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Abstract � The problem of constructing a family of hyperplanes that separate
two disjoint nonempty polyhedra is examined. The polyhedra are given by systems
of linear inequalities or by systems of linear equalities with nonnegative variables.
Constructive algorithms for solving this problem are presented. The construction of
separating hyperplanes relies heavily on theorems of the alternative.
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1. INTRODUCTION

The theorem on the existence of a separating hyperplane plays a key role in functional
analysis, optimization theory, and operations research. In solving practical problems, one
should not only know that there exists a separating hyperplane but also be able to constructively
determine it. We examine the problem of numerical construction of a family of hyperplanes that
separate two disjoint nonempty polyhedra given by systems of linear inequalities or by systems
of linear equalities with nonnegative variables. Our considerations are based on the theorem
on a separating hyperplane of two polyhedra given by systems of inequalities that was proved
by I.I. Eremin (see [1, Theorem 10.1]). We use a speci�c form of a separating hyperplane,
where the normal vector and the shift vector are expressed in terms of an arbitrary solution
to a certain system that is alternative to an inconsistent system. The inconsistent system is
formed of two consistent subsystems, each of which de�nes a nonempty polyhedron. The entire
system is inconsistent because these polyhedra do not intersect. The construction of separating
hyperplanes relies heavily on theorems of the alternative.

In Section 2, we consider an application of the normal solution of the alternative system
to the construction of a family of separating hyperplanes. The results of [2] allow us to �nd
the normal solution by solving the unconstrained minimization problem for the residual of the
inconsistent inequality system that determines both polyhedra. The latter problem normally
has a much lower number of variables than the alternative consistent system. Hence, the
proposed method is less labor-consuming than solving the alternative system.

In Section 3, we examine the following problem: how can one distinguish a solution to the
alternative system that generates a family of separating hyperplanes with a maximal thickness,
which coincides with the minimal distance between the polyhedra?

In Section 4, we construct families of separating hyperplanes for two polyhedra given by
systems of linear equalities with nonnegative variables. In contrast to the case of polyhedra
given by systems of linear inequalities, every solution to the alternative system now determines
two distinct families of separating hyperplanes.

In Section 5, we give a brief review of the generalized Newton method for calculating the
normal solution to the alternative system. The normal solution is used for constructing a family
of separating hyperplanes for polyhedra given by systems of linear inequalities. The generalized
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Newton method was implemented in Matlab and showed good performance in solving large-
scale test problems.

2. CONSTRUCTION OF SEPARATING HYPERPLANES WITH THE HELP
OF THE GALE THEOREM OF THE ALTERNATIVE

Let x ∈ Rn and b ∈ Rm, where ‖b‖ 6= 0, be given vectors and A ∈ Rm×n be a given
rectangular matrix. De�ne the two sets

X = {x ∈ Rn : Ax ≥ b} and U = {u ∈ Rm : A>u = 0n, b>u = ρ, u ≥ 0m},
where ρ > 0 is an arbitrary �xed positive number and 0i is the zero vector of dimension i.

The linear systems
Ax ≥ b, (1)

and
A>u = 0n, b>u = ρ, u ≥ 0m, (2)

which determine the sets X and U , respectively, are alternative for any strictly positive value
of ρ, which means that exactly one of them is consistent (this is the Gale theorem; e.g., see
[2]). We take the scalar products of both sides of the �rst equality in (2) with the vector x and
then subtract the second equality from the resulting relation. This yields

u>(Ax− b) = −ρ < 0. (3)

This equality is a key tool for constructing a family of hyperplanes that separate two polyhedra
given as intersections of half-spaces.

We write A, b, and u in the form

A =

[
A1

A2

]
, b =

[
b1

b2

]
, u =

[
u1

u2

]
,

where A1 and A2 are matrices of sizes m1-by-n and m2-by-n, respectively; b1, u1 ∈ Rm1 ; b2, u2 ∈
∈ Rm2 ; and m1 + m2 = m. De�ne the two nonempty sets

X1 = {x ∈ Rn : A1x ≥ b1} and X2 = {x ∈ Rn : A2x ≥ b2},
which determine two polyhedra (or polyhedral sets; see [3]) such that X = X1 ∩X2 = ∅.

De�ne the hyperplane c>x − γ = 0, where c ∈ Rn, ‖c‖ 6= 0 is a normal vector and γ is a
scalar. We say that this hyperplane c>x − γ = 0 separates X1 and X2 if c>x − γ ≥ 0 for all
x ∈ X1 and c>x − γ ≤ 0 for all x ∈ X2. If we have the strict inequalities in both conditions,
then we say that this hyperplane strictly separates X1 and X2.

Consider the problem of calculating the hyperplanes that separate X1 and X2. Taking into
account the partition introduced above, we can rewrite systems (1) and (2) and relation (3) as
follows:

A1x ≥ b1, A2x ≥ b2, (4)
A>

1 u1 + A>
2 u2 = 0n, b>1 u1 + b>2 u2 = ρ, u1 ≥ 0m1 , u2 ≥ 0m2 , (5)

u>1 (A1x− b1) + u>2 (A2x− b2) = −ρ < 0. (6)
De�ne a linear function ϕ(x, α) of variable x ∈ Rn and a scalar parameter α ranging on the

interval [0, 1]:
ϕ(x, α) = u>1 (A1x− b1) + αρ. (7)
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Relation (6) implies that ϕ(x, α) can be equivalently de�ned as

ϕ(x, α) = u>2 (b2 − A2x) + (α− 1)ρ. (8)

The equality ϕ(x, α) = 0, where u1 and u2 satisfy (5) and α belongs to [0, 1], determines the
hyperplane that separates the sets X1 and X2. Indeed, if x ∈ X1, then, according to (7), we
have ϕ(x, α) ≥ 0, while if x ∈ X2, then, according to (8), we have ϕ(x, α) ≤ 0. The separating
hyperplane ϕ(x, α) = 0 with α = 1/2 was �rst introduced and studied by Eremin (e.g., see [1]).

In view of system (5), the hyperplane ϕ(x, α) = 0 determined by a function of form (7) or
(8) can be written as

ϕ(x, α) = c>x− γ = 0,

where
c = A>

1 u1 = −A>
2 u2, γ = b>1 u1 − αρ = −b>2 u2 − (α− 1)ρ.

