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Augmented Lagrangian method for large-scale
linear programming problems
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The augmented Lagrangian and Newton methods are used to simultaneously solve the
primal and dual linear programming problems. The proposed approach is applied to the
primal linear programming problem with a very large number (≈ 106) of nonnegative
variables and a moderate (≈ 103) number of equality-type constraints. Computation results
such as the solution of a linear programme with 10 million primal variables are presented.
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1. Introduction

To solve the primal linear programming problem (LP), Mangasarian [1] proposed to use the
exterior penalty function of its dual. This function is piecewise quadratic, convex, and di�eren-
tiable, and a generalized Hessian of this function exists everywhere. These properties enabled
him to apply the generalized Newton method to unconstrained minimization. The �nite global
convergence of the generalized Newton method was established in refs. [1]�[3]. The minimiza-
tion of the exterior penalty function provided an exact least two-norm solution to the primal
problem for a �nite value of the penalty parameter.

In this paper, we propose to use an approach close to the augmented Lagrangian technique
(see, e.g., refs. [4]�[7]). The approach involved has the following main advantage: after a single
unconstrained maximization of the dual function which is similar to the augmented Lagrangian,
we obtain the exact projection of a point onto the solution set of primal LP problem. The dual
function has a parameter (similar to the penalty coe�cient) which must exceed or be equal to
some threshold value. This value is found under the regularity condition (Theorem 2.1). Using
this result, we maximize once more the dual function with changed Lagrangian multipliers and
obtain the exact solution of the dual LP problem (Theorem 2.2). Theorem 3.1 states that
the exact primal and dual solutions of the LP problem can be obtained in a �nite number
of iterations with an arbitrary positive value of the parameter. The auxiliary unconstrained
maximization problems are solved by the fast generalized Newton method.

The proposed approach was applied to primal LP problems with a very large number (≈ 106)
of nonnegative variables and a moderate (≈ 103) number of equality type constraints. The
results of computational experiments are given subsequently. The e�ectiveness of the proposed
algorithm is demonstrated by comparing it with several LP solvers on a class of synthetically
generated large-scale linear programmes.

2. Finding a projection onto the primal solution set

Consider the primal linear programme in the standard form

f∗ = min
x∈X

c>x, X = {x ∈ Rn : Ax = b, x ≥ 0n} (P)
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together with its dual

f∗ = max
u∈U

b>u, U = {u ∈ Rm : A>u ≤ c}, (D)

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are given, x is a primal variable and u is a dual variable;
0i denotes the ith dimensional zero vector.

Let us assume that the solution set X∗ of the primal problem (P) is nonempty, hence, the
solution set U∗ of the dual problem (D) is also nonempty.

Let x̂ ∈ Rn be an arbitrary vector. Consider the problem of �nding the least two-norm
projection x̂∗, of the point x̂ on X∗

1

2
‖x̂∗ − x̂‖2 = min

x∈X∗

1

2
‖x− x̂‖2,

X∗ = {x ∈ Rn : Ax = b, c>x = f∗, x ≥ 0n}.
(1)

Henceforth, ‖a‖ denotes the Euclidian norm of a vector a.
The solution x̂∗ of problem (1) is unique. Let us introduce the Lagrangian function for

problem (1)
L(x, p, β, x̂) =

1

2
‖x− x̂‖2 + p>(b− Ax) + β(c>x− f∗),

where p ∈ Rm and β ∈ R1 are Lagrangian multipliers, and x̂ is considered to be a �xed
parameter vector. The dual problem of (1) is

max
p ∈Rm

max
β ∈R1

min
x ∈Rn

+

L(x, p, β, x̂). (2)

