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Two Parametric Families of LP Problems
and Their Applications

A.I. Golikov1 and Yu.G. Evtushenko1

Abstract � A new classi�cation of LP problems is given. Two di�erent parametric
families of LP problems are introduced. There are one-to-one correspondences be-
tween the solution sets among the problems belonging to the same family. For the
construction of necessary and su�cient optimality conditions a combination of the
variables of any two problems belonging to di�erent families must be made. An ap-
plication of new optimality conditions to �nding the normal solution of LP problems
is given.

1. INTRODUCTION

The main tools in the theory of linear programming (LP) are the duality theory and the
Kuhn�Tucker optimality conditions, which involve the variables of primal and dual problems.
Sometimes it is useful to transform LP problems and introduce them in di�erent forms. In [1]
� [4] various approaches to presentation and classi�cation of LP problems can be found.

In this paper, LP problems are presented in what is called the parametric form, when
the objective function and/or the feasible set depend on the values of parameters that belong
to some a�ne sets. Below we propose a nontraditional approach to formulation of linear
programming problems. Our considerations are based on using the primal vectors and dual slack
vectors as the main variables. Performing linear transformations and changing the objective
vectors, we obtain various parametric LP problems, which depend on a choice of one or two
parametric vectors belonging to some prede�ned sets. The parametrization is carried out in
such a way that the solution sets should not depend on a speci�c choice of parameters from the
corresponding sets. The relations between the solutions sets and between the optimal values of
the objective functions of problems are investigated.

In Section 2, two subclasses of LP problems are distinguished. Namely, primal family (PF)
and dual family (DF). All problems from each family are equivalent, though their dimensionali-
ties di�er. This means that for the problems belonging to the same family there exist one-to-one
correspondences between their feasible sets and solution sets, respectively. Moreover, if we use
variables of a problem from one family, we have, to introduce some additional variables from
a problem belonging to another family in order to establish necessary and su�cient optimality
conditions. There exists a one-to-one correspondence between these families, which is called
the conjugacy. Each problem from any family has two problems from another family: dual and
conjugate.

Geometric interpretations of these results are given in Section 3. Here we investigate the
in�uence of the parameterized objective vector on the solution set. It is shown that if an LP
problem is formulated in the canonical form, then the set of solutions depends only on the
projection of the objective vector on the null space of the constraint matrix, which de�nes the
equality constraints.
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In Section 4, we apply our results to obtain the normal (least-norm) solution of the LP
problem. The LP problem is reduced to the unconstrained maximization of a smooth concave
piecewise quadratic function. The number of variables in this problem is that for the primal
LP problem plus one.

2. TWO PARAMETRIC FAMILIES OF LP PROBLEMS AND
OPTIMALITY CONDITIONS

Let the primal LP problem be given in the canonical form

f∗ = min
x∈X

c>x, X = {x ∈ Rn : Ax = b, x ≥ 0n}. (P)

Here and below, A is an m × n constraint matrix of rank m < n; x ∈ Rn is a primal variable;
c ∈ Rn is the objective vector of (P); b ∈ Rm is a constraint vector; and by 0i we denote the
i-dimensional zero vector.

We de�ne the dual problem to (P) as follows:

max
u∈U

b>u, U = {u ∈ Rm : c− A>u ≥ 0n}. (D)

Let X∗ and V∗ denote the solution sets of the problems (P) and (D), respectively. It is
assumed in the sequel that these sets are nonempty. The necessary and su�cient optimality
conditions (the Kuhn�Tucker conditions) for the problems (P) and (D) have the form

Ax− b = 0m, c− A>u ≥ 0n, D(x)(c− A>u) = 0n, x ≥ 0n. (2.1)

Here and below, D(z) denotes the diagonal matrix whose ith diagonal entry is the ith component
zi of the vector z.

For an arbitrary m × n matrix H introduce the null space (the kernel) of H and the row
space of the matrix H (the image of the matrix H>) denoted by ker H and im H>, respectively,

ker H = {x ∈ Rn : Hx = 0m},
im H> = {ξ ∈ Rn : ξ = H>u, u ∈ Rm}.

For an arbitrary full rank m × n matrix H we de�ne its pseudoinverse n ×m matrix H+,
the n× n matrix (H>)‖ describes the projection on the row space of H, and the n× n matrix
(H>)⊥ describes the projection on the null space of H. If the rank of matrix H is equal to m,
then n ≥ m, the rows of H are linearly independent, and

H+ = H>(HH>)−1, (H>)‖ = H+H, (H>)⊥ = In − (H>)‖. (2.2)

Here and below, Is denotes the s-dimensional identity matrix.
The dimension of the linear space ker A is equal to ν, the defect of matrix A. In particular,

in the problem (P), we have ν = n − m. The null space and the row space of matrix A are
orthogonal complements to each other. The vector space Rn can be represented as a direct sum
of these subspaces, i.e., Rn = im A> ⊕ ker A.

