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Large-scale LP (linear programming) prob-
lems usually have more than one solution.
Techniques such as the simplex methods
and interior point methods make it possi-
ble to obtain different solutions in the case
of nonuniqueness. For example, the simplex
method yields a solution belonging to a vertex
of polyhedron. Some variants of the interior
point method converge to a solution sat-
isfying the strict complementary slackness
condition.

LP projection method is close to the
quadratic penalty function method and to
the modified Lagrangian function method.
This method yields the exact projection
of a given point on the solution set of
primal LP problem as a result of the single
unconstrained maximization of an auxiliary
piecewise quadratic concave function for
any sufficiently large values of the penalty
parameter. A generalized Newton method
with a stepsize chosen using Armijo’s rule
was used for unconstrained maximization.
The proof of globally convergent finitely
terminating generalized Newton method
for piecewise quadratic function was given
in Mangasarian [1] and Kanzow et al.
[2]. LP projection method solves LP prob-
lems with a very large (≈107) number of
variables and moderate (≈105) number of
constraints.

In a similar way, the exact projection of a
given point on the solution set of the dual LP
problem can be obtained by nonnegative con-
strained maximization of auxiliary quadratic
function for sufficiently large but finite values
of the penalty parameter.
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Consider the primal linear program in the
standard form

f∗ = min
x∈X

c�x, X = {x ∈ Rn : Ax = b, x ≥ 0n}
(P)

together with its dual

f∗ = max
u∈U

b�u, U = {u ∈ Rm : A�u ≤ c}, (D)

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are
given, x is a primal variable and u is a dual
variable, 0i denotes the i-dimensional zero
vector.

Everywhere we assume that the solution
set X∗ of the primal problem (P) is nonempty,
and hence the solution set U∗ of the dual
problem (D) is also nonempty.

Consider the problems of finding the
least 2-norm projection x̂∗ of the point x̂ on
the solution set X∗ and the least 2-norm
projection û∗ of the point û on the solution
set U∗:

1
2

‖x̂∗ − x̂‖2 = min
x∈X∗

1
2

‖x − x̂‖2,

X∗ = {
x ∈ Rn : Ax = b, c�x = f∗, x ≥ 0n

}
, (1)

1
2

‖û∗ − û‖2 = min
u∈U∗

1
2

‖u − û‖2,

U∗ = {
u ∈ Rm : A�u ≤ c, b�u = f∗

}
. (2)

Here, the Euclidian norm of vectors is used,
and f∗ is an a priori unknown optimal value
of the objective function of the original LP
problems (P) and (D).

Let us introduce the Lagrange functions
for these problems:

L1(x, p, β) = 1
2

‖x − x̂‖2 + p�(b − Ax)

+ β(c�x − f∗),

L2(u, y, α) = 1
2

‖u − û‖2 + y�(A�u − c)

+ α(f∗ − b�u).
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Here, p ∈ Rm, β ∈ R1, and y ∈ Rn
+, α ∈ R1 are

Lagrange multipliers for problems (1) and
(2), respectively.

The problems dual to problems (1) and (2)
have the forms

max
p∈Rmβ∈R1

min
x∈Rn+

L1(x, p, β), (3)

max
y∈Rn+α∈R1

min
u∈Rm

L2(u, y, α). (4)

The solutions of the inner minimization
problems in Equations (3) and (4) have the
following forms, respectively:

x = (x̂ − A�p − βc)+, (5)

u = û + αb − Ay, (6)

where a+ denotes the vector a with all nega-
tive components replaced by zeros.

Substituting Equation (5) into the
Lagrange function L1(x, p, β) and Equation
(6) into the Lagrange function L2(u, y, α), we
obtain the dual functions of problems (3) and
(6), respectively:

L̂1(p, β) = b�p − 1
2

‖(x̂ + A�p − βc)+‖2

− βf∗ + 1
2

‖x̂‖2,

L̂2(y, α) = −c�y − û�(αb − Ay)

− 1
2

‖αb − Ay‖2 + αf∗.

The function L̂1(p, β) is concave, piecewise
quadratic, and continuously differentiable in
variables p and β. The function L̂2(y, α) is
concave, quadratic, and twice continuously
differentiable in both variables.