Here, u1 and u2 are arbitrary solutions to system (5).
For �xed distinct vectors u> = [u>1 , u>2 ] that satisfy system (5), we examine the family of

parallel hyperplanes given by the following equivalent de�nitions:

Γ(α) = {x ∈ Rn : u>1 A1x− b>1 u1 + αρ = 0} = {x ∈ Rn : ϕ(x, α) = 0}, (9)
Γ(α) = {x ∈ Rn : −u>2 A2x + b>2 u2 + (α− 1)ρ = 0} (10)

All the hyperplanes belonging to this family are parallel, because they have the common
normal vector c = A>

1 u1 = −A>
2 u2.

The hyperplane Γ(1) can be obtained from Γ(0) with the help of the shift vector y:

Γ(1) = Γ(0) + y.

The norm of y (i.e., the distance between the hyperplanes Γ(1) and Γ(0)) will be called the
thickness of the family of hyperplanes.

According to [2, 3], the projection x̄∗ of a point x̄ onto the hyperplane Γ(α) is determined
by the formula

x̄∗ = x̄ + c(b>1 u1 − c>x̄− αρ)/‖c‖2. (11)
Denote by pr(0n, Γ(α)) the projection of the origin onto the hyperplane Γ(α). Setting x̄ = 0n

in (11), we obtain pr(0n, Γ(α)) = c(b>1 u1 − αρ)/‖c‖2. From this, we �nd the shift vector y and
the thickness ‖y‖ of the family of hyperplanes Γ(α):

y = pr(0n, Γ(1))− pr(0n, Γ(0)) = −cρ/‖c‖2, (12)
‖y‖ = ρ/‖c‖. (13)

System (5) may have many solutions. In this section, we examine the properties of the
family of separating hyperplanes, where u is the normal solution ũ∗ to system (5). The results
of [2] allow us to relatively easily construct the normal solution, i.e., to solve the following
quadratic programming problem:

min
u∈U

1

2
‖u‖2, U = {u ∈ Rm : A>u = 0n, b>u = ρ, u ≥ 0m}. (14)

Henceforth, we use the Euclidean norm of vectors.
We introduce the following unconstrained minimization problem for the residual vector of

system (1):
I1 = min

x∈Rn

1

2
‖(b− Ax)+‖2, (15)
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Here, a+ is the nonnegative part of a vector a; i.e., the ith component of a+ is the same as the
ith component of a if the latter is nonnegative; otherwise, the ith component of a+ is zero.

The unconstrained minimization problem (15) is dual to the following quadratic program-
ming problem:

I2 = max
z∈Z

{
b>z − 1

2
‖z‖2

}
,

Z = {z> = [z>1 , z>2 ] ∈ Rm : A>
1 z1 + A>

2 z2 = 0n, z1 ≥ 0m1 , z2 ≥ 0m2}.
(16)

Problems (15) and (16) are always solvable. Moreover, problem (16) has a unique solution,
because its feasible set is nonempty and its objective function, which is quadratic and strictly
concave, is bounded above by ‖b‖2/2. Theorem 1, given below, asserts the equivalence between
the quadratic programming problems (14) and (16) in the sense that the solution to one problem
determines the solution to the other. The solution z∗ ∈ Rm to the quadratic programming
problem (16) can be expressed in terms of the solution x∗ ∈ Rn to the simpler problem (15) of
the unconstrained minimization of a piecewise quadratic function. Usually, we have n ¿ m in
the problem of separating polyhedra (4).

Theorem 1. Let X1 and X2 be nonempty polyhedra with an empty intersection. Every
solution x∗ to problem (15) determines a unique solution z∗> = [z∗1

>, z∗2
>] to problem (16) given

by the formulas
z∗1 = (b1 − A1x

∗)+, z∗2 = (b2 − A2x
∗)+. (17)

The normal solution ũ∗ to system (5) can be obtained from the solution z∗ to problem (16) by
the formula

ũ∗ = ρz∗/‖z∗‖2, (18)
while the solution z∗ to problem (16) can be obtained from the solution ũ∗ to problem (14) by
the formula

z∗ = ρũ∗/‖ũ∗‖2. (19)
It holds that ‖ũ∗‖‖z∗‖ = ρ. The optimal values of the objective functions in problems (15) and
(16) are the same: I1 = I2 = ‖z∗‖2/2.

The assertions of Theorem 1 follow from the results of [2]. The vector z∗> = [z∗1
>, z∗2

>] will
be called the vector of minimal residuals of system (4).

Consider the family of hyperplanes (9), (10) that uses the normal solution ũ∗ to system (5).
This family is given by the two equivalent de�nitions

Γ(α) = {x ∈ Rn : ũ∗>1 (A1x− b1) + αρ = 0}, (20)
Γ(α) = {x ∈ Rn : −ũ∗>2 (A2x− b2) + (α− 1)ρ = 0}. (21)

Note that if ũ∗ is replaced by z∗ using (19), then families (20) and (21) can be written in
yet another equivalent form

Γ(α) = {x ∈ Rn : z∗1
>(A1x− b1) + α‖z∗‖2 = 0},

Γ(α) = {x ∈ Rn : z∗2
>(b2 − A2x) + (α− 1)‖z∗‖2 = 0}.

Theorem 2 (on family (20), (21) of parallel separating hyperplanes). Let X1 and X2

be nonempty polyhedra with an empty intersection. Assume that x∗ is a solution to problem
(15), while the vectors z∗ and ũ∗ are determined by (17) and (18). Then, the following is true:

(1) There exists a solution to system (5); for every solution to this system, it holds that
‖u1‖ 6= 0, ‖u2‖ 6= 0, and ‖A>

1 u1‖ = ‖A>
2 u2‖ 6= 0.
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(2) When 0 ≤ α ≤ 1, the set Γ(α) determines a family of parallel hyperplanes that separate
X1 and X2; if 0 < α < 1, then the hyperplanes Γ(α) strictly separate X1 and X2.

(3) If α is equal to α∗ = ‖z∗1‖2/‖z∗‖2, then the point x∗ belongs to the separating hyperplane
corresponding to this value of α.