In addition to the necessary and su�cient optimality conditions (2.1), we introduce other
optimality conditions. For this purpose, following [3, 5, 6] we de�ne a new ν×n matrix K. We
assume that the rows of K are linearly independent and belong to the null space of matrix A;
hence, the subspace im K> spanned by them coincides with the null space (kernel) of A. The

2



matrix K can be chosen to be any matrix such that its ν rows form a basis of the null space of
A. Thus, im K> is the orthogonal complement of the subspace im A>. Therefore,

im K> = ker A, AK> = 0mν , Rn = im A> ⊕ im K>, (2.3)

where 0ij denotes the i× j matrix with zero entries.
Matrix K is not uniquely de�ned; it can be constructed in various ways. If we partition

the matrix A as A = [B | N ], where B is nondegenerate, then we can represent K as K =
[−N>(B−1)> | Iν ]. If we reduce A by means of Gauss�Jordan transformations to the form
A = [Im | N ], then we can represent K as K = [−N> | Iν ].

In some special cases, the construction of the matrix K is extremely simple. For instance,
suppose that an LP problem involves inequality constraints Nz ≥ b, where N is an m × ν
matrix and z ∈ Rν

+. Introducing auxiliary variables ξ ∈ Rm
+ , we represent the vector x ∈ Rn as

the union of the vectors z and ξ, i.e., x> = [z>, ξ>]. The feasible set can be written in the same
form as for problem (P), where A = [N | −Im]. Therefore, we can de�ne K as K = [Iν | N>].

We de�ne a vector d ∈ Rν and dual slack vector v ∈ Rn by the formulas d = Kc and

v = c− A>u. (2.4)

Let us introduce two a�ne sets

X̄ = {x ∈ Rn : Ax = b}, V̄ = {v ∈ Rn : Kv = d}.

Here and below, x̄ and v̄ denote arbitrary �xed n-dimensional vectors satisfying the con-
ditions x̄ ∈ X̄ and v̄ ∈ V̄ . Note that some components of x̄ and v̄ may be negative. In the
simplest case, one can take v̄ = c. By virtue of the fact that the rank of the matrix A is equal
to m and n > m, we always have X̄ 6= ∅ and V̄ 6= ∅.

A vector v̄ ∈ V̄ can easily be found. It is enough to take an arbitrary vector ū ∈ Rm and
de�ne vector v̄ as

v̄ = c− A>ū. (2.5)
Taking into account (2.3) and (2.4), we come to conclusion that v̄ ∈ V̄ .

Substituting c = v̄ + A>ū into the objective function of the problem (P), we get

c>x = v̄>x + b>u(v̄) (2.6)

for any x ∈ X̄. Therefore, we can replace the original problem (P) by the following modi�ed
problem:

f 1
∗ (v̄) = min

x∈X
v̄>x, X = {x ∈ Rn : Ax = b, x ≥ 0n}. (Px)

The problems (P) and (Px) are quite similar, di�ering slightly only in the choice of the
objective vector. In the problem (P) this vector is de�ned in the description of the problem,
and in (Px) we can choose any vector v̄ ∈ V̄ . Hence, in the second case we actually have a
variety of problems. So, we can refer to (Px) as a one-parametric problem.

The solution sets of the problems (P) and (Px) coincide and are independent of the speci�c
choice of the vector v̄ ∈ V̄ or, due to (2.5), of arbitrary vector ū ∈ Rm. The optimum values
of the objective functions di�er by a constant depending on the speci�c choice of ū ∈ Rm. The
di�erence is equal to zero if ū = 0m, because in this case v̄ = c and f∗ = f 1

∗ (c). So, the problem
(P) is a particular case of (Px); therefore we can exclude (P) from consideration.

By making a change of variables in the problem (Px) given in the canonical form, we will
obtain the problem in a standard form, where only the inequality constraints de�ne the feasible
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set. The general solution of the nonhomogeneous system of linear equations Ax = b can be
written in the form

x = x̄−K>y, (2.7)
where x̄ is a particular solution of the system, K>y is the general solution of the homogeneous
system Ax = 0m, and y ∈ Rν . Let us de�ne the set

Y = {y ∈ Rν : x̄−K>y ≥ 0n}. (2.8)

Formula (2.7) can be considered as a linear transformation from the linear vector space
Rν to another linear vector space Rn. If y ∈ Y , then from (2.7), (2.3) and (2.8) we can get
Ax = Ax̄ = b, x ≥ 0n. Hence, the transformation (2.7) maps the set Y to the feasible set X of
the problems (P) and (Px). We refer to X as the image of Y under the space transformation
(2.7). There exists a one-to-one correspondence between X and Y . Indeed, for each y ∈ Y one
can uniquely determine x ∈ X by formula (2.7). For overdetermined system (2.7) containing n
linear equations and ν unknowns y, the pseudosolution

y(x) = (KK>)−1K(x̄− x) = (K>)+(x̄− x) (2.9)

always exists. It solves (2.7) and is unique if and only if x̄− x ∈ im K>. This inclusion holds
if and only if x ∈ X̄. Thus, for any x ∈ X̄, formula (2.9) determines an a�ne transformation
that is the inverse of (2.7). Therefore, one can write

Y = (K>)+(x̄−X). (2.10)

Let us express the objective function of the problem (Px) in terms of the variable y.
Substituting (2.7) into the objective function of the problem (Px) and using the equality
v̄>K> = c>K> = d>, we obtain

v̄>x = v̄>x̄− v̄>K>y = v̄>x̄− d>y. (2.11)

Taking into account (2.11) and the fact that X is the image of Y , one can write the problem
(Px) in the standard form, where the feasible set Y is the intersection of n half-spaces:

max
y∈Y

d>y, Y = {y ∈ Rν : x̄−K>y ≥ 0n}. (Py)

Thus, m equality constraints are excluded from the de�nition of the set X, and we deal
with inequality constraints only. We can consider (2.7) as a linear change of variables. This
formula relates the new variable y to the old variable x.