The Kuhn�Tucker conditions for problem (1) imply the existence of p ∈ Rm and β ∈ R1

such that
x− x̂− A>p + βc ≥ 0n, D(x)(x− x̂− A>p + βc) = 0n,

x ≥ 0n, Ax = b, c>x = f∗,
(3)

where D(z) denotes the diagonal matrix whose ith diagonal element is the ith component of
the vector z. It is easy to verify that (3) is equivalent to

x = (x̂ + A>p− βc)+, (4)

where a+ denotes the vector a with all the negative components replaced by zeros.
We can say that (4) gives us the solution of the inner minimization problem in (2). By

substituting (4) into L(x, p, β, x̂), we obtain the dual function

L̃(p, β, x̂) = b>p− 1

2
‖x̂ + A>p− βc)+‖2 − βf∗ +

1

2
‖x̂‖2.

Hence, problem (2) is reduced to the solution of the exterior maximization problem

max
p ∈Rm

max
β ∈R1

L̃(p, β, x̂). (5)

If the solutions p and β of problem (5) are found, then after substitution of p and β into (4),
we obtain the projection x̂∗ which solves problem (1).

The optimality conditions for problem (5) are the following

L̃p(p, β, x̂) = b− A(x̂ + A>p− βc)+ = b− Ax = 0m,

L̃β(p, β, x̂) = c>(x̂ + A>p− βc)+ − f∗ = c>x− f∗ = 0,

2



where x is given by (4). These conditions are satis�ed if and only if x ∈ X∗ and x = x̂∗.
Unfortunately, the unconstrained optimization problem (5) contains an unknown value f∗.

It is possible to simplify this problem and avoid this shortcoming. We show that if the value
β is chosen large enough, then the minimization over the variable β can be dispensed with.
Instead of problem (5), we propose to solve the following simpli�ed unconstrained maximization
problem

max
p∈Rm

S(p, β, x̂), (6)

where x̂ and β are �xed and the function S(p, β, x̂) is given by

S(p, β, x̂) = b>p− 1

2
‖(x̂ + A>p− βc)+‖2. (7)

Without loosing generality, one can assume that the �rst l components of x̂∗ are strictly greater
than zero. In accordance with this assumption, we represent vectors x̂∗, x̂, and c, as well as
matrix A in the form

x̂>∗ =
[
[x̂l
∗]
>, [x̂d

∗]
>]

, x̂> =
[
[x̂l]>, [x̂d]>

]
, c> =

[
[cl]>, [cd]>

]
, A = [Al | Ad],

where x̂l
∗ > 0l, x̂d

∗ = 0d, and d = n− l.
The necessary and su�cient optimality conditions (the Kuhn�Tucker conditions) for prob-

lem (1) can be written in the expanded form

x̂l
∗ = x̂l + A>

l p− βcl > 0l, (8)

x̂d
∗ = 0d, x̂d + A>

d p− βcd ≤ 0d, (9)
Alx̂

l
∗ = b, cl>x̂l

∗ = f∗.

The linear system (8) is consistent; therefore, if we assume that the submatrix Al has a full
rank m, then the unique solution p of (8) is given by

p = (AlA
>
l )−1Al(x̂

l
∗ − x̂l + βcl). (10)

Substituting this function into (9), we obtain the inequality

q ≤ βz, (11)

where q = x̂d + A>
d (AlA

>
l )−1Al(x̂

l
∗ − x̂l), z = cd − A>

d (AlA
>
l )−1Alc

l.
If p is given by function (10) and β satis�es inequality (11), then this pair [p, β] is the solution

of the dual problem (5). So, here we are able to derive an analytical formula for the minimal
value β∗ which satis�es inequality (11). Consider the Kuhn�Tucker optimality conditions for
the primal problem (P). Besides the primal feasibility, we have a complementarity condition
x̂>∗ v∗ = 0, where the dual slack v∗ ∈ Rn

+ and the following dual feasibility conditions have the
form

vl
∗ = cl − A>

l u∗ = 0l, (12)
vd
∗ = cd − A>

d u∗ ≥ 0d. (13)