(4) The shift vector y = Γ(1)− Γ(0) and the thickness of the family Γ(α) are determined by
the formulas

y =
−ρA>

1 ũ∗1
‖A>

1 ũ∗1‖2
, ‖y‖ =

ρ

‖A>
1 ũ∗1‖

.

(5) If α > 0, then X1 ∩ Γ(α) = ∅; if α < 1, then X2 ∩ Γ(α) = ∅.
(6) If X1 ∩ Γ(0) 6= ∅, then Γ(0) is a supporting hyperplane of the set X1; if X2 ∩ Γ(1) 6= ∅,

then Γ(1) is a supporting hyperplane of the set X2.

(7) Every solution x∗ to problem (15) belongs to neither X1 nor X2.

Proof. 1. System (5) is alternative to the inconsistent system (4); hence, there exists a
solution to (5); moreover, ‖A>

1 u1‖ = ‖A>
2 u2‖. We show that these norms cannot vanish. The

relation b>1 u1 + b>2 u2 = ρ > 0 implies that at least one of the two summands on the left-hand
side is strictly positive. Without loss of generality, we can assume that

b>1 u1 = ρ1 > 0. (22)

By the condition of the theorem, X1 6= ∅. Hence, the system A>
1 x1 = 0n, b>1 u1 = ρ1, u1 ≥ 0m1 ,

which is alternative to the system A1x ≥ b1, is inconsistent. Thus, if (22) is ful�lled and
u1 ≥ 0m1 , then the vector A>

1 u1 cannot be zero. Therefore, A>
2 u2 is not a zero vector as well.

It follows that the solutions u1 and u2 to system (5) are nonzero.
2. The necessary condition for a minimum in problem (15), combined with (17) and (18),

leads to A>z∗ = 0n and A>ũ∗ = 0n. De�ne the vector c as follows:

c = A>
1 ũ∗1 = −A>

2 ũ∗2. (23)

Since assertion 1 has already been proved, we have ‖c‖ 6= 0. Taking the normal solution ũ∗ as
the vector u in formulas (7) and (8), we arrive at the relations

ϕ(x, α) = ũ∗>1 (A>
1 x− b1) + αρ = c>x− b>1 ũ∗1 + αρ, (24)

ϕ(x, α) = ũ∗>2 (b2 − A>
2 x) + (α− 1)ρ = c>x + b>2 ũ∗2 + (α− 1)ρ. (25)

If x ∈ X1 and α ≥ 0, then ϕ(x, α) ≥ 0. If x ∈ X2 and α ≤ 1, then ϕ(x, α) ≤ 0. Hence, Γ(α),
where 0 ≤ α ≤ 1, is indeed a family of separating hyperplanes.

If α > 0 and x ∈ X1, then, by (24), we have ϕ(x, α) > 0. Similarly, if α < 1 and x ∈ X2, then
(25) implies that ϕ(x, α) < 0. Thus, in this case, Γ(α) de�nes a family of strictly separating
hyperplanes.

3. We set x̄ in (11) equal to the vector x∗ and set α equal to α∗. Then, we �nd from (11)
that

x̄∗ − x∗ = c

(
b>1 ũ∗1 − ρ

‖z∗1‖2

‖z∗‖2
− c>x∗

)
.

Using this relation and taking into account (17) and (18), we arrive at the equality x̄∗ − x∗ =
= 0n; i.e., in this case, the vector x∗ belongs to the separating hyperplane Γ(α∗). Similarly,
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substituting α∗ into (21) and taking into account the relation 1−α∗ = ‖z∗1‖/‖z∗‖2, we conclude
that x∗ belongs to the separating hyperplane Γ(α∗).

4. This assertion follows from formulas (12) and (13).
5. The conditions x1 ∈ X1 and ũ∗1 ≥ 0m1 imply that ũ∗>1 (A1x1 − b1) ≥ 0. On the other

hand, from the condition x1 ∈ Γ(α), we have ũ∗>1 (A1x1 − b) + αρ = 0, which is impossible if
αρ > 0. Hence, the intersection of X1 and Γ(α) is empty for any α > 0. The case α < 1 is
treated analogously.

6. The set X1 has at least one common point x1 with Γ(0). Moreover, X1 belongs to the
half-space c>x1− ũ∗>1 b1 ≥ 0, because this inequality can be rewritten as ũ∗>1 (A1x1− b1) ≥ 0. It
follows that Γ(0) is a separating hyperplane of the set X1 at its point x1. The second assertion
is proved analogously.

7. Assume the contrary; i.e., there exists a solution x∗ to problem (15) such that x∗ ∈ X1.
This means that z∗1 = 0m1 . Then, by (18), the solution to system (5) is such that ‖ũ∗1‖ = 0,
which contradicts assertion 1. The theorem is proved.

Theorem 2 suggests that the simplest method for constructing a family of separating hyper-
planes is as follows. First, one solves in Rn the unconstrained minimization problem (15) for
the residual of the inconsistent system (1) and calculates the normal solution ũ∗ to system (5).
Then, one constructs Γ(α) using (20) or (21). The approach of Eremin is to �nd an arbitrary
solution to the consistent system (5), where the number of unknowns is m. Since we usually
have n ¿ m in the problem of constructing a separating hyperplane, the approach suggested
by Theorem 2 is preferable.

Note that the normal solution ũ∗ to system (5) can be found by a di�erent method, namely,
by solving the dual problem to the quadratic programming problem (14). The dual problem is
the following unconstrained maximization problem for a piecewise quadratic function:

max
β∈R1

max
x ∈Rn

{
βρ− 1

2
‖(βb− Ax)+‖2

}
. (26)

The number of variables in this problem is n + 1.
If β′, x′ is a solution to problem (26), then the normal solution ũ∗ to system (5) is given by

ũ∗ = (β′b− Ax′)+.

In the following theorem, we determine the distance between the supporting hyperplanes
constructed with the help of the normal solution ũ∗ to system (5).

Theorem 3. Let the conditions of Theorem 2 be ful�lled. Then, there exist α̂ ≤ 0 and
α̃ ≥ 1 such that the family of parallel hyperplanes (20), (21), where α̂ ≤ α ≤ α̃, separates
X1 and X2. The hyperplanes Γ(α̂) and Γ(α̃) are supporting hyperplanes of the sets X1 and X2,
respectively. The hyperplane Γ(α̃) can be obtained from Γ(α̂) by the formula Γ(α̃) = Γ(α̂) + y,
where the shift vector y and its norm are given by y = (α̂− α̃)c/‖c‖2 and ‖y‖ = (α̃− α̂)/‖c‖.