There exist one-to-one correspondences de�ned by (2.7) and (2.9) between the feasible
sets X and Y , as well as between the solution sets X∗ and Y∗ of the problems (Px) and (Py),
respectively. In particular, for the solution sets X∗ and Y∗ these correspondences can be written
in the form

X∗ = x̄−K>Y∗, Y∗ = (K>)+(x̄−X∗). (2.12)
Let us introduce a new variable

g = K>y. (2.13)
From the condition v̄ ∈ V̄ we obtain d> = v̄>K>; therefore, due to (2.7) we have two expressions
for the objective function of the problem (Py):

d>y = v̄>(x̄− x), d>y = v̄>g. (2.14)
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On substituting the �rst representation in the objective function of the problem (Py) and
transforming the feasible set Y , we obtain another problem,

min
[x,y]∈Z

v̄>x, Z = {[x, y] : K>y + x = x̄, x ≥ 0n}. (Pxy)

The solution set of this problem is Z∗ = [X∗, Y∗].
From de�nition (2.13) it follows that g ∈ im K> = ker A. Therefore, we can de�ne g as a

solution of the linear homogeneous system Ag = 0n. Using the second representation given by
(2.14) and formula (2.7), we obtain from (Py) another problem,

max
g∈G

v̄>g, G = {g ∈ Rn : Ag = 0m, g ≤ x̄}. (Pg)

Thereby, the use of variable y in the problem (Pxy) is excluded and the number of variables
is diminished. The solution set G∗ of the problem (Pg) is connected with Y∗ and X∗ by relations

G∗ = K>Y∗ = x̄−X∗. (2.15)

Actually, the problems (Px), (Py), (Pxy), and (Pg) can be considered as the same problem.
The di�erence in the formulation is implied by the change of variables (2.7) and (2.13), which
allow us to write the objective functions in various forms and transform the feasible sets. One
can say that (P), (Px), (Py), (Pxy), and (Pg) are equivalent problems in the sense that the
solution sets of (P) and (Px) coincide and there exists a one-to-one correspondence between
X∗ and other solution sets. We will refer to the problems (P), (Px), (Py), (Pxy), and (Pg) as a
primal family of linear programming problems. Now by analogy we introduce a dual family of
problems. We change variables in the problem (D), setting

u = ū + w, (2.16)

where ū was introduced in (2.5). Substituting (2.16) in (D) and in the de�nition of U , we
obtain a new problem in the standard form:

max
w∈W

b>w, W = {w ∈ Rm : v̄ − A>w ≥ 0n}. (Dw)

Simultaneously we get the following relation between the optimal values of the corresponding
objective functions

max
w∈W

b>w = max
u∈U

b>u− b>ū. (2.17)

We denote by W∗ the solution set of the problem (Dw). There exists a one-to-one corre-
spondence between the feasible sets U and W de�ned as U = ū + W . A similar relationship
U∗ = ū + W∗ holds between the solution sets.

Let us introduce the following relation:

v = v̄ − A>w, (2.18)

where v̄ ∈ V̄ , and de�ne a set

V = {v ∈ Rn : Kv = d, v ≥ 0n}.
In (2.18), the vector w can be regarded as an implicit function of a dual slack vector v of

larger dimension. System (2.18) is overdetermined, that is, it is solvable with respect to the
vector w not for all vectors v and v̄. However, the pseudosolution

w(v) = (AA>)−1A(v̄ − v) = (A>)+(v̄ − v) (2.19)
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always exists and is unique. This pseudosolution is also a unique solution of system (2.18) if
and only if the vector v̄−v ∈ im A>. In this case, according to (2.3), matrix K is orthogonal to
the vector v̄− v, i.e., Kv = Kv̄ = d. Since v̄ ∈ V̄ , one can assert that system (2.18) is uniquely
solvable with respect to w if and only if v ∈ V̄ . If we add the condition w ∈ W , then relation
(2.18) implies that the corresponding vector v ≥ 0n and, hence, v ∈ V . Therefore, there exists
a one-to-one correspondence between the feasible set W of the problem (Dw) and the set V .

We represent the objective function of the problem (Dw) in terms of the dual slack vector
v. For this purpose, we substitute b = Ax̄ into the objective function of the problem (Dw) and,
taking into account (2.18), we obtain

b>w = x̄>A>w = x̄>v̄ − x̄>v. (2.20)

Thus, the problem (Dw) is reduced to the LP problem written in the canonical form

f 2
∗ (v̄) = min

v∈V
x̄>v, V = {v ∈ Rn : Kv = d, v ≥ 0n}. (Dv)

Let V∗ denote the solution set of this problem. The relations between the feasible sets V
and W and between the solution sets V∗ and W∗ can be expressed as follows:

V = v̄ − A>W, W = (A>)+(v̄ − V ),
V∗ = v̄ − A>W∗, W∗ = (A>)+(v̄ − V∗).

