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Abstract � New theorems of the alternative are proved for systems of linear
equalities and inequalities, which makes it possible to develop several e�cient
numerical methods. These methods are used to �nd normal solutions to systems
of linear equations and inequalities, to construct separating hyperplanes, to
correct inconsistent systems, and to solve nonlinear programming problems. They
considerably simplify the implementation of the steepest descent method. The
theorems of the alternative proved by Fredholm, Farkas, Gale, Gordan, Stiemke,
and others are particular cases of those presented in this paper.

1. INTRODUCTION

There are several theorems of the alternative (see, e.g., [1] � [10]), which were used mainly in
proving existence theorems and in deriving extremum conditions in optimization problems. In
this paper, we give constructive proofs of new theorems of the alternative, which are designed to
construct new computational methods. These proofs make it possible to �nd normal solutions
to systems of linear equations and inequalities, to determine the steepest descent directions in
nonlinear programming problems, to construct separating hyperplanes, to correct inconsistent
problems, to construct new algorithms for solving linear programming problems, etc.

For a given linear system, an alternative system is constructed in the space whose dimension
is equal to the number of equations and inequalities in the original system (not counting
constraints on the signs of variables). The original solvable system is solved by minimizing
the residuals of the inconsistent alternative system. The results of this minimization are used
to �nd the normal solution (with a minimal Euclidean norm) to the original system. The
replacement of the original problem by the minimization of the residuals of the inconsistent
alternative system may be advantageous when the dimension of the new variables is less than
that of the starting ones. In this case, such a reduction results in the minimization problem in a
space of lower dimension and allows one to obtain the normal solution to the original problem.

Many well-known theorems of the alternative (e.g., the Fredholm, Farkas, Gale, Gordan,
and Stiemke theorems) follow from the theorems stated in this paper. However, we believe that
the principal achievement of this study is that the results obtained o�er new opportunities
for applying theorems of the alternative in the development of computational methods. A new
method for �nding normal solutions to systems of linear equations and inequalities based on
these theorems is presented in Section 2. These theorems make it possible to considerably
simplify the implementation of the steepest descent method (Section 3), to derive simple
correction formulas for unsolvable systems (Section 4), to obtain formulas for separating hyper-
planes (Section 7), and to develop new methods for solving linear programming problems ([17]).

The proofs of the theorems are based on the duality theory. This work is a sequel to our
earlier papers [16] � [19]. The minimization of residuals for proving theorems of the alternative
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was �rst suggested in [5]. We also call the reader's attention to [8, 20, 21], where application of
theorems of the alternative in constructing numerical methods was discussed.

2. BASIC THEOREMS

Let an m× n matrix A be given in the form

A =

[
A11 A12

A21 A22

]
,

where A11, A12, A21, and A22 are rectangular matrices of dimensions m1×n1, m1×n2, m2×n1,
and m2 × n2, respectively. Let vectors x ∈ Rn, z, u, and b ∈ Rm be represented in partitioned
form as x> = [x>1 , x>2 ], z> = [z>1 , z>2 ], u> = [u>1 , u>2 ], and b> = [b>1 , b>2 ], where x1 ∈ Rn1 ,
x2 ∈ Rn2 , n = n1 + n2, z1, u1, b1 ∈ Rm1 , z2, u2, b2 ∈ Rm2 , and m = m1 + m2. The matrix A and
the vector b are assumed to be nonzero ones.

De�ne the auxiliary sets Πx =
{
[x1, x2] : x1 ∈ Rn1

+ , x2 ∈ Rn2
}
, Πz =

{
[z1, z2] : z1 ∈ Rm1

+ , z2 ∈
∈ Rm2}, and Πu =

{
[u1, u2] : u1 ∈ Rm1

+ , u2 ∈ Rm2
}
; a vector w ∈ Rn+1 represented as w> =

= [w>
1 , w>

2 , w3], where w1 ∈ Rn1 , w2 ∈ Rn2 , and w3 ∈ R1; and the auxiliary set Πw =

= {[w1, w2, w3] : w1 ∈ Rn1
+ , w2 ∈ Rn2 , w3 ∈ R1}. By ‖a‖ and ‖a‖1 =

n∑
i=1

|ai|, we denote
the Euclidean and �rst norms of a vector a ∈ Rn, respectively.

Consider the system of linear equations and inequalities

A11x1 + A12x2 ≥ b1, A21x1 + A22x2 = b2, x1 ≥ 0n1 . (I)

This system can be viewed as a feasible set in the linear programming problem of minimization
of c>x, where c = 0n. For this problem, the dual problem is the maximization of b>u on the
feasible set de�ned by the system

A>
11z1 + A>

21z2 ≤ 0n1 , A>
12z1 + A>

22z2 = 0n2 , z1 ≥ 0m1 . (I)′

System (I)′ is said to be adjoint to (I).
Consider the system

A>
11u1 + A>

21u2 ≤ 0n1 , A>
12u1 + A>

22u2 = 0n2 , b>1 u1 + b>2 u2 = ρ, u1 ≥ 0m1 , (II)

where ρ > 0 is an arbitrary �xed positive number. The condition b>1 u1 + b>2 u2 = ρ implies that
the adjoint system (I)′ has no trivial solution.

The adjoint of system (II) is

A11w1 + A12w2 − b1w3 ≥ 0m1 , A21w1 + A22w2 − b2w3 = 0m2 , w1 ≥ 0n1 . (II)′

We denote the sets of solutions to (I), (I)′, (II), and (II)′ by X, Z, U , and W , respectively. If
systems (I) or (II) are solvable, we write X 6= ∅ or U 6= ∅, respectively. Unlike systems (I) and
(II), the adjoint systems (I)′ and (II)′ always have solutions, since 0m ∈ Z and 0n+1 ∈ W . It
follows from the form of system (II) that, if it is solvable (unsolvable) for a certain ρ = ρ1 > 0,
then it is solvable (unsolvable) for any other ρ = ρ2 > 0.

Let pen (x,X) denote the penalty for the violation of the condition x ∈ X calculated at a
point x ∈ Πx. By the de�nition of the penalty function, x ∈ Πx, then pen (x,X) = 0 if and
only if x ∈ X. The quantity pen (u, U) is introduced by analogy. If u ∈ Πu, then pen (u, U) = 0
if and only if u ∈ U .
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The penalties are calculated as the Euclidean norms of the residual vectors for systems (I)
and (II):

pen (x,X) =
[‖(b1 − A11x1 − A12x2)+‖2 + ‖b2 − A21x1 − A22x2‖2

]1/2
,

pen (u, U) =
[‖(A>

11u1 + A>
21u2)+‖2 + ‖A>

12u1 + A>
22u2‖2 + (ρ− b>1 u1 − b>2 u2)

2
]1/2

.

Here, a+ is the nonnegative part of the vector a; i.e., the ith component of the vector a+ is
equal to that of the vector a if the latter is nonnegative and is zero otherwise.

To �nd out whether a system is solvable and, if it is, to solve it, we apply methods of
unconstrained minimization to either of the following problems:

I1 = min
x∈Πx

[pen (x,X)]2 /2, (1)

I2 = min
u∈Πu

[pen (u, U)]2 /2. (2)

In the strict sense, (1) and (2) are not unconstrained minimization problems, since they involve
constraints on the signs of the components of x1 and u1. However, since most unconstrained
minimization methods can easily be modi�ed to allow for constraints on the signs of variables,
we will keep this term for problems (1) and (2). Problems (1) and (2) are always solvable, since
quadratic objective functions de�ned on nonempty feasible sets Πx and Πu are bounded by zero
from below.

Two systems are said to be mutually alternative if only one of them is consistent. The
solvability or unsolvability of a system can be characterized by a scalar quantity called the
minimum residual, which is found by solving problem (1) or (2). Therefore, solution of both
problems makes it possible to determine whether the systems are mutually alternative. Let
x∗ ∈ Πx and u∗ ∈ Πu be arbitrary solutions of problems (1) and (2), respectively; i.e., I1 =
= [pen (x∗, X)]2 /2 and I2 = [pen (u∗, U)]2 /2. Then, the following lemma is valid for systems
(I) and (II).

Lemma 1 (criterion for alternativity). Systems (I) and (II) are mutually alternative if
and only if

pen (x∗, X) pen (u∗, U) = 0, pen (x∗, X) + pen (u∗, U) > 0. (3)

Proof. The former equation in (3) implies that at least one of the systems, (I) or (II), is
solvable. The latter equation implies that at least one of the systems is unsolvable. Then, it
follows that systems (I) and (II) are mutually alternative.