From (12), we �nd u∗ = (AlA
>
l )−1Alc

l, and the substitution of this expression in inequality
(13) yields z = vd

∗ ≥ 0d. We de�ne the index set as follows: σ = {1 ≤ i ≤ d : (vd
∗)

i > 0}.
Inequality (11) holds if β ≥ β∗, where

β∗ =





max
i∈σ

qi

(vd∗)i
, if σ 6= ∅,

α > −∞, if σ = ∅,
(14)
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and α is an arbitrary number.
If β ≥ β∗, then we can solve the simpli�ed unconstrained maximization problem (6). Its

solution will be simultaneous to that of the dual problem (5). Hence, using formula (4) we
obtain x̂∗. Therefore, we conclude that the following theorem holds.

Theorem 2.1. Assume that the solution set X∗ for problem (P) is nonempty, the rank of
a submatrix Al corresponding to nonzero components of vector x̂∗ is m. Then, for all β ≥ β∗,
the unique least two-norm projection x̂∗ of a point x̂ onto X∗ is given by

x̂∗ = [x̂ + A>p(β)− βc]+, (15)

where p(β) is a point attaining the maximum in problem (6).
Theorem 2.1 generalizes the results obtained in ref. [8] devoted to �nding a normal solution

to the primal LP problem. It is obvious that the value of β∗ de�ned by (14) may be negative.
The corresponding very simple example is given in ref. [8].

The function S(p, β, x̂), where x̂ = 0n, can be considered as a new asymptotic exterior
penalty function of the dual linear programme (D) [3, 8]. The point p(β) which maximizes
S(p, β, x̂) does not solve the dual LP problem (D) for �nite β, but the ratio p(β)/β → u∗
as β → ∞. If β ≥ β∗, then formula (15) provides the exact solution x̂∗ to problem (1) (the
projection of x̂ onto the solution set X∗ of the original primal linear programme (P)), and if
x̂ = 0n, then, we obtain the exact normal solution of (P).

Formally, the unconstrained maximization problem (6) has no Lagrangian function, which
implies that the corresponding dual problems cannot be constructed directly. Nevertheless,
one can introduce additional variables to construct the arti�cial constraints and obtain the
equivalent nonlinear programming problems for which the dual problems are well de�ned. This
assertion is not quite conventional, it is based on the two-step representation of problem (6).

We introduce a vector of additional variables y = x̂ + A>p− βc. Then, problem (6) reduces
to the equivalent constrained maximization problem

I1 = max
[p,y]∈G

{
b>p− 1

2
‖y+‖2

}
,

G =
{
[p, y] ∈ Rm+n : y = x̂ + A>p− βc

}
.

(16)

The Lagrangian function for the quadratic programming problem (16) is

L(p, y, x) = b>p− 1

2
‖y+‖2 − x>(x̂ + A>p− βc− y),

where the multiplier vector x ∈ Rn. We introduce the corresponding min max problem

min
x∈Rn

max
p∈Rm

max
y∈Rn

L(p, y, x).

The solution of the interior maximization problem is x = y+, Ax = b.
We substitute these results into L(p, y, x) and obtain the following quadratic problem

I2 = −1

2
‖x̂‖2 + min

x∈X

{
βc>x +

1

2
‖x− x̂‖2

}
,

X = {x ∈ Rn : Ax = b, x ≥ 0n}.
(17)

As the objective function of problem (17) is strongly convex, its solution is unique. Problem
(17) is dual to problem (16) and to a certain extent (6). Hence, the unconstrained maximization
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problem (6) and the quadratic problem (17) can be interpreted as being mutually dual. The
duality theorem states that the optimal values of the objective functions are equal: I1 = I2.