(2.21)

Any particular problem from (Dv) has one and the same solution set V∗, which is independent
of the speci�c choice of the vector x̄ ∈ X̄. Formulas (2.21) de�ne a one-to-one correspondence
between the solution sets V∗ and W∗ of the problems (Dv) and (Dw), respectively. Let a vector
q ∈ Rn be de�ned as

q = A>w. (2.22)
Since x̄ ∈ X̄, it follows that

b>w = x̄>A>w = x̄>q. (2.23)
Multiplying (2.22) from the left by K and taking into account orthogonality condition in (2.3),
we obtain Kq = 0ν . From the feasibility condition of the problem (Dw) it follows that q ≤ v̄.
So, the problem (Dw) can be reformulated as

max
x∈Q

x̄>q, Q = {q ∈ Rn : Kq = 0ν , q ≤ v̄}, (Dq)

where the solution set has the form

Q∗ = A>W∗ = v̄ − V∗. (2.24)

Since the rank of A is m, we have a one-to-one correspondence between Q∗ and W∗.
From (2.18) and (2.23) we obtain b>w = x̄>(v̄ − v). So, we come to conclusion that the

problem
min

[v,w]∈T
x̄>v, T = {[v, w] : A>w + v = v̄, v ≥ 0n} (Dvw)

is equivalent to the problem (Dw). The solution set of (Dvw) is T∗ = [V∗,W∗]. The problems
(D), (Dw), (Dv), (Dq), and (Dvw) belong to the dual family. All these problems can be regarded
as equivalent.

The problems (Px), (Py), (Dw), and (Dv) depend on a parameter x̄ or v̄. Therefore, we
refer to them as one-parametric problems. The problems (Pxy), (Pg), (Dq), and (Dvw) depend
simultaneously on two parameters x̄ and v̄, and we call them two-parametric problems.
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The class of these eight problems is rather large. In particular, it contains the original
problems (P) and (D). Indeed, if we substitute the vector c for v̄ in the problems (Px) and
(Dw), then we obtain the problems (P) and (D)), respectively. Therefore, we can exclude (P)
and (D) from consideration if we deal with (Px) and (Dw).

There exists a symmetry between the problems (Px) and (Dv). Both problems are of the
same type, and the objective functions and the feasible sets are similar. The di�erence consists
only in the speci�c data which de�ne the corresponding matrices, vectors, and numbers. The
problem (Dv) is called conjugate to (Px). Similar symmetry exists between the problems (Py)
and (Dw), between (Pxy) and (Dvw), and between (Pg) and (Dq). Therefore, each of these pairs
can be called a pair of mutually conjugate problems.

We express this correspondence between the problems, variables, matrices, vectors, numbers
which describe these problems, feasible sets, and solution sets by the symbol ⇐⇒, i.e.,

(Px)⇔ (Dv), (Py)⇔ (Dw), (Pxy)⇔ (Dvw), (Pg)⇔ (Dq),
A ⇔ K, X ⇔ V, W ⇔ Y, X∗ ⇔ V∗, W∗ ⇔ Y∗, G∗ ⇔ Q∗, Z∗ ⇔ T∗,

x ⇔ v, b ⇔ d, m ⇔ ν, v̄ ⇔ x̄, y ⇔ w, g ⇔ q.

The following �gures summarize the relationships between the di�erent problems.

D : max b>u
A>u ≤ c

Dw : max b>w
A>w ≤ v̄

Dv : min x̄>v
Kv = d, v ≥ 0n

P : min c>x
Ax = b, x ≥ 0n

Px : min v̄>x
Ax = b, x ≥ 0n

Py : max d>y
K>y ≤ x̄
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Fig. 1. Original and one-parametric problems.

D : max b>u
A>u ≤ c

Dq : max x̄>q
Kq = 0ν , q ≤ v̄

Dvw : min x̄>v
A>w + v = v̄, v ≥ 0n

P : min c>x
Ax = b, x ≥ 0n

Pxy : min v̄>x
K>y + x = x̄, x ≥ 0n

Pg : max v̄>g
Ag = 0n, g ≤ x̄
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Fig. 2. Original and two-parametric problems.

The notation B ⇔ C means that the problems (B) and (C) are equivalent, the vertical
arrows between the problems (B) and (C) denote their mutual duality, and the diagonal arrows
mean the mutual conjugacy.

Below we present some results concerning the properties of all introduced problems.
Theorem 1 (an analogue of weak duality). Assume that all the variables belong to

the feasible sets of the corresponding problems. Then for one-parametric problems the following
inequalities hold:

v̄>x + x̄>v ≥ x̄>v̄ ≥ d>y + b>w, (2.25)
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and for two-parametric problems the following similar inequalities valid:

v̄>x + x̄>v ≥ x̄>v̄ ≥ v̄>g + x̄>q. (2.26)

Proof. Multiplying (2.18) by x ∈ X, we obtain

v>x = v̄>x− w>Ax = v̄>x− w>Ax̄ = v̄>x + x̄>(v − v̄) ≥ 0, v̄>x + x̄>v ≥ x̄>v̄.

Multiplying (2.7) by v ∈ V , we get

v>x = x̄>(v̄−Aw)−y>Kv = x̄>(v̄−Aw)−y>Kv̄ = x̄>v̄−b>w−d>y ≥ 0, x̄>v̄ ≥ b>w+d>y.

Thus, (2.25) is proved. Taking into account (2.14) and (2.23), we have (2.26).
From the left inequality in (2.25) and equality (2.18), we obtain v̄>x ≥ x̄>(v̄−v) = x̄>A>w =

b>w, where x ∈ X, w ∈ W . If v̄ = c, then ū = 0m and W = U , and we conclude that for the
problems (P) and (D) the well-known weak duality inequality c>x ≥ b>u holds for all x ∈ X,
u ∈ U .

