering, in a unified manner, the relation between stability and evolu�
tionary optimality for systems with a continuous age structure and a continuous spatial structure. These
problems are matched for dynamical systems in Banach spaces with unbounded operators on the right�
hand side. At this level of abstractness, the main result (a necessary stability condition for a stationary dis�
tribution) can be formulated in terms of the localization properties of the spectrum of the explicitly spec�
ified operator on the right�hand side of the system calculated for this distribution. Further elaboration
associated with the possibility of constructing optimized functionals requires more specific formulations.
Two of them are considered in the subsequent sections.

In Section 4, the theory of [9] is applied to systems of equations describing communities of biological
populations with a continuous age structure. For them, the functional to be optimized is a specially con�
structed one (reproductive population potential) that is calculated in terms of the original functions on the
considered distribution.

Section 5 deals with applications of the theory to spatially distributed biological systems. The basic
model is a system of reaction–diffusion equations with diffusivities independent of the phase variables.
The right�hand sides of the equations can involve bounded functions depending not only on the phase
variables but also on their functionals over space. In this case, the functional to be optimized is a quadratic
one depending on the distributions and their first derivatives with respect to spatial variables.

In Section 6, the reader can find references to some applications of the theory and to its connection
with important areas of modern theoretical biology.

2. PRINCIPLE OF EVOLUTIONARY OPTIMALITY

The direction of natural selection in competitive conditions on segments of intersecting ecological
niches leads at stabilization times to the formation of structures that can be regarded as stable (in mathe�
matical terminology). Consider the simplest model of the interaction of n biological species:

(1)

A necessary condition for the stability of the equilibrium

which represents a species structure of the community in which only the first m species are present out of
all the possible ones, is given by the equality

dxi

dt
����� xi  fi x( ), i 1 2 … n, x, , , x1 … xn, ,( ).= = =

x x1 … xm 0 … 0, , , , ,( ), xi 0, i> 1 2 … m,, , ,= =

fi x( ) fj x( ){ }, 1
j

max i m, 1 j n≤ ≤ ≤ ≤=
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(the Jacobian of system (1) at x =  has the block structure  =  with a diagonal

(n – m) × (n – m) matrix D; its main diagonal contains elements fj( ), j > m such that fj( ) = 0, j ≤ m.)
This condition has the character of an extreme relation and expresses the principle of evolutionary opti�
mality. Biologically, it means that the species surviving in an equilibrium state must have the maximum
values of the Malthusian functions calculated in this state among all the potentially admissible species
characterized by inherited values of the evolutionary selection parameters (in the above example, these are
the indices j). It is these parameters that specify the “power of species” in its Darwinian sense if we mean
the heuristic formulation of the principle of survival for the strongest.

Since the equilibrium  lacks the species indexed by m + 1 ≤ j ≤ n, they can be regarded as virtual; i.e.,
they can be supplemented with any other species having the hypothetical possibility of being in the origi�
nal collection. Moreover, in contrast to the above example, the indices distinguishing species do not need
to be chosen from a finite set but can have an entirely arbitrary nature. Specifically, they can be elements
of a (usually bounded) domain Λ of a finite�dimensional (or sometimes infinite�dimensional comprising,
for example, a class of functions) space so that the optimization problem is solved with respect to this
domain. (For this reason, the term “index” is replaced in this paper by its synonym “selection parameter,”
which is more suitable in a continuous interpretation.) Due to this extension, in a typical case when solv�
ing an optimization problem, we can find isolated points in Λ that contain those values of the selection

parameters  ∈ Λ for which the equilibrium  is stable.
Note that, in addition to the above necessary stability condition, which corresponds to external stability

(a synonym of evolutionary stability) and characterizes the stability of the community’s equilibrium with
respect to species not presented in this state, we need internal stability, which characterizes stability with

respect to small deviations of sizes of the present species. The determination of  ∈ Λ corresponding to
species observed in the specified conditions (including the species structure of the communities) can be
used as a methodological foundation for identifying the values of those parameters of actually observed
(quasi�)stationary biological systems for which field measurements are impossible or very difficult.