Lemma 2. Systems (I) and (II) are not solvable simultaneously.
Proof. Assume the contrary. Let there exist solutions x∗ and u∗ to systems (I) and (II),

respectively. Then, substituting x∗ into (I), multiplying the inequality in (I) by u∗1 and the
equation (II) by u∗2, adding the results, and performing simple calculations, we obtain

x∗1
>(A>

11u
∗
1 + A>

21u
∗
2) + x∗2

>(A>
12u

∗
1 + A>

22u
∗
2) ≥ b>1 u∗1 + b>2 u∗2.

By virtue of (II), the left-hand side of this inequality is nonpositive, whereas its right-hand side
is strictly positive, since A>

11u
∗
1 + A>

21u
∗
2 ≤ 0n1 and b>1 u∗1 + b>2 u∗2 = ρ > 0. Thus, we arrive at

a contradiction. Therefore, systems (I) and (II) cannot be consistent simultaneously and meet
the second condition in (3). The lemma is proved.

The former condition in (3) is proved in Theorem 3 below. The original system (I) is
alternative to the alternative system (II). Indeed, every system alternative to system (II) has
the form

A11w1 + A12w2 − b1w3 ≥ 0m1 , A21w1 + A22w2 − b2w3 = 0m2 , ρw3 = ρ′, w1 ≥ 0n1 , (4)
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where ρ ′ > 0 is an arbitrary positive number. Hence, w3 = ρ′/ρ > 0 Changing the variables in
(4), x1 = w1/w3 and x2 = w2/w3, we obtain the original system (I).

Consider the following two quadratic programming problems:

Id
1 = max

z∈Z

{
b>z − ‖z‖2/2

}
, (5)

Id
2 = max

w∈W

{
ρw3 − ‖w‖2/2

}
. (6)

Unlike systems (I) and (II), which may be consistent or inconsistent, problems (1), (2), (5),
and (6) always have solutions. Moreover, problems (5) and (6) have unique solutions, since the
feasible sets Z and W in these problems are nonempty, and strictly concave quadratic objective
functions are bounded from above (see formula (32) below).

Formally, the unconstrained minimization problems (1) and (2) do not have Lagrange
functions, which implies that the corresponding dual problems cannot be constructed directly.
Nevertheless, one can introduce additional variables to construct arti�cial constraints and obtain
equivalent nonlinear programming problems for which dual problems are well de�ned.

Lemma 3. The unconstrained minimization problems (1) and (2) are dual to problems
(5) and (6), respectively. Problems (1) and (2) reduce to equivalent problems of constrained
minimization of quadratic functions, which are dual to problems (5) and (6), respectively.

Proof. The �rst assertion follows from the conventional representation of dual problems for
quadratic programming problems (see, e.g., [6, 12, 13, 14]).

The second assertion is not quite conventional. It is based on a two-step representation of
problems (1) and (2). This approach was employed in [14, 15].

Let us introduce a vector of additional variables y ∈ Rm, y> = [y>1 , y>2 ], where y1 ∈ Rm1

and y2 ∈ Rm2 are given by

y1 = b1 − A11x1 − A12x2, y2 = b2 − A21x1 − A22x2.

Then, problem (1) reduces to the equivalent constrained minimization problem

I1 = min
[x,y]∈G

f(y), (7)

in which the objective function and the feasible set are

f(y) = ‖(y1)+‖2/2 + ‖y2‖2/2,

G = {[x, y] : A11x1 + A12x2 + y1 = b1, A21x1 + A22x2 + y2 = b2, x ∈ Πx}.

Unlike X, the set G is always nonempty.
For the quadratic programming problem (7), the Lagrange function is given by

L(x, y, z) = f(y) + z>1 (b1 − A11x1 − A12x2 − y1) + z>2 (b2 − A21x1 − A22x2 − y2),

where z ∈ Πz is the vector of Lagrange multipliers. The expression for the Lagrange function
is transformed into

L(x, y, z) = f(y)− x>1 (A>
11z1 + A>

21z2)− x>2 (A>
12z1 + A>

22z2) + z>1 (b1 − y1) + z>2 (b2 − y2). (8)

De�ne the dual function

F (z) = min
x ∈ Πx

min
y∈Rn

L(x, y, z) (9)

4



and consider the problem of �nding
max
z∈Πz

F (z),

which is dual to (7).
The necessary and su�cient optimality conditions for problem (9) are

Lx1(x, y, z) = −A>
11z1 − A>

21z2 ≥ 0n1 , D(x1)(A
>
11z1 + A>

21z2) = 0n1 , x1 ≥ 0n1 , (10)

Lx2(x, y, z) = −A>
12z1 − A>

22z2 = 0n2 , (11)

Ly1(x, y, z) = (y1)+ − z1 = 0m1 , Ly2(x, y, z) = y2 − z2 = 0m2 . (12)

Hereinafter, D(z) denotes the diagonal matrix whose ith diagonal element is the ith component
of the vector z.

For z ∈ Πz, it follows from (12) that z = y. Substituting this into (8) and assuming that
z ∈ Z, we �nd that, by virtue of de�nition (9) and conditions (10) and (11), the dual function
takes the form F (z) = b>z − ‖z‖2/2. Thus, we arrive at problem (5), which is dual to (7)
and, in a sense, to (1). Hence, the unconstrained minimization problem (1) and the quadratic
programming problem (5) can be interpreted as mutually dual. Similarly, problems (2) and (6)
are mutually dual. The lemma is proved.

For the problems introduced above, a duality theorem is valid. It states that the optimal
values of the objective functions are equal:

I1 = Id
1 , I2 = Id

2 . (13)

The projection of a point x̄ onto a nonempty closed set X is the point x̄∗ ∈ X nearest to x̄,
i.e., the point that minimizes the functional

J = min
x∈X

‖x̄− x‖ = ‖x̄− x̄∗‖. (14)

We write x̄∗ = pr (x̄, X) and denote the distance from x̄ to X by dist (x̄, X) = ‖x̄∗ − x̄‖.
Theorem 1. Any solution x∗ of problem (1) determines a unique solution z∗> = [z∗>1 , z∗>2 ]

to problem (5) as

z∗1 = (b1 − A11x
∗
1 − A12x

∗
2)+, z∗2 = b2 − A21x

∗
1 − A22x

∗
2, (15)

and it holds that
‖z∗‖2 = b>z∗, (16)

z∗ ⊥ Ax∗, z∗ ⊥ (b− z∗), (17)
z∗ = pr (b, Z), ‖z∗‖ = pen (x∗, X), ‖b− z∗‖ = dist (b, Z), (18)

[pen (x∗, X)]2 + [dist (b, Z)]2 = ‖b‖2. (19)

Proof. The necessary and su�cient minimum conditions for problem (1) at the point x∗

are written as

−A>
11(b1 − A11x

∗
1 − A12x

∗
2)+ − A>

21(b2 − A21x
∗
1 − A22x

∗
2) ≥ 0n1 ,

D(x∗1)
[
A>

11(b1 − A11x
∗
1 − A12x

∗
2)+ + A>

21(b2 − A21x
∗
1 − A22x

∗
2)

]
= 0n1 , x∗1 ≥ 0n1 ,

A>
12(b1 − A11x

∗
1 − A12x

∗
2)+ + A>

22(b2 − A21x
∗
1 − A22x

∗
2) = 0n2 .

(20)
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Using
z∗1 = (b1 − A11x

∗
1 − A12x

∗
2)+, z∗2 = b2 − A21x

∗
1 − A22x

∗
2 (21)

in (20), let us show that z∗> = [z∗>1 , z∗>2 ] is a solution to problem (5). Conditions (20) are
rewritten as

A>
11z

∗
1 + A>

21z
∗
2 ≤ 0n1 , A>

12z
∗
1 + A>

22z
∗
2 = 0n2 , (22)

D(x∗1)(A
>
11z

∗
1 + A>

21z
∗
2) = 0n1 x∗1 ≥ 0n1 . (23)

It follows from (21) and (22) that z∗ ∈ Z. Multiplying the former relation in (21) by z∗1 and
the latter by z∗2 , we obtain

‖z∗1‖2 = z∗>1 (b1 − A11x
∗
1 − A12x

∗
2)+ = z∗>1 (b1 − A11x

∗
1 − A12x

∗
2) =

= b>1 z∗1 − x∗>A>
11z

∗
1 − x∗>2 A>

12z
∗
1 ,

‖z∗2‖2 = z∗>2 (b2 − A21x
∗
1 − A22x

∗
2) = b>2 z∗2 − x∗>1 A>

21z
∗
2 − x∗>2 A>

22z
∗
2 .