By opt Q we denote the optimal value of the objective function of the problem (Q). The
optimal values of all objective functions, except the problems (P) and (D), depend either on
one of the parameters v̄ and x̄ or on both. For example, we write opt Px(v̄), opt Dq(v̄, x̄),
opt Dw(v̄), and opt Py(x̄).

Theorem 2 (an analogue of duality). If there exists a solution of at least one of the ten
LP problems under consideration, then there exist solutions of the nine other problems. The
optimal values of the objective functions of these problems are related to each other as follows:

opt P = opt Px(v̄) + b>ū = opt D = opt Dw(v̄) + b>ū, (2.27)

opt Px(v̄) + opt Dv(x̄) = opt Py(x̄) + opt Dw(v̄) =
= opt Px(v̄) + opt Py(x̄) =
= opt Dv(x̄) + opt Dw(v̄) = x̄>v̄,

(2.28)

opt Pxy(v̄, x̄) + opt Dwv(v̄, x̄) = opt Pg(v̄, x̄) + opt Dq(v̄, x̄) =
= opt Pxy(v̄, x̄) + opt Pg(v̄, x̄) =
= opt Dq(v̄, x̄) + opt Dwv(v̄, x̄) = x̄>v̄.

(2.29)

Proof. The existence of the solutions follows from the equivalence of the problems in the
PF and DF and from the ordinary duality theory applied to the corresponding problems in the
PF and DF. Formulas (2.6) and (2.17) imply (2.27).

In accordance with the LP duality theorem, the objective functions calculated for the solu-
tions of mutually dual problems are equal, which can be written in the form

opt P = opt D = f∗, opt Px(v̄) = opt Dw(v̄), opt Py(x̄) = opt Dv(x̄). (2.30)

Therefore, (2.28) follows from relations (2.11), (2.20), and (2.30). The statement about prop-
erties of two-parametric problems (2.29) can be proved in a similar way.

We say that x and v satisfy the complementary slackness condition (CSC) if xivi = 0 for
all 1 ≤ i ≤ n.
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Theorem 3. Let the vectors x and v be feasible for the problems (Px) and (Dv), respectively.
Then the vectors x and v satisfy CSC if and only if the equality

v̄>x + x̄>v = x̄>v̄ (2.31)

holds.
Proof. The conditions x ∈ X ⊂ X̄ and v ∈ V ⊂ V̄ imply that x̄− x ∈ ker A = im K> and

v̄ − v ∈ ker K = im A>. From the orthogonality of the vectors x̄− x and v̄ − v, we obtain

(x̄− x)>(v̄ − v) = x̄>v̄ − v̄>x− x̄>v + x>v = 0. (2.32)

For x ≥ 0n and v ≥ 0n, the equality x>v = 0 is equivalent to the CSC. Therefore, (2.32)
implies that, for feasible x and v, the CSC holds if and only if (2.31) is valid.

Corollary 1. For any x and x̄ from X̄ and any v and v̄ from V̄ , formula (2.32) is valid.

Corollary 2. For any x∗ and v∗ that are solutions of the problems (Px) and (Dv), respec-
tively, the equality x>∗ v∗ = 0 holds.

This corollary can be obtained from (2.31) by setting x and x̄ equal to x∗ and v and v̄ equal
to v∗.

Corollary 3. The variables x, u, v, w, y, g, and q are optimal for their respective problems
if and only if they satisfy at least one of the following conditions:

Ax = b, x ≥ 0n, Kv = d, v ≥ 0n, v̄>x + x̄>v = x̄>v̄, (Px&Dv)
x̄−K>y ≥ 0n, v̄ − A>w ≥ 0n, d>y + b>w = x̄>v̄, (Py&Dw)
Ax = b, x ≥ 0n, v̄ − A>w ≥ 0n, v̄>x− b>w = 0, (Px&Dw)
x̄−K>y ≥ 0n, Kv = d, v ≥ 0n, x̄>v − d>y = 0, (Py&Dv)
K>y + x = x̄, x ≥ 0n, A>w + v = v̄, v ≥ 0n, v̄>x + x̄>v = x̄>v̄, (Pxy&Dvw)
Ag = 0m, g ≤ x̄, Kq = 0ν , q ≤ v̄, v̄>g + x̄>q = x̄>v̄, (Pg&Dq)
Ax = b, x ≥ 0n, Kq = 0ν , q ≤ v̄, v̄>x− x̄>q = 0, (Px&Dq)
x̄−K>y ≥ 0n, A>w + v = v̄, v ≥ 0n, d>y − x̄>v = 0. (Py&Dvw)

In the �rst column the feasible sets of the corresponding problems PF are given. In the
second column we indicate the feasible sets of the problems which belong to DF. In the third
column the relations between optimal values of objective functions are given (in accordance
with Theorem 2). In the last column we indicate the problems whose variables are used in
optimality conditions. In fact, we can combine each problem from the PF with any problem
from the DF and obtain 16 optimality conditions. Here, for brevity, we present only eight
optimality conditions.