In mathematical models of particular structured biological communities, the most difficult task in
practice is the construction of maximized functionals of distributions. Their role in the above point exam�
ple is played by the functions fi(x) of species sizes. If such functionals can be found, then analogues of the
above results (and the schemes for the subsequent computations) can be obtained from a more general
theory of the relation between stability and optimality for the case of distributed quasilinear systems (see
[9, 10]). Below, this theory is applied to dynamic models of communities consisting of populations with a
continuous structure for which we managed to find these functionals.

3. SOME RESULTS OF THE GENERAL THEORY

In this section, we formulate fundamental results concerning the theory relating stability and evolu�
tionary optimality in models of distributed biological systems. The consideration is restricted to continu�
ous�time autonomous systems, which are constructively covered by the description of quasilinear dynam�
ical systems in Banach spaces. The proofs can be found in [9].

The original autonomous dynamical system has the form

(2)

where t ∈ J = [0, T], T > 0, dt = d/dt, x ∈ X, y ∈ Y, X and Y are Banach spaces, a ∈ C1(X ⊕ Y, B(X)), b ∈
C1(X ⊕ Y, Y), and B(Y) is the space of bounded linear operators in X. The linear operators hx, y are infini�
tesimal generators of strongly continuous semigroups of linear bounded operators acting in X and Y,
respectively. Recall that a family of such operators T(t), t ≥ 0, acting in X is called a semigroup if T(t + s) =
T(t)T(s) for any t, s ≥ 0. Strong continuity means the continuity of T(t)x, t ≥ 0, for any x ∈ X. Its infinites�
imal generator hx is defined for x ∈ X as the limit hxx = {[T(t)x – T(0)x]/t} with a domain D(hx) ⊂ X
for which this limit exists for x ∈ D(hx). Specifically, such operators are closed (i.e., {(x, hxx), x ∈ D(hx)} is
closed in X ⊕ X) and their domain D(hx) ⊂ X is dense. 

The variables of system (2) are initially divided into two groups: evolutionary x (their variation vanishes
at zero values) and nonevolutionary y (required only for the generality necessary in applications; in math�

x
∂ xi  fi x( )( )

∂xj

��������������������⎝ ⎠
⎛ ⎞
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λ
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ematical constructions, they can be discarded for brevity). The reduced formulation of system (2) has the
form

where w = (x, y) ∈ W = X ⊕ Y, h = 

Well�posedness, extendability in time, positiveness (construction of invariant cones), and (Hölder)
smoothness with respect to initial conditions were discussed in detail in [9]. Concerning some of these
issues, the reader is referred to classical results (see, e.g., [11]).

In the original version in [9], the system was nonautonomous with periodic coefficients. Periodicity
was necessary to reduce the original problem (for fluxes) to a simpler problem (with bounded operators on
the right�hand side) for cascades (over a period). The autonomous case is covered by the general scheme
for any positive value of the period. For it, the stability of a stationary solution  is understood
in the sense that the spectrum of the Jacobian of the mapping calculated over positive time at  lies inside
the unit disk. 

A projector P, i.e., a linear bounded idempotent (P2 = P) operator in W is called admissible with respect
to h if the domain of the latter satisfies D(Ph) ⊂ D(h) and, additionally, hP = PhP (i.e., the operator h in
coordinates (P, I – P), where I is the identity operator in W, has a upper triangular form).

A projector P in W is called admissible with respect to w ∈ W if Pw = w, P is admissible with respect to
h and commutes with IY (projector onto Y), and, for some neighborhood O(w) ⊂ W, v ∈ PW ⊂ O(w)
implies K(v) ∈ PW. 

The Jacobian of system (2) calculated at the equilibrium  is decomposed into the sum

Let �–δ, δ > 0, denote the left complex half�plane shifted to the left by δ. In the autonomous case, the
most interesting result of the theory of [9] (minus some generalizations aimed at larger adequacy for bio�
logical setting) can be formulated as follows.

Theorem 1. Let be a stable stationary solution to system (2). Then, for any projectors P1, P2 in
 that are admissible with respect to W and such that P1P2 = P2P1 = P2 and P2IY = P1IY, there is δ > 0 such

that σ((Ql0( ))QW) ⊂ �–δ. 

Here, Q = P1 – P2 is a projector in W, AV is the restriction of a linear operator A : W  W to a subspace
V ⊂ W that is invariant with respect to it, and σ(A) is the spectrum of the operator A. 