Adding the equations obtained, we �nd that

‖z∗‖2 = ‖z∗1‖2 + ‖z∗2‖2 = b>1 z∗1 + b>2 z∗2 − x∗>1 (A>
11z

∗
1 + A>

21z
∗
2)− x∗>2 (A>

12z
∗
1 + A>

22z
∗
2) =

= (b− Ax∗)>z∗ = b>z∗.
(24)

In Eq. (24), we used the fact that x∗>1 (A>
11z

∗
1 + A>

21z
∗
2) + x∗>2 (A>

12z
∗
1 + A>

22z
∗
2) = x∗>A>z∗ = 0

by (22) and (23). Thus, Eq. (16) is proved. Moreover, it is proved that z∗>Ax∗ = 0; i.e., the
vectors z∗ and Ax∗ are orthogonal. Equation (16) can be rewritten as z∗>(z∗ − b) = 0. The
validity of the former relation in (17) follows from this equation.

Let us de�ne the Lagrange function for problem (5) as

L(z, x) = b>z − ‖z‖2/2− x>1 (A>
11z1 + A>

21z2)− x>2 (A>
12z1 + A>

22z2) (25)

and write out the Kuhn�Tucker conditions:

Lz1(z, x) = b1 − z1 − A11x1 − A12x2 ≤ 0m1 , (26)

D(z1)(b1 − z1 − A11x1 − A12x2) = 0m1 , z1 ≥ 0m1 , (27)
Lz2(z, x) = b2 − z2 − A21x1 − A22x2 = 0m2 , (28)

Lx1(z, x) = −(A>
11z1 + A>

21z2) ≥ 0n1 , x1 ≥ 0n1 , D(x1)(A
>
11z1 + A>

21z2) = 0n1 , (29)

Lx2(z, x) = −(A>
12z1 + A>

22z2) = 0n2 . (30)
Let us compare the necessary and su�cient minimum conditions (21) � (23) for problem (1)

with those for the quadratic programming problem (5) (conditions (26) � (30)). If we substitute
x∗ and z∗ de�ned by (21) for x and z, respectively, under the Kuhn�Tucker conditions (26) �
(30), then (29) and (30) become (22) and (23), respectively. It is easy to see that Eq. (21) ensures
the ful�llment of conditions (26) � (28). Thus, the saddle point of the Lagrange function (25)
is [z∗, x∗], where z∗ and x∗ are solutions to problems (5) and (1), respectively. Note that the
last two vectors are related by Eq. (15).

By virtue of (5), (13), and (16), we have

I1 = Id
1 = ‖z∗‖2/2 = [pen (x∗, X)]2/2, (31)

which proves the second assertion in (18).
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Transforming problem (5)into the equivalent problems

Id
1 = max

z∈Z

[−‖b− z‖2 + ‖b‖2/2
]

= ‖b‖2/2−min
z∈Z

‖b− z‖2/2 (32)

and using the fact that z∗ is the unique solution to (5), we �nd that z∗ = pr (b, Z) and ‖b−z∗‖ =
= dist (b, Z). Thus, all assertions in (18) are proved. Using (16), we obtain ‖z∗‖2 + ‖b− z∗‖2 =
= ‖b‖2, which proves (19). The theorem is proved.

Assertion (16) in Theorem 1 follows from the duality of problems (1) and (5) (see (13)).
Equations (15) can be used to express an optimal vector z∗ for problem (5) in terms of the
optimal vector x∗ for problem (1). The vector z∗ de�ned by (15) is called the minimum residual
vector. Equation (31) leads to the following criterion.

Criterion 1. System (I) is solvable if and only if the minimum residual vector z∗ is zero
(problem (5) has a zero solution).

The vector x∗ satisfying the necessary and su�cient optimality conditions (20) for problem
(1) is said to be a pseudosolution to system (I). If x∗ ∈ X, then x∗ is a solution to system (I).
Note that this terminology is used in the least square method. Similarly, solution x∗ to problem
(2) is referred to as a pseudosolution to system (II).

The analysis of problems (2) and (6) is analogous to that of problems (1) and (5), but
is somewhat di�erent. The following theorem is the analogue of Theorem 1 that applies to
problems (2) and (6). Let Â = [−A, b] be an m × (n + 1) matrix and r ∈ Rn+1 be a vector of
the form r> = [0n, ρ].

Theorem 2. Let u∗> = [u∗>1 , u∗>2 ] be an arbitrary solution to problem (2). Then, a solution
w∗> = [w∗>

1 , w∗>
2 , w∗

3] to problem (6) can be expressed in terms of u∗ as

w∗
1 = (A>

11u
∗
1 + A>

21u
∗
2)+, w∗

2 = A>
12u

∗
1 + A>

22u
∗
2, w∗

3 = ρ− b>1 u∗1 − b>2 u∗2 (33)

and satis�es the following relations:
‖w∗‖2 = ρw∗

3, (34)
w∗ ⊥ Â>u∗, w∗ ⊥ (r − w∗), (35)

w∗ = pr (r,W ), ‖w∗‖ = pen (u∗, U), ‖r − w∗‖ = dist (r,W ), (36)
[pen (u∗, U)]2 + [dist (r,W )]2 = ‖r‖2, (37)

‖w∗‖ ≤ ρ, 0 ≤ w∗
3 ≤ ρ, ‖w∗

1‖2 + ‖w∗
2‖2 ≤ ρ2/4. (38)

Proof. The strict convex quadratic programming problem (6) is the problem of �nding the
projection of the vector [0>n , ρ] onto the nonempty set W speci�ed by system (II)′ of linear
equations and inequalities. This problem always has a unique solution. For this problem, there
exists a vector of Lagrange multipliers u ∈ Rn, and the corresponding Lagrange function is

L(w, u) = ρw3 − ‖w‖2/2− u>1 (b1w3 − A11w1 − A12w2)− u>2 (b2w3 − A21w1 − A22w2).

The necessary and su�cient optimality conditions (Kuhn�Tucker conditions) for problem (6)
calculated at the saddle point [w∗, u∗] are

−w∗
1 + A>

11u
∗
1 + A>

21u
∗
2 ≤ 0n1 , D(w∗

1)(−w∗
1 + A>

11u
∗
1 + A>

21u
∗
2) = 0n1 , w∗

1 ≥ 0n1 , (39)

−w∗
2 + A>

12u
∗
1 + A>

22u
∗
2 = 0n2 , (40)

ρ− w∗
3 − b>1 u∗1 − b>2 u∗2 = 0, (41)
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A11w
∗
1 + A12w

∗
2 − b1w

∗
3 ≥ 0m1 , D(u∗1)(A11w

∗
1 + A12w

∗
2 − b1w

∗
3) = 0m1 , u∗1 ≥ 0m1 , (42)

A21w
∗
1 + A22w

∗
2 − b2w

∗
3 = 0m2 . (43)

It follows from (39) � (41) that w∗ ∈ W and w∗ can be expressed in terms of u∗ by formulas
(33). Substituting them into (42) and (43), we obtain

A11(A
>
11u

∗
1 + A>

21u
∗
2)+ + A12(A

>
12u

∗
1 + A>

22u
∗
2)− b1(ρ− b>1 u∗1 − b>2 u∗2) ≥ 0m1 , u∗1 ≥ 0m1 ,

D(u∗1)
[
A11(A

>
11u

∗
1 + A>

21u
∗
2)+ + A12(A

>
12u

∗
1 + A>

22u
∗
2)− b1(ρ− b>1 u∗1 − b>2 u∗2)

]
= 0m1 ,

A21(A
>
11u

∗
1 + A>

21u
∗
2)+ + A22(A

>
12u

∗
1 + A>

22u
∗
2)− b2(ρ− b>1 u∗1 − b>2 u∗2) = 0m2 .

These relations coincide with the necessary and su�cient optimality conditions for problem (2)
calculated at the point u∗. Thus, it follows from the Kuhn�Tucker conditions and the optimality
conditions for problem (2) that the vectors w∗ and u∗ at the saddle point [w∗, u∗] solve problems
(6) and (2), respectively.

Equating the objective functions of the primal and dual problems (6) and (2) and using
relations (33), we obtain (34).