We clarify the assertions of Corollary 3 in terms of variables that are used in conditions
(Px&Dv). If x and v satisfy these conditions, then x ∈ X∗ and v ∈ V∗ (the su�cient conditions
of an extremum). If x ∈ X∗ and v ∈ V∗, then x and v satisfy (Px& Dv) (the necessary conditions
of an extremum). The last assertion can be strengthened. Following the standard reasoning
used in the theory of LP [7], one can show that if x ∈ X∗, then there exists a vector v such
that (Px&Dv) holds. Similarly, if v ∈ V∗, then there exists x such that conditions (Px&Dv) are
satis�ed. If x ∈ X∗, then from (2.12) and (2.15) we obtain y ∈ Y∗, and g ∈ G∗. Similarly, if
v ∈ V∗, then from (2.21) and (2.24) we get w ∈ W∗ and q ∈ Q∗.

Note that each of the optimality conditions (Px&Dv)�(Py& Dvw) is distinguished by the
number of variables and constraints. The optimality conditions (Py&Dw) have the smallest
number of unknowns (n) and constraints (2n + 1).
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Conditions (Px&Dw) and (Py&Dv) are the well-known Kuhn�Tucker conditions for pairs of
the mutually dual problems (Px), (Dw) and (Dv), (Py), where the CSC are replaced by equiv-
alent conditions of equality of the objective functions of the appropriate problems. Conditions
(Px&Dv) and (Py&Dw) are the optimality conditions for the mutually conjugate problems (Px),
(Dv) and the problems (Py), (Dw).

We mention one important case of choosing parametric vectors x̄ and v̄. Let be x̄ =
v̄. We denote this vector by ξ. It satis�es two conditions, Aξ = b and Kξ = d, and is a
unique intersection point of two a�ne sets. Both the matrices A and K have maximal ranks.
Therefore, vector ξ is uniquely de�ned for each LP problem: ξ = M−1h, where (n× n)-matrix
M> = [A>|K>] has rank n and h> = [b>, d>] is an n-dimensional vector. In all previous
formulas in this case we can write x̄>v̄ = ‖ξ‖2. For example, formulas (2.25) and (2.26) from
Theorem 1 can be expressed as

ξ>(x + v) ≥ ‖ξ‖2 ≥ d>y + b>w, ξ>(x + v) ≥ ‖ξ‖2 ≥ ξ>(g + q).

The last condition from (Px&Dv) can be rewritten as follows:
ξ>(x + v) = ‖ξ‖2 (2.33)

In other words, the vector ξ is orthogonal to the vector x + v − ξ and the projection of x + v
on ξ coincides with ξ.

Theorem 4. Let the vectors x and v be feasible for the problems (Px) and (Dv), respectively.
Then the projection of vector x + v on vector ξ coincides with this vector if and only if x and
v are solutions of (Px) and (Dv), respectively.

In the end of this section, we present two mutually conjugate problems:
f 1
∗ (ξ) = min

x∈X
ξ>x, X = {x ∈ Rn : Ax = b, x ≥ 0n}, (Px)

f 2
∗ (ξ) = min

v∈V
ξ>v, V = {v ∈ Rn : Kv = d, v ≥ 0n}. (Dv)

Both problems have the same objective vector ξ. If x and v are feasible, then the necessary
and su�cient optimality condition is the orthogonality of these vectors, which is equivalent to
linear condition (2.33).

3. GEOMETRIC INTERPRETATION

We use the superscripts ‖ and ⊥ at n-dimensional vectors to denote the orthogonal projec-
tions of these vectors on the row subspace of the matrix A and into the kernel of the matrix A,
respectively. For example, x‖ = (A>)‖x, x⊥ = (A>)⊥x, where (A>)‖ and (A>)⊥ are de�ned in
accordance with formulas (2.2):

(A>)‖ = A+A = A>(AA>)−1A, (A>)⊥ = In − (A>)‖. (3.1)
By a direct substitution, we verify that for any vectors x̄ ∈ X̄ and v̄ ∈ V̄ the following relations
hold:

Ax̄⊥ = 0m, Kv̄‖ = 0ν , Ax̄‖ = Ax̄ = b, Kv̄⊥ = Kv̄ = d.

By x̃ and ṽ we denote the normal solutions (solutions with the minimal Euclidean norm) of
the systems Ax = b, Kv = d. These solutions can be represented in the following di�erent but
equivalent forms:

x̃ = A+b = A>(AA>)−1b = (A>)‖x̄ = x̄‖, (3.2)
ṽ = K+d = K>(KK>)−1d = (K>)‖v̄ = (A>)⊥v̄ = v̄⊥. (3.3)
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Let x̄ and v̄ be normal solutions of the corresponding linear systems, i.e., x̄ = x̃ and v̄ = ṽ.
In this case we have x̄>v̄ = 0, since x̃ ∈ im A> and ṽ ∈ im K>. So, if all components of the
normal solutions of the systems Ax = b and Kv = d are simultaneously nonnegative, then these
normal solutions are solutions of the problems (Px) and (Dv), respectively.

Both parameters x̄ ∈ X̄ and v̄ ∈ V̄ can be changed when �nding solutions of the considered
problems. If the pair [x̄, v̄] tends to [x∗, v∗], then the optimal values of objective functions in
(Px) and (Dv) tend to zero.

Note that the vector c is absent in all optimality conditions (Px& Dv),...,(Py&Dvw). Only
vector d depends on the choice of c. More precisely, it depends only on c⊥, i.e., the projection
of c on the null space of the matrix A. Indeed, from (2.4) in view of (2.3), we have

K(c⊥ + c‖) = Kc⊥ + K(A>)‖c = Kc⊥ = d.