Dual problems (3) and (4) are reduced
to the outer maximization problems, respec-
tively:

max
p∈Rmβ∈R1

L̂1(p, β), (7)

max
y∈Rn+α∈R1

L̂2(y, α). (8)

Solving problem (7), we find optimal p and
β. Substituting them into Equation (5), we

obtain x̂∗, which is the projection of the point
x̂ on the solution set of the primal LP prob-
lem (P).

Solving problem (8), we find optimal y and
α. Substituting them into Equation (6), we
obtain û∗, which is the projection of the point
û on the solution set of the dual LP prob-
lem (D).

Unfortunately, maximization problems (7)
and (8) contain an a priori unknown value
f∗, which is the optimal value of the objective
function of the original LP problem. However,
these problems can be simplified by eliminat-
ing this difficulty. For this purpose, the fol-
lowing simplified unconstrained maximiza-
tion problem is solved instead of problem (7):

max
p∈Rm

S1(p, β, x̂), where S1(p, β, x̂)

= b�p − 1
2

‖(x̂ + A�p − βc)+‖2. (9)

Here the scalar β is fixed.
Instead of problem (8), the following sim-

plified maximization problem on the positive
orthant is solved:

max
y∈Rn+

S2(y, α, û), where S2(y, α, û)

= −c�y + û�Ay − 1
2

‖αb − Ay‖2. (10)

Here the scalar α is also fixed.
Let us first consider problem (9) and its

relation to the primal LP problem (P). Note
that, in contrast to problem (1), dual prob-
lem (7) has many solutions. Naturally, the
question that arises is of finding the min-
imal value β∗ of the Lagrange multiplier
β among all solutions of problem (7). Once
such β∗ is found, one can fix β ≥ β∗ in dual
problem (7) and maximize the dual func-
tion L̂1(p, β) only with respect to variable
p, that is, solve problem (9). In this case,
the pair [p, β] is a solution to problem (7),
and the triplet [x̂∗, p, β] is a saddle point of
problem (1), where the projection x̂∗ of the
point x̂ on the solution set X∗ is defined by
problem (5).
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Theorem 1 [3]. There exists β∗ such that
for all β ≥ β∗ the unique least 2-norm projec-
tion x̂∗ of a point x̂ on X∗ is given by

x̂∗ = (x̂ + A�p(β) − βc)+,

where p(β) is a maximizer of S1(p, β, x̂) in
problem (9).

Theorem 1 makes it possible to replace
problem (7), which contains an a priori
unknown value f∗, by problem (9), which
involves the half-interval [β∗, +∞] instead
of this value. This essentially simplifies
the calculations. Note that the value β∗
may be negative. This occurs when the
projection of the point x̂ on the solution set
X∗ coincides with the projection of this point
on the feasible set X. The estimation of the
threshold value β∗ is given in Golikov and
Evtushenko [3,5].

The next theorem tells us that a solution to
problem (D) can be obtained from the single
unconstrained maximization problem (9) if a
point x̂∗ ∈ X∗ is found according to Theorem 1.

Theorem 2 [3]. For all β > 0 and all x̂ =
x∗ ∈ X∗ an exact solution to dual problem
(D) is given by u∗ = p(β)/β, where p(β) is
a solution to the unconstrained maximization
problem (9).

To solve the primal and dual LP problems
simultaneously, one can use the following
iterative process:

ps+1∈arg max
p∈Rm

{
b�p− 1

2
‖(xs + A�p−βc)+‖2

}

(11)

xs+1 = (xs + A�ps+1 − βc)+, (12)

where x0 is an arbitrary starting point.

Theorem 3 [3]. For all β > 0 and for arbi-
trary starting point x0, the iterative process
(11)–(12) converges to x∗ ∈ X∗ in a finite num-
ber of iterations ω. The formula u∗ = pω+1/β

provides an exact solution to the dual prob-
lem (D).

Iterative process (11,12) is finite. It gives
an exact solution to the primal problem (P)
and the exact solution to the dual problem
(D). Note that one can use this method even
when one is unaware of the threshold value
β∗. However, if the chosen coefficient is less
than the threshold value, then this method,
in a finite number of steps, yields some solu-
tion x∗ to the primal problem (P) which is not
a projection of the starting point x0 on the
solution set X∗. Note that xω = x∗ ∈ X∗ is the
projection of the point xω−1 on X∗.