The solution of problems (1) and (17) is connected with the solution of problem (6) by
formula (15) if β ≥ β∗. Problem (17) was analysed by Udzawa, Tikhonov, Eremin, Polyak,
Mangasarian and others. The replacement of the primal problem (P) by problem (17) is called
�Tikhonov regularization�. In fact, Tikhonov used ε = 1/β instead of β. Our variant of
regularization is preferable because it provides us the possibility to consider the cases where
β∗ ≤ 0.

The proposed approach can be applied to the search for a projection x̂∗ of vector x̂ onto
the primal feasible set X. Setting c = 0m in the previous formulas, we obtain the following
maximization problem with parameter-free objective function

max
p∈Rm

{
b>p− 1

2
‖(x̂ + A>p)+‖2

}
. (18)

If p∗ is a solution of this problem, then the two-norm projection x̂∗ of vector x̂ onto the set X
is given by

x̂∗ = (x̂ + A>p∗)+. (19)
If we set b = 0m and solve (18), then formula (19) yields the projection of vector x̂ onto the

intersection of null-space of matrix A and the nonnegative orthant in Rn.
If the rank of the submatrix Al is equal to m and if ‖v∗‖ = 0 or q ≤ 0d, then β∗ ≤ 0. In this

case, setting β = 0, we transform the regularized problem (17) into the problem of determining
the projection of vector x̂ onto the feasible set X of problem (P). At the same time, according
to Theorem 2.1, vector x̂∗ is a solution to problems (1) and (17) for any β ≥ β∗. Hence, if
β∗ ≤ 0, then the distance between x̂ and X∗ coincides with that between x̂ and X.

The next Theorem tells us that we can get a solution to problem (D) from the single
unconstrained maximization problem (6), if a point x∗ ∈ X∗ is known.

Theorem 2.2. Assume that the solution set X∗ of problem (P) is nonempty. Then, for all
β > 0 and x̂ = x∗ ∈ X∗, an exact solution of the dual problem (D) is given by u∗ = p(β)/β,
where p(β) is a point attaining the maximum of S(p, β, x∗).

Proof. The necessary and su�cient optimality condition for problem (6) is

b− A(x∗ + A>p∗ − βc)+ = 0m.

If we denote x = (x∗ + A>p∗ − βc)+, then this expression is equivalent to

x− (x∗ + A>p∗ − βc) ≥ 0n, x ≥ 0n,
D(x)[x− (x∗ + A>p∗ − βc)] = 0n.

These conditions imply that if u∗ = p∗/β, then (x∗, u∗) is a Kuhn�Tucker pair for LP problems
(P) and (D). Indeed substituting (x∗, u∗) for (x, p∗/β) in the above expressions, we obtain

c− A>u∗ ≥ 0n, b>u∗ = c>x∗, Ax∗ = b, x∗ ≥ 0n,

which proves the theorem.
Hence, when Theorem 2.1 is used and the point x̂∗ ∈ X∗ is found, then Theorem 2.2 provides

a very e�ective and simple tool for solving the dual problem (D). An exact solution to (D) can be
obtained by only one unconstrained maximizing the function S(p, β, x̂∗) with arbitrary β > 0.
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3. Iterative process for solving primal and dual LP problems

In this section, we search for the arbitrary solutions x∗ ∈ X∗ and u∗ ∈ U∗ instead of the
projection x̂∗. Owing to this simpli�cation, the iterative process proposed subsequently does
not require the knowledge of the threshold value β∗.

Function (7) can be considered as an augmented Lagrangian for the linear programme (D)
[4]�[6]. Let us introduce the following iterative process (the augmented Lagrangian method for
the dual LP problem (D))

pk+1 ∈ arg max
p∈Rm

{
b>p− 1

2
‖(xk + A>p− βc)+‖2

}
, (20)

xk+1 = (xk + A>pk+1 − βc)+, (21)
where x0 is an arbitrary starting point.

Theorem 3.1. Assume that the solution set X∗ of problem (P) is nonempty. Then, for
all β > 0 and an arbitrary starting point x0, the iterative processes (20) and (21) converge to
x∗ ∈ X∗ in a �nite number of iterations ω. The formula u∗ = pω+1/β gives an exact solution
of the dual problem (D).