Relations (35) � (37) are proved by analogy with (17) � (19) in Theorem 1.
It follows from (34) that w∗

3 > 0 if ‖w∗‖ 6= 0. Let us rewrite (34) as the quadratic equation
in w∗

3

(w∗
3)

2 − ρw∗
3 + ‖w∗

1‖2 + ‖w∗
2‖2 = 0. (44)

Since w∗ is the projection of r onto W , the �rst inequality in (38) follows from the equation
‖r‖ = ρ. The second and third inequalities in (38) follow from the nonnegativity of the absolute
term (w∗

3(ρ − w∗
3) = ‖w∗

1‖2 + ‖w∗
2‖2 ≥ 0) and the determinant of quadratic equation (44),

respectively. The theorem is proved.
Criterion 2. System (II) is solvable (unsolvable) if and only if problem (6) has a zero

(nonzero) solution w∗.
Theorem 3. Let x∗ and u∗ be arbitrary solutions to problems (1) and (2), respectively, and

let the minimum residual vectors z∗ and w∗ be de�ned by (15) and (33). Then, the following
assertions are valid:

(1) systems (I) and (II) are mutually alternative; i.e., only one of them is solvable;

(2) if system (I) is inconsistent, then the normal solution ũ∗ to system (II) and the minimum
residual vector z∗ of system (I) are collinear, and

ũ∗ = ρz∗/‖z∗‖2, z∗ = ρũ∗/‖|ũ∗‖2; (45)

(3) if system (II) is inconsistent, then the components of the normal solution x̃∗> = [x̃∗>1 , x̃∗>2 ]
to system (I) are

x̃∗1 = w∗
1/w

∗
3, x̃∗2 = w∗

2/w
∗
3. (46)

Proof. It follows from Lemma 2 that systems (I) and (II) cannot be consistent simultane-
ously. Let us show that one of them must be consistent. Consider the two possible cases
separately.

If X = ∅, then pen (x∗, X) 6= 0. The vector z∗ ∈ Z de�ned by (15) is such that ‖z∗‖ 6= 0.
Multiplying both sides of the former equation in (45) by b and taking into account (16), we �nd
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that b>ũ∗ = ρ. Then, it follows that ũ∗ ∈ U ; hence, U 6= ∅. Let us show that ũ∗ is the normal
solution to system (II), i.e., a solution to the problem

min
u∈U

‖u‖2/2. (47)

The Lagrange function for problem (47) is written as

L(u, x̂) = ‖u‖2/2 + x̂>1 (A>
11u1 + A>

21u2) + x̂>2 (A>
12u1 + A>

22u2) + x̂3(ρ− b>1 u1 − b>2 u2)

and the dual problem is

max
x̂1 ∈Rn1

+

max
x̂2 ∈Rn2

max
x̂3∈R1

[
ρx̂3 − ‖(b1x̂3 − A11x̂1 − A12x̂2)+‖2

2
− ‖b2x̂3 − A21x̂1 − A22x̂2‖2

2

]
. (48)

The Kuhn�Tucker conditions calculated at the saddle point [u∗, x̂∗], where u∗> = [u∗>1 , u∗>2 ]
solves problem (47) and x̂∗> = [x̂∗>1 , x̂∗>2 , x̂∗3] are solutions to problems (47) and (48), respecti-
vely, are

u∗1 + A11x̂
∗
1 + A12x̂

∗
2 − b1x̂

∗
3 ≥ 0m1 , D(u∗1)(u

∗
1 + A11x̂

∗
1 + A12x̂

∗
2 − b1x̂

∗
3) = 0, u∗1 ≥ 0m1 , (49)

u∗2 + A21x̂
∗
1 + A22x̂

∗
2 − b2x̂

∗
3 = 0m2 , (50)

A>
11u

∗
1 + A>

21u
∗
2 ≤ 0n1 , D(x̂∗1)(A

>
11u

∗
1 + A>

21u
∗
2) = 0n1 , x̂∗1 ≥ 0n1 (51)

A>
12u

∗
1 + A>

22u
∗
2 = 0n2 , (52)

ρ− b>1 u∗1 − b>2 u∗2 = 0. (53)
It follows from (49) and (50) that u∗ and x̂∗ are related by the equations

u∗1 = (b1x̂
∗
3 − A11x̂

∗
1 − A12x̂

∗
2)+, u∗2 = b2x̂

∗
3 − A21x̂

∗
1 − A22x̂

∗
2.

Using them and equating the optimal values of the objective functions of the primal and dual
problems (47) and (48), we �nd that ‖u∗‖2 = ρx̂∗3. Since U 6= ∅ and u∗ ∈ U , it holds that
‖u∗‖ 6= 0 by virtue of the condition b>u∗ = ρ > 0. Hence, x̂∗3 > 0.

Changing variables in (49) � (52),

u∗ = x̂∗3z
∗, x̂∗1 = x̂∗3x

∗
1, x̂∗2 = x̂∗3x

∗
2,

and cancelling out the common factor x̂∗3 in the expressions obtained, we arrive at the Kuhn�
Tucker conditions (26) � (30) for problem (5) at the point [z∗, x∗]. Substituting u∗ = x̂∗3z

∗ into
(53) and taking into account (16), we obtain

ρ/x̂∗3 − b>z∗ = ρ/x̂∗3 − ‖z∗‖2.

Hence, it follows that u∗ = x̂∗3z
∗ = ρz∗/‖z∗‖2 = ũ∗ for x̂∗3 = ρ/‖z∗‖2; i.e., the normal solution

to system (II) is given by the former expression in (45).
The former expression in (45) implies that ρ = ‖ũ∗‖ ‖z∗‖ and

z∗ = ũ∗‖z∗‖2/ρ = ũ∗ρ2/(ρ‖ũ∗‖2) = ρũ∗/‖ũ∗‖2,

which proves the latter formula in (45).
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If U = ∅, then pen (u∗, U) 6= 0. The vector w∗ ∈ W determined from (33) satis�es the
condition ‖w∗‖ 6= 0, and w∗

3 > 0 by virtue of (34). It follows from (42) and (43) that the vector
x∗ = [x∗1, x

∗
2] with the components

x∗1 = w∗
1/w

∗
3, x∗2 = w∗

2/w
∗
3 (54)

is a solution to system (I).
Let x̃∗ be the normal solution to system (I), i.e., a solution to the problem

min
x∈X

‖z‖2. (55)

The Lagrange function for this problem is

L(x, µ) = ‖x‖2/2 + µ>1 (b1 − A11x1 − A12x2) + µ>2 (b2 − A21x1 − A22x2),

and the Kuhn�Tucker conditions calculated at the saddle point [x̃∗, µ∗], where x̃∗> = [x̃∗>1 , x̃∗>2 ]
is a solution to problem (55) and µ∗> = [µ∗>1 , µ∗>2 ] is the optimum vector of Lagrange multipliers,
are

x̃∗1 − A>
11µ

∗
1 − A>

21µ
∗
2 ≥ 0n1 , D(x̃∗1)(x̃

∗
1 − A>

11µ
∗
1 − A>

21µ
∗
2) = 0n1 , x̃∗1 ≥ 0n1 ,

x̃∗2 − A>
12µ

∗
1 − A>

22µ
∗
2 = 0n2 ,

b1 − A11x̃
∗
1 − A12x̃

∗
2 ≤ 0m1 , D(µ∗1)(b1 − A11x̃

∗
1 − A12x̃

∗
2) = 0m1 , µ∗1 ≥ 0m1 ,

b2 − A21x̃
∗
1 − A22x̃

∗
2 = 0m2 .

These conditions are obtained from the Kuhn�Tucker conditions (39), (40), (42), and (43) for
problem (6) by dividing the latter by w∗

3 and introducing x∗1 = w∗
1/w

∗
3, x∗2 = w∗

2/w
∗
3, µ∗1 = u∗1/w

∗
3,

and µ∗2 = u∗2/w
∗
3. Hence, the vector x̃∗ whose components are de�ned by (54) is the normal

solution to system (I). The theorem is proved.
Thus, Theorem 3 reduces the problem of solvability of system (I) or (II) to minimizing the

residual of either system. If the norm of the minimum residual is nonzero, then the system is
inconsistent and the residual can be used in simple formulas to �nd the normal solution to the
consistent system.

If weighted residuals are used in problem (1) or (2), then the multipliers of these residuals
must be taken into account in both alternative systems and formulas (45) and (46) can be used
to calculate the normal solutions to these modi�ed systems.

The alternative system (II) admits various representations. According to the theorems stated
above, the system alternative to (I) is obtained from the adjoint system (I)′ by supplementing
it with a condition that rules out the existence of the trivial solution to (5). For example, we
may require that solutions of the adjoint system (I)′ satisfy the condition b>u > 0 (as in the
Farkas lemma) or b>u = 1 (as in the Gale theorem), and so on. If system (I) does not contain
inequalities, then it is su�cient to impose the restriction ρ 6= 0 on ρ in Theorem 3.

3. DETERMINATION OF THE STEEPEST DESCENT DIRECTION IN THE METHOD
OF FEASIBLE DIRECTIONS

Below, we consider various systems that are special cases of (I) and (II). We refer to them
as systems (I) and (II) indexed by the number of the corresponding section.