The subsequent theorems are similar to
Theorems 1–3.

Theorem 4 [4]. There exists α∗ such that
for all α ≥ α∗ the unique least 2-norm projec-
tion û∗ of a point û on U∗ is given by

û∗ = û + αb − Ay(α),

where y(α) is a point maximizing S2(y, α, û)
on Rn

+.

The estimation of the threshold value β∗
is given in Evtushenko et al. [4].

Theorem 5 [4]. For all α > 0 and all û =
u∗ ∈ U∗ an exact solution to primal problem
(P) is given by u∗ = y(α)/α, where y(α) is a
point maximizing S2(y, α, u∗) on Rn+.

To solve the primal and dual LP problems
simultaneously, one can use the following
iterative process:

ys+1∈arg max
y∈Rn+

{−c�y + u�
s Ay − 1

2‖αb − Ay‖2},

(13)

us+1 =us + αb − Ays+1. (14)

Theorem 6 [4]. For all α > 0 and for arbi-
trary starting point u0, the iterative process
(13)–(14) converges to u∗ ∈ U∗ in a finite num-
ber of iterations ν. The formula x∗ = yν+1/α

provides an exact solution to primal LP prob-
lem (P).
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Note that u∗ ∈ U∗ is the projection of the
point uν−1 on the solution set U∗ of the prob-
lem (D).

The unconstrained maximization in
Equations (9) and (11) can be performed by
any method, for example, by the conjugate
gradient method. However, the generalized
Newton method [1] turns out to be much
more efficient.

The objective function S1(p, β, x̂) of prob-
lems (9) is concave, piecewise quadratic, and
differentiable. The ordinary Hessian does not
exist for this function because the gradient

∂

∂p
S1(p, β, x̂) = b − A(x̂ + A�p − βc)+.

is not differentiable. However, for this func-
tion, one can define the generalized Hessian
matrix, which is an m × m symmetric nega-
tive semidefinite matrix of the form

∂2

∂p2 S1(p, β, x̂) = −AD(z)A�.

Here, D(z) denotes the n × n diagonal matrix
whose ith diagonal entry zi is equal to 1 if
(x̂ + A�p − βc)i > 0 and zi is equal to zero if
(x̂ + A�p − βc)i ≤ 0 (i = 1, 2, . . . , n). The gen-
eralized Hessian matrix may be singular.
Therefore, we use the following generalized
Newton method:

ps+1 =

ps−μ

[
∂2

∂p2 S1(p, β, x̂) − δIm

]−1

Sp(p, β, x̂),

where δ is a small positive number (typically
δ = 10−4), Im is the identity matrix of size
m × m, and μ is a stepsize chosen using
Armijo’s rule.

Unfortunately the generalized Newton
method cannot be applied to the nonneg-
ativity constrained maximization problem
(10) directly. By incorporating the nonneg-
ativity constraint y ≥ 0n into the objective
function of problem (10) as a penalty term,
we have the unconstrained maximization
problem

max
y∈Rn

{
−c�y + û�Ay − 1

2
‖αb − Ay‖2

− τ

2
‖(−y)+‖2

}
,

where τ > 0 is a penalty parameter. In
this case, we obtained the optimal solution
y only in limit as τ → +∞. This prop-
erty complicates the computation. There
exists a very simple way to overcome this
shortcoming.

Let a vector w ∈ Rm+n consist of two
vectors w� = [u�, v�], where u ∈ Rm, v ∈ Rn.
Consider the following LP problem

f∗ = max
w∈W

b�u,

W ={u∈Rm, v ∈ Rn:A�u + v = c, v ≥ 0n},
(D′)

which is equivalent to dual problem (D).
The solution set of this problem is denoted
by W∗ = [U∗ × V∗]. For a given point ŵ we
find the least 2-norm projection ŵ∗ on W∗
as a solution to the following minimization
problem:

1
2

‖û∗ − û‖2 + 1
2

‖v̂∗ − v̂‖2

= min
w∈W∗

{
1
2

‖u − û‖2 + 1
2

‖v − v̂‖2
}

,

W∗ = {u ∈ Rm, v ∈ Rn

: A�u + v = c, v ≥ 0n, b�u = f∗}.