By virtue of (2),  ∈ Ker(hx + a( )) (the kernel of the operator). Therefore, the following result holds
in the case  ≠ 0, which is of interest for applications.

Corollary (extreme principle). The zero maximum of the upper bound for the real part of the spectrum
of restrictions of the operator hx + a( ) is reached at the vector  ≠ 0 realized in the stable equilibrium

.

This assertion is a direct generalization of the necessary condition for external stability (formulated in
extreme form) to the case under study (see Section 3).

4. MODEL WITH A CONTINUOUS AGE STRUCTURE

The original system of equations describing the dynamics of a community of species with a continuous
age structure has the form

(3)

dtw hw K w( ),+= hx 0

0 hy⎝ ⎠
⎜ ⎟
⎛ ⎞

.

w x y,( )=
w

w x y,( )=

l w( ) l0 w( ) l1 w( ), where l0 w( )+ hx a w( )+ 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

w x y,( )=
w

w

x w
x

w x
w x y,( )=

∂xλ μλxλ, λ– Λ,∈=

∂yi bi, i I∈ 1 2 … J1, , ,{ },= =

∂tyj bj, j J∈ J1 1 … J2, ,+{ },= =
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with the boundary conditions

and with suitable initial conditions. Here, t is time, a is age, ∂i = ∂/∂t, ∂ = ∂t + ∂a, λ is the index (possibly
from the infinite set Λ) of an evolving species with an age population density xλ = xλ(a, t), and i is the index
(from a finite set) of a not evolving species with an age density yi = yi(a, t). The difference between the first
and the second is that the second can be controlled externally. Moreover, the system can contain external
(i.e., not evolving) variables yj = yj(t) with no age structure.

System (3) is assumed to be autonomous in time, so each of the death rates μλ = μλ(a, x, y) of individ�
uals of the species indexed by λ and the current variations (death rate, migration, etc.) of the nonevolving
species are assumed to depend only on the age of these individuals and the values of the distribution vec�
tors x = x(t) = {xρ(·, t)}, ρ ∈ Λ, y = (yI, yJ), yI = yI(t) = {yi(·, t)}, i ∈ I, yJ = yJ(t) = {yj(t)}, i ∈ J, which
describe the current state of the community structure (i.e., at a fixed time). Here and below, a dot placed
instead of a distribution variable means that the distribution is treated as a whole, i.e., as an element of a
suitable function space. More specifically, this means that the death rates are functions of the state of the
community as a whole. The birth rates βλ(a) and gi(a) are assumed to be independent of the current form
of the distributions (quasilinearity condition).

To use the results of the previous section, all the functions are assumed to be twice uniformly continu�
ously differentiable with respect to their arguments. As suitable Banach spaces, we can use X = l∞(Λ) ⊕

L1(�+) and Y =  ⊗ ⊗ L1(�+) ⊕ . Here, l∞(Λ) denotes the space of real�valued functions on Λ with
a countable support that are summable on the support in the l∞ norm. Integral summability with respect
to a ∈ �+ reflects the natural requirement that the total population size be bounded. The operator hx is
assumed to be diagonal in the structure of l∞(Λ), and its nonzero component indexed by λ is a closed oper�
ator of the form –∂a with the domain consisting of bounded absolutely continuous functions from L1(�+)
that satisfy the first boundary condition in (2). In a similar manner, the second of these conditions defines
the domain of the corresponding diagonal components of hy. The remaining components on the right�
hand side of (3) (death rate, etc.) are described by bounded operators and functions. Since the general
quasilinear theory does not prevent their dependence on the phase variables, this dependence (possibly
even on the age distributions overall) is admissible in the application under study.