Let z∗ be a nonzero solution to problem (5) and consider the normalized vectors zn = z/‖z∗‖
and z∗n = z∗/‖z∗‖. The feasible set of normalized vectors is de�ned as

Zn = {zn ∈ Rm : zn ∈ Z, ‖zn‖ = 1},
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where Z is the adjoint set in (I)′.
Consider the following auxiliary problem:

I3 = max
zn∈Zn

b>zn. (56)

Theorem 4. Let x∗ be an arbitrary solution to problem (1) and z∗ be the solution to problem
(5) given by formula (15). Let ‖z∗‖ 6= 0. Then, z∗n = z∗/‖z∗‖ is a solution of problem (56) and

I3 = b>z∗n = ‖z∗‖. (57)

Proof. The equality of the optimal values of the objective functions of the mutually dual
problems (1) and (5) implies that

1/2 = max
zn∈Z

[
b>zn/‖z∗‖ − ‖zn‖2/2

]
.

Since Zn ⊂ Z, we have

1

2
= max

zn∈Z

[
b>zn

‖z∗‖ −
‖zn‖2

2

]
≥ max

zn∈Zn

[
b>zn

‖z∗‖ −
‖zn‖2

2

]
= max

zn∈Zn

[
b>zn

‖z∗‖ −
1

2

]
.

Hence, it follows that
‖z∗‖ ≥ max

zn∈Zn

b>zn. (58)

Setting zn equal to the vector z∗/‖z∗‖, which belongs to the feasible set Zn, and using (16),
we reduce (58) to an equation. The theorem is proved.

Problem (56) arises when the nonlinear programming problem

min
p∈P

f(p), P = {p ∈ Rm : h(p) ≤ 0n1 , g(p) = 0n2} (59)

is solved by the method of feasible directions. Here, f : Rm → R1, h : Rm → Rn1 , g : Rm → Rn2 ;
the functions f(p), h(p), and g(p) are continuously di�erentiable; the set P is not empty; and
problem (59) has a solution.

Let p ∈ P be an arbitrary �xed feasible point. We introduce a vector x ∈ Rn of the Lagrange
multipliers, x> = [x>1 , x>2 ], where x1 ∈ Rn1

+ , x2 ∈ Rn2 , and n = n1 + n2; de�ne the Lagrange
function as

L(p, x) = f(p) + h>(p)x1 + g>(p)x2

and introduce the complementary slackness conditions

xi
1h

i(p) = 0, 1 ≤ i ≤ n1. (60)

A component hi(p) of the vector h(p) is said to be active at the point p ∈ P if hi(p) = 0. By
virtue of (60), all components of the vector x1 corresponding to the inactive components of
h(p) vanish. For simplicity, we assume that all components of the vector h(p) in the Lagrange
function are active. The Kuhn�Tucker conditions for problem (59) at the point [p, x], where
p ∈ P , are

Lp(p, x) = fp(p) + hp(p)x1 + gp(p)x2 = 0m, x1 ≥ 0n1 . (I)3

If p ∈ P is �xed, these equations in x may be interpreted as a special case of system (I).
We introduce the vector p ′ = p + τz, where τ is a step along the descent direction z ∈ Rm

(‖z‖ = 1), and linearize the objective and constraint functions in problem (59). Assuming that
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τ is small and neglecting the terms of higher order, we arrive at the following problem of �nding
the steepest descent direction: íàïðàâëåíèÿ íàèñêîðåéøåãî ñïóñêà:

I4 = min
z∈ Ẑn

z>fp(p), Ẑn = {z ∈ Rm : h>p (p)z ≤ 0n1 , g>p (p)z = 0n2 , ‖z‖ = 1}. (61)

If problem (61) has a solution z∗n such that I4 < 0, then this direction is said to be the steepest
descent direction. This implies that, at least in the linear approximation, the point p can be
improved by taking a new vector p ′. When the step τ is su�ciently small, the vector p ′ belongs
to the feasible set P and f(p ′) < f(p). If problem (61) has no such solution, then the point p
cannot be improved locally.

To make use of the results obtained earlier, we assume that h>p (p) = A>
21, g>p (p) = A>

22, and
−fp(p) = b2, while the remaining submatrices of A and vector b1 are zero. Then, system (II)
alternative to (I) can be written as

u>hp(p) ≤ 0>n1
, u>gp(p) = 0>n2

, −u>fp(p) = ρ > 0. (II)3

If system (I)3 is solvable, then, by Theorem 3, its normal solution has the form ũ∗ =
= ρz∗/‖z∗‖2, where z∗ = −Lp(p, x

∗), and x∗ is found by solving the unconstrained minimization
problem (1), which has the following form in this given case:

I1 = min
x1∈Rn1

+

min
x2∈Rn2

‖Lp(p, x)‖2/2. (62)

Normalizing the vector ũ∗, we obtain ũ∗n = z∗/‖z∗‖ = z∗n. The vector z∗n belongs to Ẑn, and
I4 = −I3 = −‖z∗‖ by Theorem 4 (see Eq. (57)), which implies that z∗n is the steepest descent
direction for the linearized problem (61). This direction exists if and only if system (I)3 with a
�xed p ∈ P cannot be solved for the Lagrange multipliers x1 ∈ Rn1

+ and x2 ∈ Rn2 of problem
(59), i.e., if I1 > 0.

Thus, to determine the steepest descent direction, it is not necessary to solve the constrained
minimization problem (61). This direction is found by solving the unconstrained minimization
problem (62).

Note that this approach is particularly e�cient when the number n of active constraints at
p ∈ P is considerably less than the dimension of p, because the minimization problem (62) is
solved in the n-dimensional space. At the point p ′, the set of active constraints is updated (and
denoted by h(p) again).

4. PROJECTION AND CORRECTION PROBLEMS

Let us give a geometric interpretation of the results obtained. By (16), the residual vector
z∗ is orthogonal to the vector b− z∗. Hence, the origin in Rm and the points z∗ and b make up
a rectangular triangle in which b is the hypotenuse. The vectors z∗ and b − z∗ are the legs of
length pen (x∗, X) and dist (b, Z), respectively. Then, relation (19) follows from the Pythagorean
theorem. Let b⊥ be the projection of b onto the set Z. Then, the vector b‖ = b− b⊥ orthogonal
to it is the sum of two vectors, b

‖
1 = b1 − (b1 − A11x

∗
1 − A12x

∗
2)+ and b

‖
2 = A21x

∗
1 + A22x

∗
2. It

follows from (16) and (17) that, for b⊥1 ⊥ b
‖
1 and b⊥2 ⊥ b

‖
2, Eqs. (18) have the form

z∗ = b⊥ = pr (b, Z), ‖b⊥‖ = pen (x∗, X), ‖b‖‖ = dist (b, Z). (63)

In this notation, Eqs. (16) and (19) obviously become ‖b⊥‖2 = ‖b⊥‖2 and ‖b⊥‖2 + ‖b‖‖2 =
= ‖b‖2, respectively. If Z is a linear subspace, then b⊥ is the projection of b onto Z and b‖ is
the projection of b onto the orthogonal complement to Z.
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Similarly, in Theorem 3,

w∗ = r⊥ = pr (r,W ), ‖r⊥‖ = pen (u∗, U), r‖ = r − r⊥, ‖r‖‖ = dist (r,W ). (64)

It follows from Theorems 2 and 3 and from relations (63) and (64) that conditions (3) in
the criterion for alternativity can be represented as

‖b⊥‖‖r⊥‖ = ‖z∗‖‖w∗‖ = 0, ‖b⊥‖+ ‖r⊥‖ = ‖z∗‖+ ‖w∗‖ > 0.

Hence, systems (I) and (II) are mutually alternative.
It follows from Theorem 1 that ‖z∗‖ ≤ ‖b‖, b>z∗ ≥ 0. The vector z∗ belongs to the

hemisphere of radius ‖b‖ centered at the origin in Rm where the vectors z∗ and b make an
acute angle. It is evident that the vectors r⊥ and r‖ belong to the sphere of radius ρ centered
at the origin in Rn+1.