Using an approach similar to that
used above we arrive at the following
unconstrained maximization problem:

max
y∈Rn

S3(y, γ , ŵ), where S3(y, γ , ŵ)

= −c�y + û�Ay

−1
2

‖γ b − Ay‖2 − 1
2

‖(v̂ − y)+‖2. (15)

The following theorems hold.

Theorem 7. There exists γ∗ such that for
all γ ≥ γ∗ the unique least 2-norm projection
ŵ�∗ = [û�∗ , v̂�∗ ] of a point ŵ� = [û�, v̂�] on W∗
is given by

û∗ = û + γ b − Ay(γ ),

v̂∗ = (v̂ − y(γ ))+,

where y(γ ) is a solution to the unconstrained
maximization problem (15).
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Table 1. Comparative Results

m × n × ρ Solver T (s) Iterations �1 �2 �3

LPP (MATLAB) 55.0 12 1.5 × 10−8 1.8 × 10−12 1.2 × 10−7

BPMPD (interior point) 37.4 23 2.3 × 10−10 1.8 × 10−11 1.1 × 10−10

500 × 104 × 1 MOSEK (interior point) 87.2 6 9.7 × 10−8 3.8 × 10−9 1.6 × 10−6

CPLEX (interior point) 80.3 11 1.8 × 10−8 1.1 × 10−7 0.0
CPLEX (simplex) 61.8 8308 8.6 × 10−4 1.9 × 10−10 7.2 × 10−3

LPP (MATLAB) 155.4 11 6.1 × 10−10 3.4 × 10−13 3.6 × 10−8

BPMPD (interior point) 223.5 14 4.6 × 10−9 2.9 × 10−10 3.9 × 10−9

3000 × 104 × 0.01 MOSEK (interior point) 42.6 4 3.1 × 10−8 1.2 × 10−8 3.7 × 10−8

CPLEX (interior point) 69.9 5 1.1 × 10−6 1.3 × 10−7 0.0
CPLEX (simplex) 1764.9 6904 3.0 × 10−3 8.1 × 10−9 9.3 × 10−2

1000 × (5 × 106) × 0.01 LPP (MATLAB) 1007.5 10 3.9 × 10−8 1.4 × 10−13 6.1 × 10−7

1000 × 105 × 1 LPP (MATLAB) 2660.8 8 2.1 × 10−7 1.4 × 10−12 7.1 × 10−7

Theorem 8. For all γ > 0 and ŵ = w∗ ∈ W∗
an exact solution to primal problem (P) is
given by x∗ = y(γ )/γ , where y(γ ) is a solution
to the unconstrained problem (15).

To solve the primal and dual LP problems
simultaneously, one can use the following
iterative process similarly to the process
(13,14):

ys+1 ∈arg max
y∈Rn

{
−c�y + u�

s Ay− 1
2

‖γ b −Ay‖2

−1
2

‖(vs − y)+‖2
}

, (16)

us+1 =us + γ b − Ays+1, (17)

vs+1 = (vs − ys+1)+. (18)

Theorem 9. For all γ > 0 and for arbitrary
starting point w0, the iterative process (16–18)
converges to w∗ ∈ W∗ in a finite number of
iterations σ . The formula x∗ = yσ+1/γ gives
an exact solution to the primal problem (P).

The proofs of Theorems 7–9 are similar
to the proofs of Theorems 1–3, respec-
tively. The goal function S3(y, γ , ŵ) of
unconstrained maximization problem (15)
is piecewise quadratic concave function.
Therefore, one can define its generalized
Hessian, which is m × m symmetric negative
semidefinite matrix:

∂2

∂y2 S3(y, γ , ŵ) = −A�A − D(z).

Here, D(z) denotes the n × n diagonal matrix
with diagonal elements zi, i = 1, 2, . . . , n. If
(v̂ − y)i > 0 then zi = 1, if (v̂ − y)i ≤ 0 then zi =
0. Now, for solving problem (15) one can use
generalized Newton method.

There is an important difference between
problems (10) and (15). In the first case, we
look for the projection of a given point û on
U∗, and in the second case we project a point
Ŵ = [û, v̂] on the solution set W∗. Let û1

∗ and
û2∗ denote the projections of point û and [û, v̂]
in the first and second cases, respectively.
Then the following inequality holds:

‖û1
∗ − û‖ ≤ ‖û2

∗ − û‖.