Proof. The form of ϕ(x, α) implies that the inequalities

ϕ(x, α) = ũ∗>1 (A>
1 x− b1) + αρ = c>x− b>1 ũ∗1 + αρ > 0, (27)

c>x ≥ b>1 ũ∗1 − αρ (28)

are ful�lled for all x ∈ X1 and α ≥ 0. Similarly, the inequalities

ϕ(x, α) = ũ∗>2 (b2 − A>
2 x) + (α− 1)ρ = c>x + b>2 ũ∗2 + (α− 1)ρ ≤ 0, (29)

c>x ≤ −b>2 ũ∗2 − (α− 1)ρ (30)
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hold for all x ∈ X2 and α ≤ 1. According to (28) and (30), there exist x̂ ∈ X1 and x̃ ∈ X2 such
that

c>x̂ = min
x∈X1

c>x, c>x̃ = max
x∈X2

c>x. (31)

Setting x = x̂ in (27) yields
c>x̂− b>1 ũ∗1 + αρ ≥ 0. (32)

If α = 0, then we have
b>1 ũ∗1 − c>x̂ ≤ 0. (33)

Therefore, (32) is valid for any α ≥ α̂, where

α̂ = (b>1 ũ∗1 − c>x̂)/ρ ≤ 0. (34)

Relation (29) implies that

ϕ(x, α) = c>x̃ + b>2 ũ∗2 + ρ(α− 1) ≤ 0

for x ∈ X2 and α ≤ 1. If α = 1, then we have

c>x̃ + b>2 ũ∗2 ≤ 0. (35)

Hence, the inequality ϕ(x, α) ≤ 0 holds for all x ∈ X2 and α such that α ≤ α̃, where

α̃ = 1− (c>x̃ + b>2 ũ∗2)/ρ ≥ 1. (36)

The hyperplane Γ(α̂) = {x ∈ Rn : c>x = c>x̂} has the common point x̂ with the set X1. In
view of (31), every point of X1 belongs to the half-space c>(x̂ − x) ≤ 0. It follows that Γ(α̂)
is a supporting hyperplane of X1. The vector c is a supporting vector of X1 at the point x̂.
In particular, if α̂ = 0, then Γ(0) is a supporting hyperplane. In a similar way, we show that
Γ(α̃) is a supporting hyperplane of X2 at the point x̃. The shift vector y is obtained by simple
calculations similar to those in (12) and (13). The theorem is proved.

In certain cases, knowledge of the normal solution ũ∗ makes it possible to easily determine
the optimal values of the objective functions in problems (31) and �nd out whether the hy-
perplanes Γ(α) corresponding to α = 0 and α = 1 are supporting hyperplanes for X1 and X2,
respectively. Denote by w1 ∈ Rm1

+ and w2 ∈ Rm2
+ the Lagrange multipliers, and de�ne the

Lagrangian functions for problems (31):

L1(x,w1) = c>x + w>
1 (b1 − A1x), L2(x,w2) = −c>x + w>

2 (b2 − A2x).

The pair [x1, w1] is a Kuhn�Tucker point for the �rst problem in (31) if it holds that

c = A>
1 w1, D(w1)(b1 − A1x1) = 0m1 , w1 ≥ 0m1 , A1x1 ≥ b1. (37)

Analogously, the pair [x2, w2] is a Kuhn�Tucker point for the second problem in (31) if

c = −A>
2 w2, D(w2)(b2 − A2x2) = 0m2 , w2 ≥ 0m2 , A2x2 ≥ b2. (38)

We take ũ∗1 as the vector w1 in (37). If there exists a vector x1 that satis�es (37), then
[x1ũ

∗
1] is a Kuhn�Tucker point. Moreover, (34) implies that α̂ = 0; i.e., Γ(0) is a supporting

hyperplane of X1 at the point x1. Similarly, let us set w2 = ũ∗2 in the second problem in (31).
If there exists a vector x2 that satis�es (38), then, in view of (36), we conclude that α̃ = 1.
Thus, Γ(1) is a supporting hyperplane of X2 at the point x2. If α̂ < 0 or α̃ > 1, then we seek
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the optimal Lagrange multipliers w∗
1 or w∗

2 for the corresponding problems in (31). The �rst
conditions in (37) and (38) imply that these vectors satisfy the relation

A>
1 w∗

1 + A>
2 w∗

2 = 0.

Setting x̂ = x1 and x̃ = x2 in (33) and (35), respectively, we obtain

c>x1 ≥ b1ũ
∗
1, −c>x2 ≥ b2ũ

∗
2.

Adding these inequalities, we �nd that

b>1 w∗
1 + b>2 w∗

2 = c>(x1 − x2) ≥ b>1 ũ∗1 + b>2 ũ∗2 = ρ ≥ 0.

It follows that the vector w∗> = [w∗
1
>, w∗

2
>], together with ũ∗, satis�es system (5). The family

of separating hyperplanes can be represented as

Γ(α) = {x ∈ Rn : w∗
1
>(A1x− b1) + αρ = 0}, (39)

Γ(α) = {x ∈ Rn : −w∗
2
>(A2x− b2) + (α− 1)ρ = 0}. (40)

Thus, we have constructed two families of separating hyperplanes of form (20), (21) and
(39), (40), respectively. For the �rst family, we use the normal solution to system (5); for
the second, the optimal Lagrange multipliers for the linear programming problems (31). Both
vectors ũ∗ and w∗ satisfy (5). The following theorem asserts that the normal vector c and
the scalar γ, which determine an arbitrary strictly separating hyperplane, can be expressed in
terms of a solution to system (5).