Consider problem (14), i.e., the problem of �nding the projection of a point x̄ ∈ Rn onto
a nonempty set X. By Theorem 3 the normal solution to system (I) is the projection of the
origin onto the set X: x̃∗ = pr (0n, X). Changing variables in (14), y = x − x̄, we reduce it to
the problem of projecting the origin onto the �shifted� set

X̄ = {y ∈ Rn : A11y1 + A12y2 ≥ b̄1, A21y1 + A22y2 = b̄2, y1 ≥ −x̄1}, (65)

where b̄1 = b1 − A11x̄1 − A12x̄2 and b̄2 = b2 − A21x̄1 − A22x̄2.
Then, problem (14) takes the form

J = min
y∈X̄

‖y‖ = ‖y∗‖ = ‖ pr (0n, X̄)‖. (66)

The solutions to problems (14) and (66) are related by the simple equation

x̄∗ = pr (x̄, X) = x̄ + y∗. (67)

Similarly, it can be shown that, if U 6= ∅, then the normal solution to system (II) is ũ∗ =
= pr (0m, U), and

ū∗ = pr (ū, U) = ū + v∗, (68)
where v∗ = pr (0n, Ū), Ū = {v ∈ Rm : A>

11v1 + A>
21v2 ≤ d1, A>

12v1 + A>
22v2 = d2, b>1 v1 + b>2 v2 =

= d3, v1 ≥ ū1} and d1 = −A>
11ū1 − A>

21ū2, d2 = −A>
12ū1 − A>

22ū2, and d3 = ρ− b>1 ū1 − b>2 ū2.
Problems of optimal correction of linear inconsistent systems were stated in [11, 12]. With

regard to system (I), the problem is to �nd a vector b̃ with a minimum Euclidean norm such
that the substitution of the vector b − b̃ for b makes the inconsistent system (I) a consistent
one.

Theorem 5. Let x∗ be on arbitrary solution to problem (1) and z∗ be the minimum residual
vector calculated at the point x∗. Then, the optimal correction of system (I) consists in the
replacement of the vector b by b− z∗. The pseudosolution x∗ to system (I) is a solution to the
corrected system

A11x1 + A12x2 ≥ b1 − z∗1 , A21x1 + A22x2 = b2 − z∗2 , x1 ≥ 0n1 . (69)

By virtue of (63), the components of z∗ can be represented as z∗1 = b⊥1 , z∗2 = b⊥2 . Then
b
‖
1 = b1 − b⊥1 , b

‖
1 ≤ b1, b

‖
2 = b2 − b⊥2 , and (69) takes the form

A11x1 + A12x2 ≥ b
‖
1, A21x1 + A22x2 = b

‖
2, x1 ≥ 0n1 . (70)
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After substituting b‖ for b, the alternative system (II) becomes inconsistent. By Theorem 3,
minimizing its residual, we �nd the normal solution x̃∗ to the corrected system (70). Thus, an
inconsistent system (I) is corrected and the normal solution to the corrected system (70) is found
by solving two unconstrained minimization problems in Rn and Rm. The m-dimensional vector
b̃ = z∗ with a minimal Euclidean norm is found by solving the unconstrained minimization
problem (1) in n variables, and the n-dimensional normal vector x̃∗ that solves the corrected
system (70) is found by solving the unconstrained minimization problem (1) in n variables.

In another method for correcting an inconsistent system (I), a single unconstrained minimi-
zation problem in Rm is solved instead of the two aforementioned unconstrained minimization
problems. We represent the problem of correcting system (I) and �nding its solution as that of
�nding the normal solution to the consistent system

A11x1 + A12x2 + b̃1 ≥ b1, A21x1 + A22x2 + b̃2 = b2, x1 ≥ 0n1 , b̃1 ≥ 0m1 , (71)

which is obtained from (I) by introducing additional variables b̃1 ∈ Rm1
+ and b̃2 ∈ Rm2 . This

system is always consistent. Therefore, the alternative system

A>
11u1 + A>

21u2 ≤ 0n1 , A>
12u1 + A>

22u2 = 0n2 , u1 ≤ 0m1 , u2 = 0m2 ,

b>1 u1 + b>2 u2 = ρ > 0, u1 ≥ 0m1

is always inconsistent.
Having solved the problem of residual minimization for the alternative system,

min
u1∈Rm1

+

min
u2∈Rm2

‖(A>
11u1 + A>

21u2)+‖2 + ‖A>
12u1 + A>

22u2‖2 + ‖u1‖2 + ‖u2‖2 + (ρ− b>1 u1 − b>2 u2)
2

2
,

we use formula (46) to obtain the normal solution of system (71)

x̃∗1 =
(A>

11u
∗
1 + A>

21u
∗
2)+

w∗
3

, x̃∗2 =
A>

12u
∗
1 + A>

22u
∗
2

w∗
3

,

b̃∗1 = u∗1/w
∗
3, b̃∗2 = u∗2/w

∗
3, w∗

3 = ρ− b>1 u∗1 − b>2 u∗2.

5. SYSTEMS OF LINEAR EQUATIONS

Consider the special case when systems (I) and (II) do not contain inequalities. Then, system
(I), which determines the set X, has the form

Ax = b, (I)5

and the alternative system, which determines the set U , is written as

A>u = 0n, b>u = ρ 6= 0.

For the sake of convenience, the latter system is represented as

Â>u = r, (II)5

where Â = [−A, b] and r> = [0>n , ρ], ρ 6= 0.
By Theorem 3, we have the Fredholm alternative: only one of these systems�either (I)5 or

(II)5 � has a solution.
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We represent b as the sum of two orthogonal vectors, b = b‖ + b⊥, where b‖ = pr (b, im A),
b⊥ = (b, ker A>), and Z = ker A>. If ‖b⊥‖ = 0, then X 6= ∅ and U = ∅. If ‖b⊥‖ 6= 0, then X = ∅
and U 6= ∅.

To �nd out which system is solvable and to solve it, it is su�cient to �nd either x∗ or u∗ by
solving one of the following unconstrained minimization problems:

min
x∈Rn

‖b− Ax‖2

2
=
‖b− Ax∗‖2

2
, min

u∈Rm

‖r − Â>u‖2

2
=
‖r − Â>u∗‖2

2
. (72)

These problems can be interpreted as the application of the least-squares method to systems
(I)5 and (II)5. By Theorems 1 � 3, we have z∗ = b − Ax∗, w∗> = = [w∗>

2 , w∗
3] = [r − Â>u∗‖>,

w∗
2 = A>u∗, and w∗

3 = ρ − b>u∗. The necessary and su�cient conditions for the existence of
minima in problems (72), the so-called �normal equations�, are

A>(b− Ax∗) = 0n, Â(r − Â>u∗) = 0m. (73)

From these equations, we determine the residual vectors z∗ = b⊥ ∈ ker A> and w∗ = r⊥ ∈ ker Â.
The vectors x∗ and u∗ satisfying (73) are pseudosolutions to systems (I)5 and (II)5, respectively.

If ‖b⊥‖ = 0, then X 6= ∅, U = ∅, b = b‖, z∗ = 0m, w∗
3 6= 0, and the normal solution is

x̃∗ = A>u∗/(ρ− b>u∗), (74)

where u∗ is a pseudosolution to system (II)5. Substituting it into (I)5 and performing simple
calculations, we obtain

(AA> + bb>)u∗ = ρb. (75)
If ‖b⊥‖ 6= 0, then X = ∅, U 6= ∅, and the normal solution of system (II)5 is

ũ∗ = ρ(b− Ax∗)/‖b− Ax∗‖2, (76)

where x∗ is a pseudosolution to system (I)5. System (I)5 corrected by using the second formula
in (69) can be represented as Ax = Ax∗ = b‖. Its normal solution x∗ is given by (74), where
b = b‖ and u∗ is found by solving the second problem in (72) with b = b‖. If the rank of the
matrix A is n, then the corrected system has a unique solution x∗ equal to its normal solution
x̃∗.

In what follows, we assume that the m×n matrix A has the maximum possible rank. Denote
by A+ the n × m pseudoinverse of A. Consider two special cases in which problems (1), (2),
(5), and (6) can be solved analytically.

Case 1: Let rank A = m.
Then, n ≥ m, X 6= ∅, ‖b⊥‖ = 0 and U = ∅, A+ = A>(AA>)−1, AA+ = Im, the rows

of A are linearly independent, (A>)‖ = A+A is the n × n matrix of projection onto im A>,
and In − (A>)‖ = (A>)⊥ is the matrix of projection onto ker A. By the Kronecker�Capelli
theorem, rank A = rank Â < rank [Â>, r] = m + 1. The normal solution x̃∗ to system (I)5 can
be represented in several forms:

x̃∗ = A+b = A>(AA>)−1b = pr (0n, X) = (A>)‖x, (77)

where x is an arbitrary vector in X.
The number of rows in the matrixÂ> is greater than the number of columns. Therefore,

(Â>)+ = (ÂÂ>)−1Â, (Â>)+Â> = Im, (Â>)‖ = Â>(Â>)+ is the square matrix of order n + 1 of
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projection onto im Â>, and (Â>)⊥ = In+1 − (Â>)‖. A pseudosolution to system (II)5 has the
form

u∗ = (Â>)+r = (ÂÂ>)−1Âr. (78)
The vector u∗ satis�es the corrected system Â>u∗ = r‖, where r‖ is the projection of the vector
r onto the subspace im Â>,

r‖ = pr (r, im Â>) = (Â>)‖r = Â>(ÂÂ>)−1Âr.