Let us introduce a new variable u = p/β. Then formulas (20) and (21) lead to the following
iterative process proposed by Antipin in ref. [5]:

uk+1 ∈ arg max
u∈Rm

{
βb>u− 1

2

∥∥[xk + β(A>u− c)]+
∥∥2

}
, (22)

xk+1 = [xk + β(A>uk+1 − c)]+. (23)
The proof of Theorem 3.1 is similar to the one given in ref. [5].

4. Generalized Newton method

Unconstrained maximization in problems (6) and (20) can be carried out by the conjugate
gradient method or by other iterative methods. Following refs. [1]�[3], we utilize the generalized
Newton method for solving this problem.

The maximized functions S(p, β, xk) in problem (20) and S(p, β, x̂) in problem (6) are
concave, piecewise quadratic, and di�erentiable. The ordinary Hessians do not exist for this
function because the function gradient

Sp(p, β, xk) = b− A(xk + A>p− βc)+

is not di�erentiable. However, one can de�ne its generalized Hessian which is the m × m
symmetric negative semide�nite matrix

∂2
pS(p, β, xk) = −AD#(z)A>,

where D#(z) denotes an n × n diagonal matrix where the ith-diagonal element zi equals to
1, if (xk + A>p − βc)i > 0 and equals to 0, if (xk + A>p − βc)i ≤ 0, i = 1, . . . , n. Since the
generalized Hessian may be singular, we used a modi�ed Newton direction

−[∂2
pS(p, β, xk)− δIm]−1Sp(p, β, xk),
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where δ is a small positive number (usually δ = 10−4), and Im is the identity matrix of order
m.

In this case, the modi�ed Newton method is

ps+1 = ps − λs[∂
2
pS(ps, β, xk)− δIm]−1Sp(ps, β, xk), (24)

where stepsize λs is chosen by Armijo rule. The stopping rule is

‖ps+1 − ps‖ ≤ tol.

Mangasarian investigated the convergence of the generalized Newton method for uncon-
strained minimization of similar convex piecewise quadratic function with Armijo stepsize reg-
ulation. The proof of the �nite global convergence is given in refs. [1, 2].

5. Numerical results

Following the approach proposed by Mangasarian in ref. [1], we introduced the syntetically
generated linear test programme. We considered LP problem (P) with a very large number of
variables and a moderate number of constraints such that n À m. Typically n ≈ 106, m ≈ 103.

The test programme generator produced a random matrix A for a given m, n, and density
ρ. In particular, ρ = 1 means that all the entries in A were generated as random numbers,
whereas ρ = 0.01 indicated that only 1% of the entries in A was generated randomly and
others were set equal to zero. The elements of A were uniformly distributed within the interval
[−50, 50]. The primal random solution x∗ contained the components in the interval [0, 10] and
the dual random solution u∗ contained the components in the interval [−10, 10]. About one-
half components of the dual solution were set to zero and nearly 3m components of the primal
solution were positive. The vectors x∗ and u∗ satis�ed the complementarity condition. The
solutions x∗ and u∗ were used to generate an objective function vector c and a right-hand side
vector b for the linear programming (P). The vectors b and c were de�ned by the formulas

b = Ax∗, c = A>u∗ + ξ.

Here, ξi = 0, if xi
∗ > 0, whereas, if xi

∗ = 0, then the component ξi was taken randomly from
the interval 1 ≤ ξi ≤ 10 for all i. The LP test generator is given below as Code 1.