On the other hand, the optimal value of the objective function c>x∗ depends on the choice
of c‖, since, for x∗ ∈ X∗, we have c>x∗ = (c⊥ + c‖)>x∗. According to (2.27), the optimal
values of the objective functions di�er by the quantity b>ū. Using (3.2) and the formula
ū = (AA>)−1A(c− v̄), we obtain

b>ū = b>(AA>)−1A(c− v̄) = x̃>(c− v̄) = (x̄‖)>(c− v̄) = (x̄‖)>(c− v̄)‖,

f∗ − f 1
∗ (v̄) = x>∗ (c− v̄) = x̃>(c− v̄).

Let h, p ∈ Rn. Making use of these vectors, we change vectors v̄, x̄ in the problems (Px),
(Dv) and obtain two perturbed problems,

min
x∈X

(v̄ + h)>x, (P′x)

min
v∈V

(x̄ + p)>v. (D′
v)

Theorem 5. Let h ∈ im A> and p ∈ ker A. Then the solution set X∗ of the problem (Px)
coincides with the solution set of the problems (P′x), and the solution set V∗ of the problem (Dv)
coincides with the solution set of the problem (D′

v).
Proof. Since h ∈ im A> = ker K, we obtain K(v̄ + h) = d, i.e., v̄ + h ∈ V̄ . Therefore, the

problem (P′x) belongs to the family (Px), in which, by construction, all the problems have the
same solution set and the optimal value of the objective functions of any two problems di�ers
only by a constant. Since p ∈ ker A = im K>, the symmetry of the problems (Dv) and (Px)
implies the second assertion of the theorem.

If the objective vectors c, v̄, and x̄ of the problems (P), (Px), and (Dv) are replaced by
c−c‖, v̄− v̄‖, and x̄− x̄⊥, respectively, and if we take into account the inclusions c‖, v̄‖ ∈ im A>

and x̄⊥ ∈ ker A, then by Theorem 5 we obtain the following result.
Theorem 6. The solution sets of the problems P, Px, and Dv do not depend on the

projections c‖, v̄‖, and x̄⊥, respectively.
Thus, instead of the vectors c and v̄ involved in the objective function of the problems (P)

and (Px), one can take arbitrary vectors whose projections on the kernel of the matrix A are
equal to c⊥ and v̄⊥. In this case, the solution sets of the problems (P) and (Px) coincide.
Similarly, in the problem (Dv), one can take any vector whose projection on im A> is equal to
x̄‖. In this case, the set V∗ is not changed.
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The projections x
‖
∗ and v⊥∗ of the optimal vectors x∗ and v∗ in the problems (P), (Px), and

(Dv) are determined directly by formulas (3.2), (3.3). Indeed, taking into account the conditions
x∗ ∈ X̄ and v∗ ∈ V̄ , we obtain

x‖∗ = x̃ = x̃‖ = x̄‖, v⊥∗ = ṽ = ṽ⊥ = v̄⊥ = c⊥. (3.4)
Therefore, solving the problems (P), (Px), and (Dv) reduces to �nding two orthogonal vectors
x⊥∗ ∈ ker A and v

‖
∗ ∈ im A> such that x∗ = x̄ + x⊥∗ ≥ 0n, v∗ = v̄ + v

‖
∗ ≥ 0n, and x>∗ v∗ = 0. The

desired vectors are representable in the form x>∗ = −K>y, v
‖
∗ = −A>w, where y ∈ Rν , w ∈ Rm.

Thus, vectors y and w satisfying (Py&Dw) are to be found.
In the problems (D) and (Dw), the optimal values of the objective functions are representable

in terms of the projections of the vectors on the row space of matrix A:
opt D = b>u∗ = b>(AA>)−1A(c− v∗) = (x̄‖)>(c− v∗)‖,

opt Dw(v̄) = b>w∗ = b>(AA>)−1A(v̄ − v∗) = (x̄‖)>(v̄ − v∗)‖.

Similarly, in the problem (Dv), the optimal value of the objective function is presented in
terms of the projections on the null space of matrix A:

opt Dv(x̄) = d>y∗ = d>(K>)+(x̄− x∗) = (v̄⊥)>(x̄− x∗)⊥.

Let us consider two cases of LP problems in which the search for solutions is essentially
simpli�ed.

Case 1. Let c⊥ = 0n; i.e., vector c belongs to the row space of matrix A. Then, according to
(3.4), we have v⊥∗ = ṽ = ṽ⊥ = v̄⊥ = 0n, v̄ ∈ im A>, and d = 0ν . The following representation
holds:

opt P = c>x∗ = (c‖)>x‖∗ = (c‖)>x̄‖ = c>x̄‖ = c>x̄,

opt Px(v̄) = v̄>x∗ = (v̄‖)>x‖∗ = (v̄‖)>x̄‖ = v̄>x̄‖ = v̄>x̄.

This means that the objective functions of the problems (P) and (Px) have the same value
for any x ∈ X̄. Taking into account the condition of nonnegativeness of the optimal vector, we
obtain that X∗ = X̄ ∩Rn

+; i.e., any vector x ∈ X̄ with nonnegative components belongs to X∗.
From d = 0ν , it follows that the feasible set Y of the problem (Py) coincides with the solution
set Y∗ and, in accordance with the optimality conditions (Py&Dw), the problem (Dw) is reduced
to solving the system A>w ≤ v̄, b>w = x̄>v̄. When W∗ is found, the set V∗ is determined by
the �rst formula in (2.21).