The vector w∗ is the projection of r onto the orthogonal complement ker Â to the subspace
im Â>. Indeed, performing some straightforward transformations, one can show that

w∗ = (Â>)⊥r = r⊥.

Let us introduce the square nonsingular matrix Φ = (ÂÂ>)−1 = (AA>+ +bb>)−1 of order
m. Then, it follows from (78) that

u∗ = ρΦb. (79)
This formula can also be derived from (75) by assuming that the matrix on the left-hand side
of (75) is invertible. Substituting (79) into (74), we obtain

x̃∗ = A>Φb/(1− b>Φb). (80)

Since the normal solution is unique, we can equate (77) to (80). As a result, we obtain the
matrix identity

A>Φb/(1− b>Φb) = A>(AA>)−1b. (81)
Using the optimal vector of Lagrange multipliers µ∗ ∈ Rm for the problem of �nding the

normal solution to the consistent system (I)5, we represent (77) as

x̃∗ = A>µ∗, µ∗ = (AA>)−1b. (82)

By virtue of (80), we have
µ∗ = Φb/(1− b>u∗). (83)

From (82) and (83), we obtain the identity

Φb = (1− b>Φb)(AA>)−1b. (84)

Let γ be the least eigenvalue of the matrix AA>. Since rank A = m, we have γ > 0 and
(82) implies that

γ‖µ∗‖2 ≤ ‖x̃∗‖2 = µ∗>AA>µ∗ = µ∗>b ≤ ‖b‖‖µ∗‖,
‖µ∗‖ ≤ ‖b‖/γ, ‖x̃∗‖ ≤ ‖b‖/√γ.

(85)

Let x̄∗ be the projection of x̄ onto X. Then, x̄∗− x̄ = pr (0n, X̄) by virtue of (67). According
to (65), the set X̄ can be represented as X̄ = {y ∈ Rn : Ay = b̄}, where b̄ = b − Ax̄. Since
pr (0n, X̄) is a vector from X̄ with the least Euclidean norm, we obtain (cf. (77))

x̄∗ − x̄ = A>(AA>)−1b̄. (86)

By analogy with (82) and (85), we have

x̄∗ = A+b̄ = A>µ̄∗, µ̄∗ = (AA>)−1b̄,

γ‖µ̄∗‖2 ≤ ‖x̄∗‖2 = µ̄∗>AA>µ̄∗ = µ̄∗>b̄ ≤ ‖µ̄∗‖‖b̄‖, ‖µ̄∗‖ ≤ ‖b̄‖/γ,

dist (x̄, X) = ‖x̄∗ − x̄‖ = (µ̄>b̄)1/2 ≤ ‖b̄‖/√ γ = pen (x̄, X)/
√

γ.

(87)
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Relations (86) and (87) have particularly simple forms when m = 1. In this case, b ∈ R1,
and A is an n-dimensional row vector a>. Formula (86) speci�es the projection of x̄ onto the
plane a>x = b, and (87) determines the distance from x̄ to this plane; i.e.,

x̄∗ = x̄ + a(b− a>x̄)/‖a‖2, dist (x̄, X) = | b− a>x̄|/‖a‖. (88)

If x̄ = 0n, then x̄∗ = ab/‖a‖2, and ‖x̃∗‖ = | b|/‖a‖.
Case 2: rank A = n.
In this case, n ≤ m. Let U 6= ∅ and ‖b⊥‖ = 0. Then, X = ∅. Since the columns of the

matrix A are linearly independent, we have A+ = (A>A)−1A>, A+A = In, A‖ = AA+ is the
m×m matrix of the projection onto im A, and Im − A‖ = A⊥ is the matrix of the projection
onto the orthogonal subspace ker A>. By the Kronecker�Capelli theorem, rank Â = n + 1. A
pseudosolution to system (I)5 and the normal solution to (II)5 are written as

x∗ = A+b, A+ = (A>A)−1A>, ũ∗ = Â(Â>Â)−1r = pr (0m, U) = (Â)‖u, (89)

where u ∈ U . The vector x∗ satis�es the corrected consistent system Ax∗ = b‖, where b‖ =
= pr (b, im A) = A(A>A)−1A>b is the projection of b onto the subspace im A. The vector z∗ is
the projection of b onto ker A> (the orthogonal complement to im A). Indeed, it can be shown
that z∗ = A⊥b = b⊥.

The square matrix Â>Â of order n + 1 in (89) is nonsingular and can be represented in the
block form

Â>Â =

[
A>A −A>b
−b>A b>b

]
.

Its inverse is determined by applying the Frobenius formula, and (89) yields

(Â>Â)−1r = ρβ

[ −HA>b
1 + βb>AHA>b

]
,

ũ∗ = βρ
[
(1 + βb>AHA>b)b− AHA>b

]
,

(90)

where β = 1/‖b‖2 and H = (A>A − βA>bb>A)−1 is a square matrix of order n. Equating
expressions (76) and (90) for ũ∗, we obtain the second matrix identity

[
Im − A(A>A)−1A>]

b

‖[Im − A(A>A)−1A>] b‖2 = β
[
(1 + βb>AHA>b)b− AHA>b

]
. (91)

The matrix identities (81), (84), and (91) can be proved without invoking Theorems 1 � 3.
Denote by η the least eigenvalue of the matrix Â>Â. It follows from (89) that

ũ∗ = Âξ∗, ξ∗ = (Â>Â)−1r,

η‖ξ∗‖2 ≤ ‖ũ∗‖2 = ξ∗>Â>Âξ∗ ≤ ξ∗>r ≤ ‖ξ∗‖/ρ,

‖ξ∗‖ < 1/(ρη), ‖ũ∗‖ ≤ 1/(ρ
√

η),

dist (ū, U) = ‖ū∗ − ū‖ ≤ ‖r − Â>ū‖/√η.

(92)

Using (68) and the last formula in (89), we obtain an expression for the projection of ū onto
the nonempty set U :

ū∗ = pr (ū, U) = ū + pr (0m, Ū) = ū + Â(Â>Â)−1r.
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6. SYSTEMS OF LINEAR INEQUALITIES

Let the system determining the set X have the form

Ax ≥ b, (I)6

where A is an m× n matrix, b ∈ Rm, and ‖b‖ 6= 0. The alternative system determining the set
U is written as

Â>u = r, u ≥ 0m, (II)6

where (as in Section 5) the augmented matrix has the form Â = [−A, b] and r> = [0>m, ρ], where
ρ > 0.

According to Theorem 3, only one of systems (I)6 and (II)6 is consistent. In the case of
ρ = 1, this assertion is known as the Gale theorem.

The sets introduced above take the form

Z = {z ∈ Rm
+ , A>z = 0n}, W = {w ∈ Rn+1 : Âw ≤ 0m},

X̄ = {y ∈ Rn : Ay = b̄ = b− Ax̄}, Ū = {v ∈ Rm : Â>v = r̄ = r − Â>ū},
pen (x,X) = ‖(b− Ax)+‖, pen (u, U) = ‖r − Â>u‖.

The vectors x∗ and u∗ are determined by solving the problems

min
x∈Rn

‖(b− Ax)+‖2

2
=
‖(b− Ax∗)+‖2

2
, min

u∈Rm

+

‖r − Â>u‖2

2
=
‖r − Â>u∗‖2

2
. (93)

The necessary and su�cient optimality conditions for problems (93) are

A>(b− Ax∗)+ = 0n, Â(r − Â>u∗) ≤ 0m, D(u∗)
[
Â(r − Â>u∗)

]
= 0m, u∗ ≥ 0m.

Hence, it follows that z∗ ∈ Z and w∗ ∈ W .
By Theorems 1 � 3, we have z∗ = (b− Ax∗)+, w∗> = [w∗>

2 , w∗
3] = [r − Â>u∗]>, w∗

2 = A>u∗,
and w∗

3 = ρ− b>u∗. If X 6= ∅, then w∗
3 > 0 and the normal solution of system (I)6 is expressed

as
x̃∗ = A>u∗/(ρ− b>u∗). (94)

This formula was derived in [8] for ρ = 1. Since x̃∗ ∈ X, expression (94) leads to an analogue
of formula (75): (AA> + bb>)u∗ ≥ ρb.

If X = ∅, then z∗ > 0m and the normal solution of system (II)6 can be represented as

ũ∗ = ρ(b− Ax∗)+/‖(b− Ax∗)+‖2 = ρb⊥/‖b⊥‖2. (95)

In what follows, we assume that the m×n matrix A has the maximum possible rank. Denote
by A+ the n×m pseudoinverse matrix of A.