Let  be a stationary solution of system (3) that is stable in the sense of the previous section. Let

 ∈ supp  (the subset of those values of λ ∈ Λ for which (a) does not vanish identically). For the above
construction, the verification of the conditions of Theorem 1 is a technical task, which is omitted (see
[10]). By the Lotka theorem (see, e.g., Theorem 4.1 in [12]), having the maximum real part, the eigen�
value of the operator hλ – Mλ, where Mλ is the operator of pointwise multiplication (with respect to a) by
the function μλ(a, , ), is real and the corresponding eigenfunction is positive. This eigenvalue is deter�
mined for every λ ∈ Λ from the characteristic equation for κ, which has the form

By Theorem 1, its solution satisfies κλ ≤ 0. Therefore, Φ(λ, 0, , ) ≤ Φ(λ, κλ, , ) = 1 = Φ( , 0, ,

). The functional ϕ(λ) = Φ(λ, 0, , ) reaches its maximum value at . Hence, in terms of the model
of this section, the extreme principle can be formulated as follows.

Theorem 2. If system (3) has a stable stationary equilibrium  = { (a)}, λ ∈ Λ, then  ∈ supp( ) sat�

isfies the relation ϕ( ) =  with the functional

(4)

xλ 0 t,( ) βλ a( )xλ a t,( ) a, λd

0

∞
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∞
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From a practical point of view, this means that the set of parameters values λ for an a priori known
steady�state stationary distribution  can be determined by maximizing functional (4) over λ. Note that
the theoretical maximum value of this functional is equal to unity.

The meaning of functional (4), which goes back to Lotka’s fundamental constructions [5], is the mean
number of the newborn per individual with allowance for the age�specific death rate.

5. MODEL WITH A CONTINUOUS SPATIAL STRUCTURE

Starting in this section, for brevity, we ignore the nonevolving variables y. 
For spatially distributed biological communities, the most frequently used continuous model is based

on systems of second�order quasilinear parabolic equations with homogeneous conditions on the bound�
ary of the considered spatial domain. In the case of an a priori known stationary distribution of biological
species, the results of the general theory (see Section 3) can be used to construct the minimization prob�
lem for a suitable integral functional in order to determine the selection parameters values corresponding
to surviving species.

The original system of equations has the form

(5)

where xλ = xλ(ξ, t) is the spatial biomass density of the species indexed by λ at the point ξ ∈ Ω at time t

(here, Ω ⊂ �
n
 is a connected bounded domain with a sufficiently smooth boundary ∂Ω and describes the

habitat of the community), hλ are elliptic operators of the form hλxλ = div{Aλ(ξ)[gradxλ + xλgradqλ(ξ)]}

with sufficiently smooth coefficients  and qλ(ξ) (ι, κ = 1, 2, …, n) in the closure of Ω, and Aλ(ξ) =

 are symmetric matrices that are uniformly positive definite in Ω (i.e., (Aλ(ξ)ζ, ζ) ≥ kλ(ζ, ζ) > 0

for ζ ∈ �
n
\{0}). Here, the divergence and the gradient are calculated with respect to ξ and (u, v) =

 is the standard notation for the scalar product in �
n
. These operators are used to describe dif�

fusion in the case of an anisotropic space (from the point of view of possible displacements of individuals
of the species indexed by λ; the isotropic case corresponds to a diffusion matrix Aλ(ξ) that is proportional
to the identity matrix) and the presence of a spatial drift defined by the gradient of qλ(ξ) (for example, in
chemotaxis problems, this is a species�specific function of the attractant concentration).

On the boundary ∂Ω, we set the homogeneous Dirichlet conditions

(6)

or the impermeability conditions

(7)

where ν is the normal vector to the boundary at the point ξ ∈ ∂Ω. Condition (7), in which the projection
of the total flux (due to diffusion and drift) of individuals of species λ through the boundary is set equal to
zero, means that, from a biological point of view, the boundary is an insuperable barrier for individuals.

The operator (x) defines the pointwise (with respect to ξ) multiplication of xλ(ξ, t) by aλ(x(·, t), ξ),
in which x = x(·, t) = {xρ(·, t)}, ρ ∈ Λ. At each spatial point, this operator plays the role of a Malthusian
function (see Section 2) for the species indexed by λ. The collection of these operators specifies all the
intraspecies and interspecies interactions in the community.