Theorem 4. Let the hyperplane c>x = γ strictly separate two nonempty disjoint polyhedra
X1 and X2. Then, there exists a solution u1, u2 to the system

A>
1 u1 + A>

2 u2 = 0, b>1 u1 + b>2 u2 = ρ > 0, u1 ≥ 0, u2 ≥ 0, (41)

such that the vector c and the scalar γ are given by

c = A>
1 u1 = −A>

2 u2, γ = b>1 u1 − ρ1 = −b>2 u2 + ρ2,

where ρ1 and ρ2 are arbitrary positive constants such that ρ1 + ρ2 = ρ.
Proof. For de�niteness, we assume that the given strictly separating hyperplane is such

that all x ∈ X1 satisfy the inequality c>x > γ, while all x ∈ X2 satisfy the inequality c>x < γ.
Then, the system

A1x ≥ b1, c>x ≤ γ

is unsolvable, whereas the alternative system is consistent. Hence, there exist a vector q ≥ 0m1

and a scalar η ≥ 0, η ∈ R1 such that

A>
1 q − cη = 0n, b>1 q − γη = ρ1 > 0. (42)

Here, ρ1 is an arbitrary positive constant. The scalar η cannot vanish, since, otherwise, the
consistent system (42) has the form

A>
1 q = 0n, b>1 q = ρ1 > 0, q ≥ 0m1 .

Therefore, the alternative system A1x ≥ b1 is inconsistent, which contradicts the condition
X1 6= ∅. Thus, (42) yields c = A>

1 q/η and γ = b>1 q/η − ρ1/η. Using the notation u1 = q/η and
ρ1/η = ρ1, we obtain

A>
1 u1 = c, b>1 u1 − γ = ρ1 > 0, u1 ≥ 0m1 . (43)
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In a similar manner, we arrive at the relations

A>
2 u2 = −c, b>2 u2 + γ = ρ2 > 0. (44)

Adding (43) and (44), we obtain the consistent system (41), which is alternative to (4). The
theorem is proved.

Example 1. Let n = 2, m = 6, ρ = 1,

X1 = {x ∈ R2 : −x1 ≥ 2, −x1 − x2 ≥ 1, −x1 + x2 ≥ 2, x1 ≥ −4},
X2 = {x ∈ R2 : x1 ≥ 1, x1 − x2 ≥ 0, 5x1 + x2 ≥ 2 − x1 ≥ −2}.

Solving problem (15) and using formulas (17) and (23), we obtain

x∗ =

[
0.11
0.63

]
, ‖z∗‖ = 3.13, c =

[ −5.34
−0.26

]
.

Solving problems (31) and using formulas (34) and (36), we �nd that

x̃ =

[
1
−3

]
, x̂ =

[ −2
1

]
, α̃ = 1.18, α̂ = −0.13.

From (18) and systems (37), (38), we have

ũ∗>1 = [0.18 0.15 0.13 0.00], ũ∗>2 = [0.08 0.04 0.07 0.00],

w∗
1
> = [0.44 0.02 0.00 0.00], w∗

2
> = [0.35 0.00 0.02 0.00].

Figure 1 shows the sets X1 and X2; the separating hyperplanes corresponding to α = α̂,
α = 0, α = 1 and α = α̃; the vector x∗; and the unit vector Q = c/‖c‖. The set X1 belongs to
the positive half-space with respect to c, whereas X2 belongs to the negative half-space. The
thickness of the family of hyperplanes corresponding to 0 ≤ α ≤ 1 is ‖y‖ = 2.13. The extension
of this family with the use of α̂ and α̃ results in ‖y‖ = 2.80.
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3. FAMILY OF SEPARATING HYPERPLANES WITH A MAXIMAL
THICKNESS

The problem of �nding the minimal distance between two disjoint sets can be written in
the form

min
x1∈X1

min
x2∈X2

1

2
‖x1 − x2‖2. (45)

We change the variable to p = x1 − x2 and rewrite problem (45) as

min
p∈Rn

min
x2∈X2

1

2
‖p‖2 (46)

subject to
A1x2 + A1p ≥ b1, A2x2 ≥ b2. (47)

The norm ‖p‖ is the same as the distance between the convex sets X1 and X2. The vector
p obtained by solving problem (46), (47) will be called the vector determining the distance
between these sets. The vector y introduced above is not always the same as the vector p
produced by solving problem (46).

The Lagrangian function for problem (46) has the form

L(p, x2, v) = ‖p‖2/2 + v>1 (b1 − A1p− A1x2) + v>2 (b2 − A2x2).

Using this function, we can write the dual problem:

max
v1∈Rm1

+

max
v2∈Rm2

+

min
x2∈Rn

min
p∈Rn

L(p, x2, v). (48)

The optimality conditions for the inner problem in (48) are as follows:

Lp(p, x2, v) = p− A>
1 v1 = 0n, (49)

Lx2(p, x2, v) = −A>
1 v1 − A>

2 v2 = 0n. (50)

Relations (49) and (50) imply that p = A>
1 v1 = −A>

2 v2. The substitution of this expression
into the Lagrangian function results in the dual Lagrangian function

L̃(x2, v) = ‖A>
1 v1‖2/2 + v>1 (b1 − A1A

>
1 v1 − A1x2) + v>2 (b2 − A2x2) =

= b>1 v1 + b>2 v2 − ‖A>
1 v1‖2/2− x>2 (A>

1 v1 + A>
2 v2).

Taking into account (50), we obtain the dual problem to problem (46), (47):

max
v1∈Rm1

+

max
v2∈Rm2

+

{b>1 v1 + b>2 v2 − ‖A>
1 v1‖2/2} (51)

subject to
A>

1 v1 + A>
2 v2 = 0n, v1 ≥ 0m1 , v2 ≥ 0m2 . (52)

Denote by [p∗, x∗2] a solution to problem (46), (47) and by [v∗1, v
∗
2] a solution to the dual

problem (51), (52). By the duality theorem, we have

b>1 v∗1 + b>2 v∗2 − ‖A>
1 v∗1‖2/2 = ‖p∗‖2/2. (53)
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Substituting p∗ = A>
1 v∗1 into (53), we obtain

b>1 v∗1 + b>2 v∗2 = ‖A>
1 v∗1‖2. (54)

Thus, we have the following assertion.
Theorem 5. Every solution v∗> = [v∗1

>, v∗2
>] to the dual problem (51), (52) determines the

unique �rst component p∗ in a solution [p∗, x∗2] to problem (48), which is given by the formulas

p∗ = A>
1 v∗1 = −A>

2 v∗2. (55)

Moreover, it holds that
b>v∗ = ‖A>

1 v∗1‖2 = ‖A>
2 v∗2‖2 = ‖p∗‖2.