The comparison of LP projection methods
(which were implemented in MATLAB) with
some well-known commercial and research
software packages showed that they are com-
petitive with the simplex and the interior
point methods [1,5].

Table 1 presents the results of the test
computations obtained using the program
LPP, which implements method (11,12)
in MATLAB, and other commercial and
research packages [5]. Four randomly gener-
ated LP problems were solved on a 2.0 GHz
Celeron computer with 1 Gb of memory. The
following packages were used: BPMPD v.
2.3 (the interior point method) [6], MOSEK
v.2.0 (the interior point method) [7], and the
popular commercial package CPLEX (v.6.0.1,
the interior point and simplex methods).

Table 1 shows the dimensions m and n of
the problems, the density ρ of the nonzero
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Figure 1. Computational time and speedup diagrams.
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entries in the matrix A, the time T needed
to solve the the LP in seconds, and the num-
ber of iterations (for LP projection method
(LPP), the total number of systems of lin-
ear equations that were solved in the New-
ton method when problem (11) was solved).
Everywhere, parameter β was equal to 1,
which exceeded β∗ in these problems. Every-
where, x̂ = 0n; that is, the normal solution
(projection of the origin onto the primal solu-
tion set X∗) was sought in primal LP problem.

The l∞ norms of the residual vectors were
calculated:

�1 = ‖Ax − b‖∞ ≤ tol,

�2 = ‖(A�u − c)+‖∞ ≤ tol,

�3 = |c�x − b�u| ≤ tol.

It should be stressed that neither the linear
program with 5 million variables, ρ = 0.01,
m = 1000, nor those with 105 variables,
ρ = 1, m = 1000, could be successfully solved
by any of the codes listed above excepting the
proposed LPP, which solved these problems
in ≈16 and ≈44 min, respectively, and gave
very high accuracy (less than 7.1 × 10−7).
Nevertheless, LPP code did not give the best
results for small and moderate-size problems.
As is evident from Table 1, BPMPD solver
was superior to the others as applied for the
first test problem; MOSEK solver showed the
best results in the second test problem. Thus,
the examples presented above have clearly
demonstrated the principal effectiveness
of the method proposed in solving the
problems with a very large number (≈106)
of nonnegative variables and a moderate
(≈103) number of equality type constraints.

It is also evident that the results of LP
projection algorithm are highly competitive
to those of simplex and interior point meth-
ods, at the same time outperforming them in
solving large LP problems.

Several parallel versions of the general-
ized Newton method for solving linear pro-
grams based on various data decomposition
schemes of matrix A (column, row, and cel-
lular schemes) were implemented [8]. The
resulting parallel algorithms were success-
fully used to solve large-scale LP problems
(up to several dozens of millions of variables

and several hundreds of thousands of con-
straints) for a relatively dense matrix A. The
computational experiments were performed
on the cluster consisting of two-processor
nodes based on 1.6 GHz Intel Itanium 2
processors connected by Myrinet 2000. For
example, for LP problem with 1 million vari-
ables and 10,000 constraints, the cellular
scheme for 144 processors of the cluster accel-
erated the computations approximately by
a factor of 50, and the computation time
was 28 s. LP problem with 2 million vari-
ables and 200,000 constraints was solved in
about 40 min on 80 processors. Another LP
problem with 60 million variables and 4000
constraints was solved by column scheme in
140 s on 128 processors.

The computation time for typical test
problems and the speedup for the different
data decomposition schemes are shown in
Fig. 1; where Ttot denotes the computation
time in seconds, Tlin is the time spent on
solving systems of linear equations, Trem is
the time spent on the other computations.
Furthermore, Stot denotes the parallel
speedup in solving LP problem, Slin is the
parallel speedup in solving linear systems,
and Srem is the speedup of the other compu-
tations. Parameter β was equal to 100, which
exceeded β∗ in these problems. Everywhere,
x̂ = 0n; that is, the normal solution was
sought in primal LP problem.

The development of an efficient solver
was found to be a very challenging task;
for every parallel variant of the algorithm,
a reasonable trade-off between the computa-
tional scalability and the scalability in terms
of memory had to be found. The highest
speedup was obtained for the cellular scheme.
However, depending on the dimension of the
problem and the sparsity structure of the
matrix A, the cellular, the row, or the column
scheme was optimal.
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