As in the previous section, all the introduced functions are assumed to be twice uniformly continuously

differentiable with respect to their arguments. As W = X, we use the space l∞(Λ, { (Ω)}λ ∈ Λ) of l∞�nor�

malized finite�dimensional vectors with the λth component xλ(ξ) from the Hilbert space (Ω) with the

norm . The operators h = hx and a(x) act componentwise as hλ and (x), and the domain

of hλ is the space (Ω) ⊂ (Ω) of functions having second partial derivatives from (Ω) and satis�
fying the boundary conditions in the sense of the trace. The operators hλ thus defined are closed and self�

adjoint in (Ω), which means that they are sectorial. Therefore, there exists an analytical (and, hence,
strongly continuous) semigroup for which they are infinitesimal generators.

x
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Moreover, by using standard methods (see, e.g., [13]), we can check that the variational principle holds
for hλ + (x). This means that the minimum eigenvalue of hλ + (x) is simple and, up to the sign, coin�

cides at its eigenfunction vλ(ξ) with the minimum of the functional

(8)

where wλ(ξ) = gradv(ξ) + v(ξ)gradqλ(ξ). The minimum of functional (8) is calculated over v(ξ) ≠ 0 on

the Friedrichs extension of the domain of hλ + (x), which coincides with (Ω) in the case of (6) (dis�
tributions on Ω with first partial derivatives from L2(Ω) vanishing on the domain boundary in the sense of
the trace) and with H1(Ω) in the case of (7) (the same but without the boundary conditions).

Let  be a stationary solution to system (5) that is stable in sense of Section 3, and let  ∈ supp  (see
the definition in the previous section). The last inclusion means that the kernel of  +  is not empty,

since it includes the nonzero distribution . For it, Green’s identity gives Φ( , , ) = 0. The varia�

tional principle also implies the inequality Φ(λ, , v λ) ≤ Φ(λ, , ) and the equality Φ(λ, , v λ) =

–supσ(hλ + ( )) for λ ∈ Λ. The application of Theorem 1 to supp λ ∉ supp  yields supσ(hλ + ( )) < 0.

Collecting these relations, we obtain the chain

(9)

which implies the extreme principle for ϕ(λ) = Φ(λ, , ). More specifically, the following result holds.

Theorem 3. If system (5) with boundary conditions (6) or (7) has a stable stationary equilibrium  =

{ (ξ)}, λ ∈ Λ, then  ∈ supp( ) satisfies the relation

(10)

Note that ϕ(λ) in (10) can be replaced by φ(λ) = Φ(λ, , vλ). First, this follows formally from the first

inequality in (9) and Φ( , , ) ≤ Φ( ). Second, assuming that  is stable with respect to spatial

perturbations of the distributions for  ∈ supp( ), we obtain  =  (otherwise,  is unstable with

respect to ), which makes both formulations of the extreme principle equivalent. However, in the con�
struction of functionals, the second version allows us to take into account the form of the steady�state dis�
tribution only in the computation of the coefficients. Specifically, we do not need to determine its spatial
derivatives, since, instead of the latter, we use the functions vλ computed by minimizing the functional
Φ(λ, , v). 

6. CONCLUSIONS

The constructions discussed above are rather difficult in the sense that the right�hand sides of dynam�
ical systems involve unbounded operators. If there are no such operators (for example, for right�hand sides
of integral form), we do not need to invoke the general theory discussed in Section 3, although it naturally
covers this case. Such “simple” constructions are rather frequently used to describe the dynamics of prob�
ability distributions; numerous examples include various models for the propagation of epidemics [14],
epiphytoties, etc. Even “simpler” (constructively but not ideologically) models with a discrete structure
can be formally reduced to the problem addressed in Section 2. Moreover, acceptable functionals can be
constructed due to the specific features of the arising right�hand sides (see [15]).

The same is true for discrete�time systems. Note that time was initially assumed discrete (see [9]) and,
then, the results were extended to time�continuous periodic (specifically, autonomous) systems. The best�
known population model with discrete time and age is that of Leslie (see the bibliography in [1, Chapter

âλ âλ
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II]). Some of its generalizations associated with the possibility of interage (more exactly, interstage) tran�
sitions also have found their reflection in the computation of evolutionary selection functionals (see [16]).

Concerning applications of the results presented in this paper, an example is the theory of correlation
adaptometry [17] constructed on the basis of the extreme properties of functionals of spatial distributions
(Section 5). This theory uncovers the relation between the level of unfavorable actions on a population and
the degree of correlation between the distributions of physiological parameters of its terms.
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