Theorem 5 implies that the vector v∗ found from (51), (52) satis�es system (5) for ρ = ‖p∗‖2.
Note that a solution v∗ to the dual problem (51), (52) determines only the �rst component

p∗ in a solution [p∗, x∗2] to the primal problem (46), (47). To determine x∗2, one should substitute
p∗ into the constraints of the primal problem and solve the resulting system of inequalities

A1x2 ≥ b1 − A1p
∗, A2x2 ≥ b2,

with respect to the vector x2. Thus, the situation here is di�erent from that of a pair of mutually
dual problems, which was examined above.

Theorem 6 (on a family of parallel separating hyperplanes). Let X1 and X2 be
nonempty polyhedra with an empty intersection, and let v∗, p∗, x∗2 be a solution to problem
(48). Then, the family of parallel hyperplanes that separate X1 and X2 can be represented in
the form

Γ(α) = {x ∈ Rn : p∗>x− b>1 v∗1 + α‖p∗‖2 = 0}, (56)
Γ(α) = {x ∈ Rn : p∗>x + b>2 v∗2 − (1− α)‖p∗‖2 = 0}, (57)

where α ∈ [0, 1]. Moreover, if 0 < α < 1, then these hyperplanes strictly separate X1 and X2.
The hyperplanes Γ(0) and Γ(1) are supporting hyperplanes for the sets X1 and X2, respectively.
The thickness of the family Γ(α) is equal to ‖p∗‖; it is the same as the distance between the
polyhedra X1 and X2.

Proof. Since v∗ is a solution to problem (51), (52), we have

A>
1 v∗1 + A>

2 v∗2 = 0n.

Multiplying this relation on the left by x>, where x is an arbitrary vector in Rn, and subtracting
the resulting equality from (54), we obtain

x>A>
1 v∗1 + x>A>

2 v∗2 − b>1 v∗1 − b>2 v∗2 = −‖A>
1 v∗1‖2. (58)

Using the coe�cient α ∈ [0, 1] and the equality ‖A>
1 v∗1‖ = ‖A>

2 v∗2‖, we can rewrite (58) as

v∗1
>(A1x− b1) + α‖A>

1 v∗1‖2 = v∗2
>(b2 − A2x) + (α− 1)‖A>

2 v∗2‖2.

Taking into account (55), we arrive at the equivalent representations (56) and (57) of the
hyperplane Γ(α).
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The triple [v∗, p∗, x∗2] is a Kuhn�Tucker point for problem (46). Therefore, the following
complementary slackness conditions must hold:

v∗1
>Lv1(p

∗, x∗2, v
∗) = 0, v∗2

>Lv2(p
∗, x∗2, v

∗) = 0, v∗1 ≥ 0m1 , v∗2 ≥ 0m2 ,

Lv1(p
∗, x∗2, v

∗) ≤ 0n, Lv2(p
∗, x∗2, v

∗) ≤ 0m2 .

From these conditions, we derive

v∗1
>(b1 − A1x

∗
1) = 0, v∗2

>(b2 − A2x
∗
2) = 0, A1x

∗
1 ≥ b1, A2x

∗
2 ≥ b2. (59)

The relations obtained imply that x∗1 ∈ X1, x∗1 ∈ Γ(0), x∗2 ∈ X2, and x∗2 ∈ Γ(1).
For an arbitrary point x in X1, we have A1x ≥ b1. Taking the scalar product of this

inequality with the non-negative vector v∗1, we obtain v∗1
>(A1x− b1) ≥ 0. Taking into account

(55), we arrive at the relation
p∗>x− b>1 v∗1 ≥ 0. (60)

From (59), we �nd that
b>1 v∗1 = p∗>x∗1. (61)

From (60), we conclude that p∗>x ≥ p∗>x∗1 for any x ∈ X1 and that at least one point x∗1 ∈ X1

belongs to the separating hyperplane p∗>x = p∗>x∗1. Hence, X1 belongs to one of the half-spaces
determined by the hyperplane Γ(0), and Γ(0) is a supporting hyperplane for this set at its point
x∗1. In a similar way, we show that Γ(1) is a supporting hyperplane for X2 at the point x∗2. It
holds that

b>2 v∗2 = −p∗>x∗2. (62)
All the points in X2 satisfy the inequality p∗>x ≤ p∗>x∗2 and at least one point x∗2 ∈ X2 belongs
to the hyperplane p∗>x = p∗>x∗2.

The distance between the supporting hyperplanes is the same as the distance between
X1 and X2; both are equal to ‖p∗‖, which follows from the formulation of problem (46), (47).
The theorem is proved.

Note that, if relations (61) and (62) are taken into account, then hyperplanes Γ(α) of form
(56), (57) can be represented as

Γ(α) = {x ∈ Rn : p∗>x− (1− α)p∗>x∗1 − αp∗>x∗2 = 0}, (63)

i.e., each member of the family of separating hyperplanes can be represented as a convex
combination of supporting hyperplanes for X1 and X2. To construct a family of hyperplanes
of form (63), one needs to solve problem (46), (47) in a space of variables of dimension 2n.
To represent the same family in form (56), (57), it is required to solve the dual problem (51),
(52) in a space of variables of dimension m. The vector p∗ appearing in this representation is
expressed in terms of v∗ by formula (55).

Now, we examine the following issue: is it possible to distinguish a solution to system (5)
that determines a family of hyperplanes whose thickness is equal to the distance between the
sets X1 and X2? According to formulas (12) and (13), the shift vector y and the thickness
‖y‖ of the family of separating hyperplanes Γ(α) are given by y = −ρA>

1 u1/‖A>
1 u1‖2 and

‖y‖ = ρ/‖A>
1 u1‖, respectively; here, u> = [u>1 , u>2 ] is a solution to system (5). It is then

natural to pose the problem of �nding a solution u∗> = [u∗1
>, u∗2

>] ∈ U to system (5) for which
the thickness of the family of separating hyperplanes is maximal:

1

2
‖A>

1 u∗1‖2 = min
u∈U

1

2
‖A>

1 u1‖2, (64)
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U = {u ∈ Rm : A>
1 u1 + A>

2 u2 = 0n, b>1 u1 + b>2 u2 = ρ, u1 ≥ 0m1 , u2 ≥ 0m2}. (65)
In this case, the shift vector y = Γ(1)− Γ(0) yields the thickness of the family of hyperplanes,
which is identical to the minimal distance between the polyhedra X1 and X2. This is explained
by the fact that the solution u∗ to problem (64), (65) allows us to �nd the minimal distance
between X1 and X2. It turns out that problems (64), (65) and (51), (52) are equivalent in the
sense that the solution to one of them can be found from the solution to the other.