Case 2. Let x̄‖ = 0n; i.e., vector x̄ belongs to the null space of the matrix A. Then, b = 0m,
x
‖
∗ = x̃ = x̄ = x̄‖ = 0n, opt Dv(x̄) = x̄>v∗ = (x̄⊥)>v⊥∗ = (x̄⊥)>v̄⊥ = x̄>v̄⊥ = x̄>v̄, V∗ = V̄ ∩ Rn

+

and W∗ = W . Hence, the search for the points v∗ ∈ V∗ is reduced to �nding nonnegative
solutions for the system Kv = d, which is equivalent to solving the system of linear inequalities
A>w ≤ v̄.

So, in these two cases the solution of any LP problems is reduced to the solution of a linear
system of dimension smaller than original systems (Px&Dv)�(Py&Dvw).

4. FINDING NORMAL SOLUTIONS

As an example, let us use the nontraditional optimality condition (Px&Dv) for solving LP
problems. We will �nd the normal solution of this system. Consider the following quadratic
programming problem:

min
x∈Rn

+

min
v∈Rn

+

[
(‖x‖2 + ‖v‖2)/2 : Ax = b, Kv = d, v̄>x + x̄>v = x̄>v̄

]
; (4.1)
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i.e., we �nd the unique 2-norm projection of the origin in R2n on the nonempty feasible region
determined by optimality conditions (Px&Dv). Similar problems of searching for normal solu-
tions of an LP problem were considered by O. Mangasarian [8, 9]. In problem (4.1) we have 2n
unknowns, n + 1 equality constraints, and 2n inequalities. In order to simplify this problem,
we can introduce a problem dual to (4.1). For this purpose we de�ne the Lagrange function

L(x, v, p, q, α) =
[‖x‖2 + ‖v‖2

]
/2 + p>(b− Ax) + q>(d−Kv) + α(v̄>x + x̄>v − x̄>v̄), (4.2)

where p ∈ Rm, q ∈ Rν , α ∈ R1 are Lagrange multipliers.
Next we �nd a saddle point of Lagrange function L(x, v, p, q, α), solving the following prob-

lem:
max

p ∈Rn
max

q ∈Rν
max

α ∈R1
min

x ∈Rn

+

min
v ∈Rn

+

L(x, v, p, q, α). (4.3)

Here, the interior minimization problem will be solved analytically; the exterior maximiza-
tion problem will be reduced to unconstrained maximization of a concave quadratic function.
Necessary and su�cient minimum conditions of the Lagrange function on the set x ∈ Rn

+,
v ∈ Rn

+ are the following:

Lx(x, v, p, q, α) = x− A>p + αv̄ ≥ 0n, x ≥ 0n, D(x)Lx = 0n,

Lv(x, v, p, q, α) = v −K>q + αx̄ ≥ 0n, v ≥ 0n, D(v)Lv = 0n.

Solving these relations with respect to x and v, we obtain

x = (A>p− αv̄)+, v = (K>q − αx̄)+. (4.4)

Here and below, (a)+ denotes the vector from Rn with components ai
+ = max[ai, 0], i = 1, . . . , n,

where ai is the i-component of vector a.
Substituting solutions (4.4) in (4.2), we have

L̃(p, q, α) = b>p + d>q − αx̄>v̄ − [‖(A>p− αv̄)+‖2 + ‖K>q − αx̄)+‖2
]
/2.

The problem dual to (4.1) is the following unconstrained maximization problem:

max
p ∈Rm

max
q ∈Rν

max
α ∈R1

L̃(p, q, α). (4.5)

If [x, v, p, q, α] is a solution of (4.3), then [x, v] is a solution of (4.1) and [p, q, α] is a solution of
(4.5). For the considered quadratic programming problem (4.1), the following converse property
holds:

If [p, q, α] is a solution of (4.5), then after its substitution in the formulas (4.4), we receive
a solution [x, v, p, q, α] of problem (4.3) and solution [x, v] of problem (4.1). Hence, we obtain
the following result.

Theorem 7. The problems (Px), (Dv) are solvable if and only if the unconstrained maxi-
mization problem (4.5) is solvable. For each solution [p, q, α] of problem (4.5), the vectors

x̃∗ = (A>p− αv̄)+, ṽ∗ = (K>q − αx̄)+

de�ne the unique solution of (4.1). Moreover, vectors x∗ and v∗ are normal solutions of the
corresponding problems (Px) and (Dv).

Let us mention two properties of problem (4.1) and its dual (4.5).
1. Variables of the primal problem are not included in the formulation of its dual.
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2. The dual problem (4.5) is a problem of unconstrained maximization of a di�erentiable
concave piecewise quadratic function in a space of smaller dimension.

Therefore, instead of solving (4.1) we solve problem (4.5) and obtain the solution of the
original problem by using formulas (4.4).

Thus, the solution of constrained optimization problem (4.1) with 2n unknowns reduces
to the unconstrained maximization of a piecewise quadratic di�erentiable function of n + 1
variables. In contrast to the classical exterior penalty function method applied to the problem
(Px), there are no penalty coe�cients tending to in�nity.
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