Code 1. LP MATLAB Test Generator

%Code 1: Generator random solvable LP: min c'x s.t.
%Ax=b; x>=0; A:m-by-n
% Input: m,n,d(ensity); Output: A,b,c; (x,u): primal-dual
%solution
pl=inline('(abs(x)+x)/2'); %pl(us) function
A=sprand (m,n,d); A=100*(A-0.5*spones (A));
u=10*spdiags((sign (pl(rand(m,1)-rand(m,1)))),0,m,m)*
(rand(m,1)-rand(m,1));
x=sparse(10*pl(rand(n,1)-(n-3*m)/n)); b=A*x;
xi=spdiags((ones(n,1)-sign(pl(x))),0,n,n)*
(ones(n,1)+9*rand(n,1));
c=A'*u+xi;
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The algorithm presented was used for solving both primal and dual LP problems. It com-
bined the iterative processes (20), (21), and the generalized Newton method (24) applied to the
solution of the maximization problem (20). The proposed method (20), (21), and the gener-
alized Newton method were implemented in MATLAB 6.5 as the EGM algorithm. We used a
2.26 GHz Pentium 4 with 1 Gb RAM. The numerical results obtained by the EGM algorithm
are presented in table 1.

The starting point used in all the given examples was x0 = 0n. We always set β = 0.1,
tol = 10−12. In all occasions, it turned out that β ≥ β∗. Thus, the normal solution x̂∗ was
obtained by a single iteration of processes (20), (21), i.e. ω = 1. The number of iterations
made by the generalized Newton method used for solving problem max

p∈Rm
S(p, β, x0) is shown in

the third column of table 1. In all examples, after the �rst iteration, we got from formula (21)
x1 = x̂∗, which was a normal solution of the primal problem (P).

According to Theorem 2.2, the maximization of the function S(p, β, x1) (where x1 = x̂∗)
with respect to p yielded the maximal value p(β), which gave the dual solution u∗ = p(β)/β.
In all examples, only two iterations of the generalized Newton method were required for this
maximization. The total time of computation is given in the second column. The fourth and
�fth columns give us the Euclidian norms of the residual vectors. The last column contains the
di�erence between the optimal values of the goal functions for problems (P) and (D).

Table 1. Performance of the EGM algorithm.

m× n× ρ T (s) Newton iterations ‖Ax− b‖ ‖(A>u− c)+‖ |c>x− b>u|
100× 106 × 0.01 43.7 17 1.7× 10−11 2.0× 10−13 2.8× 10−11

300× 106 × 0.01 61.6 13 8.8× 10−11 5.4× 10−13 2.7× 10−10

600× 106 × 0.01 98.7 12 2.8× 10−10 1.5× 10−12 1.2× 10−9

1000× 106 × 0.01 136.0 10 1.2× 10−9 4.2× 10−12 1.7× 10−9

500× 104 × 1 38.1 8 3.2× 10−8 3.5× 10−11 8.3× 10−8

1000× 104 × 1 147.2 7 1.2× 10−7 1.1× 10−10 1.8× 10−7

3000× 104 × 0.01 104.9 7 2.1× 10−9 9.6× 10−12 5.8× 10−10

4000× 104 × 0.01 308.6 7 3.1× 10−9 1.3× 10−11 8.8× 10−9

500× (3× 106)× 0.01 257.0 12 3.3× 10−10 1.5× 10−12 2.4× 10−10

1000× (3× 106)× 0.01 552.6 15 1.1× 10−9 3.5× 10−12 1.2× 10−9

1000× (5× 106)× 0.01 1167.8 13 5.9× 10−9 2.2× 10−12 6.6× 10−8

500× 107 × 0.01 1443.7 12 7.4× 10−9 2.3× 10−12 1.3× 10−8

To compare the proposed EGM algorithm with the available solvers, we present the com-
parative tests. To simplify our task, we used the integer test generator which provided integer
entries in A, b, c, x, u.