Theorem 7. Let X1 and X2 be nonempty polyhedra with an empty intersection. Then, the
solution v∗ to problem (51), (52) and the solution u∗ to problem (64), (65) satisfy the relations

v∗ =
ρu∗

‖A>
1 u∗1‖2

, u∗ =
ρv∗

b>v∗
. (66)

The family of separating hyperplanes can be represented in each of the following forms:

Γ(α) = {x ∈ Rn : u∗1
>A1x− b>1 u∗1 + αρ = 0}, (67)

Γ(α) = {x ∈ Rn : −u∗2
>A2x + b>2 u∗2 + (α− 1)ρ = 0}, (68)

where 0 ≤ α ≤ 1. The thickness of this family is identical to the minimal distance between
X1 and X2.

Proof. The vector u∗ satis�es system (5); hence, ‖A>
1 u∗1‖ 6= 0 (see the �rst assertion in

Theorem 2). By Theorem 5, it holds that b>v∗ 6= 0. Formulas (66) are obtained by comparing
the Kuhn�Tucker conditions for problems (51), (52) and (64), (65). Using (55), (66), and (12),
we have

p∗ = A>
1 v∗1 =

ρA>
1 u∗1

‖A>
1 u∗1‖2

= −y.

It follows that, for the family of separating hyperplanes (67), (68), the thickness is identical to
the minimal distance between X1 and X2:

‖p∗‖ =
ρ

‖A>
1 u∗1‖

= ‖y‖.

The theorem is proved.
The dual problem to problem (64), (65) is as follows:

max
q∈Rn

max
x∈Rn

max
ξ∈R1

{
ρξ − 1

2
‖q‖2

}

subject to
A1(q + x)− b1ξ ≥ 0m1 , A2x− b2ξ ≥ 0m2 .

The unknown vector q can be obtained from the solution u∗ to the primal problem (64),
(65) by using the formula q∗ = A>

1 u∗1 = −A>
2 u∗2. By the duality theorem, the solutions u∗

and [q∗, x∗, ξ∗] to the primal and dual problems satisfy the relation ρξ∗ = ‖A>
1 u∗1‖2. Therefore,

ξ∗ > 0, and p∗ = q∗/ξ∗, x∗2 = x∗/ξ∗.
Thus, we have constructed the three equivalent representations (56), (57), (63), and (67),

(68) for the same family of separating hyperplanes whose thickness is equal to the minimal
distance between the polyhedra. Each representation requires solving its own optimization
problem.
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4. CONSTRUCTION OF SEPARATING HYPERPLANES WITH THE HELP
OF FARKAS' LEMMA

Consider the case where two polyhedra are represented by equality systems given on the
nonnegative orthant; i.e., we have two nonempty sets

X1 = {x ∈ Rn : A1x = b1, x ≥ 0n}, X2 = {x ∈ Rn : A2x = b2, x ≥ 0n}

such that X = X1 ∩X2 = ∅.
According to Farkas' lemma, the inconsistency of the system

A1x = b1, A2x = b2, x ≥ 0n,

where the variables are nonnegative, implies that the system

A>
1 u1 + A>

2 u2 ≤ 0n, b>1 u1 + b>2 u2 = ρ (69)

is consistent. Here, ρ is a positive constant.
System (69) is solvable, and every of its solutions satis�es the inequalities ‖u1‖ 6= 0, ‖u2‖ 6=

6= 0, ‖A>
1 u1‖ 6= 0, and ‖A>

2 u2‖ 6= 0. Indeed, assume the contrary; namely, let A>
1 u1 = 0n.

Since X1 is nonempty, the alternative system A>
1 u1 ≤ 0, b>1 u1 = ρ1 6= 0 is inconsistent. By

assumption, A>
1 u1 = 0n; hence, b>1 u1 = 0. In this case, (69) converts into the consistent

system A>
2 u2 ≤ 0n, b>2 u2 = ρ. However, this is the alternative system to A2x = b2, x ≥ 0n.

By assumption, the latter system is consistent, because X2 is nonempty. The contradiction
obtained proves that the equality A>

1 u1 = 0n is impossible. If u1 = 0m1 , then A>
1 u1 = 0n, which

is impossible.
Taking the scalar product of the inequality part in (69) with a nonnegative vector x and

then subtracting the equality part, we obtain

u>1 (A1x− b1) + u>2 (A2x− b2) ≤ −ρ < 0. (70)

De�ne two linear functions of variable x ∈ Rn and a parameter α ∈ [0, 1] as follows:

ϕ1(x, α) = u>1 (A1x− b1) + αρ, ϕ2(x, α) = −u>2 (A2x− b2)− (1− α)ρ.

Then, inequality (70) can be rewritten as

ϕ1(x, α) = u>1 (A1x− b1) + αρ ≤ −u>2 (A2x− b2)− (1− α)ρ = ϕ2(x, α). (71)

Fix vectors u1 and u2 constituting an arbitrary solution to system (69). Using ϕ1(x, α)
and ϕ2(x, α) we obtain two families of hyperplanes that correspond to α ∈ [0, 1] and separate
X1 and X2.

If x ∈ X1, then ϕ1(x, α) ≥ 0 for α ∈ [0, 1]. If x ∈ X2, then ϕ2(x, α) ≤ 0 for α ∈ [0, 1]. Then,
(71) implies that ϕ1(x, α) ≤ 0. It follows that the hyperplanes in the family ϕ1(x, α) = 0,
α ∈ [0, 1] separate X1 and X2. If 0 < α < 1, then inequality (71) shows that the hyperplane
ϕ1(x, α) = 0 strictly separates these sets.

Now, we show that the condition ϕ2(x, α) = 0 determines the family of hyperplanes that
separate X1 and X2 for α ∈ [0, 1] and strictly separate these sets if 0 < α < 1. Indeed, if
x ∈ X2, then ϕ2(x, α) ≤ 0 for α ∈ [0, 1] and ϕ2(x, α) < 0 if 0 ≤ α < 1. If x ∈ X1, then (71)
implies that ϕ2(x, α) ≥ 0 for α ∈ [0, 1] and ϕ2(x, α) > 0 if 0 < α ≤ 1.
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Thus, by solving the alternative consistent system (69), we obtain two families of separating
hyperplanes determined by ϕ1(x, α) and ϕ2(x, α). It follows that the case under analysis di�ers
from the case of polyhedra given by inequality systems, which was examined above.

De�ne a nonnegative linear combination of ϕ1(x, α) and ϕ2(x, α) by setting

ϕ3(x, α) = λ1ϕ1(x, α) + λ2ϕ2(x, α).

Here, λ1 ≥ 0 and λ2 ≥ 0.
Consider the following three families of separating hyperplanes and their unions:

Γi(α) = {x ∈ Rn : ϕi(x, α) = 0}, Γi =
1⋃

α=0

Γi(α), i = 1, 2, 3.

It is easy to show that the hyperplanes in Γ3(α) separate X1 and X2 for any nonnegative scalars
λ1 and λ2 of which at least one is nonzero.

As in the preceding section, we denote by p∗ the vector joining the two nearest points in
X1 and X2; then, the distance between these sets is ‖p∗‖. It is often possible to choose λ1 and
λ2 such that the vector

p∗ = λ1A
>
1 u1 − λ2A

>
2 u2,

where u> = [u>1 , u>2 ], satis�es condition (69). In this case, p∗ is the normal vector of Γ3(x, α),
and the thickness of this family is equal to the minimal distance between X1 and X2. The
following theorem is an analogue of Theorem 4.

Theorem 8. Let the hyperplane c>x − γ = 0 strictly separate two nonempty disjoint
polyhedra X1 and X2. Then, there exists a solution u1, u2 to the system

A>
1 u1 + A>

2 u2 ≤ 0, b>1 u1 + b>2 u2 = ρ > 0

such that
A>

1 u1 ≤ c, A>
2 u2 ≤ −c, γ = b>1 u1 − ρ1 = −b>2 u2 + ρ2,

where ρ1 and ρ2 are arbitrary positive constants such that ρ1 + ρ2 = ρ.
The proof is an almost word-for-word repetition of the proof of Theorem 4.
Theorem 8 asserts that the polyhedra given by equality systems on the nonnegative orthant

are di�erent from the polyhedra given by inequality systems in the sense that it is not always
possible to �nd u1 and u2 that satisfy the consistent alternative system (69) and, at the same
time, satisfy either the condition c = A>

1 u1 or the condition c = −A>
2 u2. In other words, there

may not exist vectors u1 and u2 that satisfy (69) and have the property that the separating
hyperplane c>x− γ = 0 belongs to either Γ1(α) or Γ2(α).

Example 2. Let the polyhedra be given by the conditions

X1 = {x ∈ R2 : x1 + x2 = 1, x ≤ 02},
X2 = {x ∈ R2 : 2x1 − x2 = 6, x ≥ 02}.

We set ρ = 1 in system (69). Figure 2 shows three unions of the families of separating hyper-
planes: Γ1, Γ2, and Γ3; it also shows the vectors

c>1 = [−1/2 − 1/2], c>2 = [−1/2 1/4], c>3 = [−1 0], x∗> = [2.6 0].

From the formulas given above, we obtain

‖p∗‖ = 2, λ1 = 4/3, λ2 = 8/3, u∗1 = −1/2, u∗2 = 1/4,
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ϕ1(x, α) = −x1/2− x2/2 + 1/2 + α,

ϕ2(x, α) = −x1/2 + x2/4 + 3/2− (1− α),

ϕ3(x, α) = −2x1 + 2 + 4α.

Using the last formula, we �nd the family with a maximal thickness:

Γ3(α) = {x ∈ Rn : x1 = 1 + 2α}.
On the other hand, we arrive at the same family Γ3(α) by setting x∗1

> = [1 0], x∗2
> = [3 0],

and p∗> = [−2 0] in (63).
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5. THE GENERALIZED NEWTON METHOD

Since we usually have n ¿ m in the problem of separating polyhedra given by inequality
systems (4), it is preferable to solve problem (25): minimize the function F (x) = ‖(b−Ax)+‖2/2,
which depends on n variables. The unconstrained minimization of F (x) can be performed by
any method, such as the conjugate gradient method. However, Mangasarian showed that
the generalized Newton method is especially e�cient for the unconstrained optimization of a
piecewise quadratic function (see [4, 5]). We give a brief description of this method.

The objective function F (x) of problem (15) is convex, piecewise quadratic, and di�eren-
tiable. Such a function does not have the conventional Hessian matrix. Indeed, the gradient

Fx(x) = −A>(b− Ax)+

of F (x) is not di�erentiable. However, for this function, one can de�ne the generalized Hessian
matrix, which is an n-by-n symmetric positive semide�nite matrix of the form

∂2F (x) = A>D](z)A.
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Here, D](z) denotes the m-by-m diagonal matrix whose ith diagonal entry zi is equal to one
if (b − Ax)i > 0; zi is equal to zero if (b − Ax)i ≤ 0 (i = 1, 2, . . . , m). Since the generalized
Hessian matrix can be singular, the following modi�ed Newton direction is used:

− [
∂2F (x) + δIn

]−1
Fx(x),

where δ is a small positive number (in our calculations, we typically set δ = 10−4) and In is the
identity matrix of order n. In this case, the modi�ed Newton method has the form

xs+1 = xs −
[
∂2F (xs) + δIn

]−1
Fx(xs). (72)

We used the following stopping criterion for this method:

‖xs+1 − xs‖ ≤ tol.

Mangasarian has studied the convergence of the generalized Newton method as applied to
the unconstrained minimization of a convex piecewise quadratic function of this type with the
step size chosen by the Armijo rule. The proof of the �nite global convergence of the generalized
Newton method can be found in [4] � [6].

The generalized Newton method as applied to the unconstrained minimization problem (15)
was implemented in Matlab and showed good performance in solving large-scale test problems.
For instance, problem (15) with n = 500 and m = 104, whose matrix A was fully �lled with
nonzero entries, was solved in less than one minute on a 2.24 GHz Pentium-IV computer.
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