Code 2. Integer LP MATLAB Test Generator

%Code 2: Integer generate random solvable LP: min c'x s.t.
%Ax = b, x>=0; A:m-by-n
%Input: m,n,d(ensity); Output: A,b,c; (x,u): primal-dual
%solution
pl=inline('(abs(x)+x)/2');%pl(us) function
tic;A=sprand(m,n,d);A=fix(100*(A-0.5*spones (A)));
uu=10*spdiags((sign(pl(rand(m,1)-rand(m,1)))),0,m,m)*
(rand(m,1)-rand(m,1));
u=fix(uu); x=fix(sparse(10*pl(rand(n,1)-(n-3*m)/n))); b=A*x;
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xi=fix(spdiags((ones(n,1)-sign(pl(x))),0,n,n)*
(ones(n,l)+9*rand(n,1)));
c=A'*u+xi;

The termination criterion of EGM algorithm was

∆1 = ‖Ax− b‖∞ ≤ tol, ∆2 = ‖(A>u− c)+‖∞ ≤ tol, ∆3 = |c>x− b>u| ≤ tol,

where ‖a‖∞ is the Chebyshev norm of a vector a, tol is tolerance, usually tol = 10−6.
To compare the e�ectiveness of di�erent algorithms, we solved four linear programmes gener-

ated by Code 2 on a Celeron 2.02 GHz computer with 1.0 Gb of memory running Windows XP.
We compared EGM algorithm with BPMPD v.2.3 (interior point method) [9], MOSEK v.2.0
(interior point method) [10], CPLEX (interior point method), and CPLEX (simplex method)
v.6.0.1. The results are presented in table 2.

It should be stressed that neither the linear programme with 5 million variables, ρ = 0.01,
m = 1000, nor those with 105 variables, ρ = 1, m = 1000, could be successfully solved by any of
the codes listed previously, excepting the proposed EGM algorithm which solved these problems
in 1021 and 2663 s, respectively, and gave very high accuracy (less than 10−7). Nevertheless,
our algorithm did not give the best results for small and moderate size problems. As is evident
from table 2, the BPMPD solver was superior to the others as applied for the �rst test problem;
the MOSEK solver showed the best results in the second test problem.

Table 2. Comparative results.

m× n× ρ Solver T (s) Iterations ∆1 ∆2 ∆3

500× 104 × 1 EGM (NATLAB) 55.0 12 1.5× 10−8 1.8× 10−12 1.2× 10−7

BPMPD (interior point) 37.4 23 2.3× 10−10 1.8× 10−11 1.1× 10−10

MOSEK (interior point) 87.2 6 9.7× 10−8 3.8× 10−9 1.6× 10−6

CPLEX (interior point) 80.3 11 1.8× 10−8 1.1× 10−7 0.0
CPLEX (simplex) 61.8 8308 8.6× 10−4 1.9× 10−10 7.2× 10−3

3000× 104 × 0.01 EGM (NATLAB) 155.4 11 6.1× 10−10 3.4× 10−13 3.6× 10−8

BPMPD (interior point) 223.5 14 4.6× 10−9 2.9× 10−10 3.9× 10−9

MOSEK (interior point) 42.6 4 3.1× 10−8 1.2× 10−8 3.7× 10−8

CPLEX (interior point) 69.9 5 1.1× 10−6 1.3× 10−7 0.0
CPLEX (simplex) 1764.9 6904 3.0× 10−3 8.1× 10−9 9.3× 10−2

1000× (5× 106) EGM (NATLAB) 1007.5 10 3.9× 10−8 1.4× 10−13 6.1× 10−7

×0.01
1000× 105 × 1 EGM (NATLAB) 2660.8 8 2.1× 10−7 1.4× 10−12 7.1× 10−7

Thus, the examples presented previously have clearly demonstrated the principal e�ective-
ness of the method proposed in solving the problems with a very large number (≈ 106) of
nonnegative variables and a moderate (≈ 103) number of equality type constraints.

It is also evident that the results of the EGM algorithm are highly comparative with those
of simplex and interior point methods, at the same time outperforming them in solving large
LP problems.
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