Case 1. Let X 6= ∅. Then U = ∅. Solving problem (2) (the second problem in (93)), we �nd
the normal vector x̃∗ ∈ X from (94); hence, Ax̃∗ ≥ b. Suppose that the �rst s conditions in this
system of inequalities at the point x̃∗ are reduced to equations, and the remaining c = m − s
conditions are strict inequalities. Accordingly, we represent the matrix A and vectors b and u
in the following partitioned form: A> = [A>

s , A>
c ], b> = [b>s , b>c ], u> = [u>s , u>c ]. Consider the

system
Asx = bs. (96)
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Let s ≤ n and the rank of As be equal to s. Then, system (96) is solvable. By virtue of (77),
its normal solution can be represented as

x̃ = A+
s bs = pr (0n, Xs),

where A+
s = A>

s (AsA
>
s )−1 and Xs = {x ∈ Rn : Asx = bs}. Since x̃∗ = x̃, we have

A>u∗/(ρ− b>u∗) = A>
s u∗s/(ρ− b>s u∗s) = A>

s (AsA
>
s )−1bs.

If all constraints at the point x̃∗ are active, we obtain the formulas derived in the preceding
section. If b ≤ 0m, then x̃∗ = 0n. When b < 0m, there are no active constraints at the point x̃∗.
Moreover, if rank A = m, then u∗ = 0m.

Consider the problem of �nding the normal solution x̃∗ = pr (0n, X). The Lagrange function
for this problem is L(x, µ) = ‖x‖2/2 + µ>(b− Ax), and the Kuhn�Tucker conditions are

x̃∗ = A>µ∗, Ax̃∗ ≥ b, µ∗>(Ax̃∗ − b) = 0, µ∗ ≥ 0m.

Let us represent the optimal vector of Lagrange multipliers as µ∗> = [µ∗>s , µ∗>c ], where µ∗s =
= (AsA

>
s )−1bs and µ∗c = 0c. For simplicity, we assume that the �rst s constraints are active;

i.e., Asx̃
∗ = b̄s and Acx̃

∗ < b̄c. Then, µ∗>AA>µ∗ = µ∗>s AsA
>
s µ∗s. Let γ̄ be the least eigenvalue

of the matrix AsA
>
s . It is evident that γ ≤ γ̄, where γ is the least eigenvalue of AA>. In view

of the condition rank A = m, it holds that γ̄ ≥ γ > 0 and

γ̄‖µ∗s‖2 ≤ µ∗>s AsA
>
s µ∗s = µ∗>s bs ≥ 0, ‖µ∗s‖ ≤ ‖b‖/γ̄,

‖x̃∗‖2 = ‖A>
s µ∗s‖2 = µ∗>s bs ≤ ‖bs‖2/γ̄.

To �nd the projection of x̄ onto the set X, we make use of the results of Section 4. Since
µ∗ = (AA>)−1b̄ and b̄ = b− Ax̄, we obtain

[dist (x̄, X)]2 = ‖x̄∗ − x̄‖2 = [pr (x̄, X)]2 = [pr (0n, X̄)]2 = µ∗>(b− Ax̄) ≤
≤ ‖µ∗s‖‖(bs − Asx̄)+‖ ≤ ‖(bs − Asx̄)+‖/γ̄ ≤ ‖(b− Ax̄)+‖/γ̄.

(97)

Inequalities (87), (92), and (97) are analogous to Ho�man's inequalities [2, 3]. Note, however,
that the inequalities obtained in this paper are di�erent in some important respects. First, the
coe�cients γ, η, and γ̄ are speci�ed. Second, the distances between x̄∗ and x̄ and between ū∗

and ū can be calculated by exact formulas. The fact that γ and γ̄ do not depend on b and η
is independent of r (see [3, Theorem 10.1] and [2, Lemma 35.5]) follows immediately from the
analysis above.

Case 2. Let X = ∅. Then, ‖z∗‖ 6= 0, system (I)6 is inconsistent, and some components of
the vector Ax∗ − b are negative. The corrected system has the form

Ax ≥ b‖ = b− (b− Ax∗)+.

Hence, if (b − Ax∗)i ≤ 0, then (b‖)i = bi; i.e., the ith component of b remains unchanged. If
(b − Ax∗)i > 0, then (b‖)i = (Ax∗)i and bi is replaced by (Ax∗)i, which ensures the feasibility
of the vector x∗ in the corrected problem.

7. THE PROBLEM OF SEPARATING HYPERPLANES

Let us represent A, b, u, and z in the form

A =

[
A1

A2

]
, b =

[
b1

b2

]
, u =

[
u1

u2

]
, z =

[
z1

z2

]
,
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where A1 and A2 are k× n and `× n matrices, respectively; b1, u1, z1 ∈ Rk; b2, u2, z2 ∈ R`; and
k + ` = m. Assuming that the set X consists of the nonempty sets

X1 = {x ∈ Rn : A1x ≥ b1}, X2 = {x ∈ Rn : A2x ≥ b2}

such that X1 ∩X2 = ∅, we consider the problem of �nding a hyperplane that strictly separates
X1 and X2.

Let α ∈ [0, 1] be a scalar parameter.
Theorem 6 (on parallel separating hyperplanes). Suppose that X1 and X2 are nonempty

polyhedra, X = X1 ∩ X2 = ∅, x∗ solves the �rst problem in (93), and the components of the
minimum residual vector z∗ = (b−Ax∗)+ are z∗1 = (b1−A1x

∗)+ and z∗2 = (b2−A2x
∗)+. Then,

the following assertions are true:

(i) the parallel hyperplanes separating the sets X1 and X2 can be described by the two equivalent
equations

z∗>1 (A1x− b1) + α‖z∗‖2 = 0, (98)
z∗>2 (b2 − A2x) + (α− 1)‖z∗‖2 = 0, (99)

when 0 < α < 1, these hyperplanes strictly separate X1 and X2;

(ii) if α is equal to
α∗ = ‖z∗1‖2/‖z∗‖2, (100)

then x∗ belongs to the separating hyperplane corresponding to this value of α;

(iii) the distance d between the separating hyperplanes corresponding to α = 0 and α = 1 is

d = ‖z∗‖2/‖A>
1 z∗1‖.

Proof. By Theorem 1,
A>z = 0n, b>z∗ = ‖z∗‖2.

Premultiplying the �rst equation by an arbitrary vector x ∈ Rn and subtracting the second
equation from the result, we obtain

z∗>(Ax− b) + ‖z∗‖2 = 0. (101)

We de�ne a linear function ϕ(x, α) of x ∈ Rn depending on the parameter α by the following
equivalent formulas:

ϕ(x, α) = z∗>1 (A1x− b1) + α‖z∗‖2, (102)
ϕ(x, α) = z∗>2 (b2 − A2x) + (α− 1)‖z∗‖2. (103)

For any �xed α ∈ [0, 1], the equation ϕ(x, α) = 0 de�nes the hyperplane separating X1 and
X2. Indeed, if α ≥ 0 and x ∈ X1, then ϕ(x, α) ≥ 0 by (102) and, if α ≤ 1 and x ∈ X2, then
ϕ ≤ 0 by (103). Thus, we obtain the parallel hyperplanes that strictly separate X1 and X2 for
0 < α < 1.

According to (88), the projection x̄∗ of x∗ onto the separating hyperplane (98) is calculated
as

x̄∗ = x∗ + A>
1 z∗1

[
z∗>1 (b1 − A1x

∗)− α‖z∗‖2
]
/‖A>

1 z∗1‖2,
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where z∗>1 (b1 − A1x
∗) = ‖z∗1‖2. Therefore, if α is given by (100), then x̄∗ = x∗; i.e., x∗ belongs

to the separating hyperplane (98).
Similarly, substituting the right-hand side of (100) for α∗ in (99) and using the fact that

1− α∗ = ‖z∗2‖2/‖z∗‖2, we �nd that x∗ belongs to the separating hyperplane (99).
Denote by pr (α) the projection of the origin onto the hyperplane (98). By virtue of (88),

we have
pr (α) = A>

1 z∗1
[
z∗>1 b1 − α‖z∗‖2

]
/‖A>

1 z∗1‖2.

After simple calculations, we obtain d = ‖ pr (1)− pr (0)‖ = ‖z∗‖2/‖A>
1 z∗1‖. The theorem is

proved.
The proof of assertion (i) of Theorem 6 is similar to that of Eremin's theorem [2, Theorem

10.1], which is based on a theorem of the alternative. In the notation adopted in this paper, the
separating hyperplane in Eremin's theorem is described by the following equivalent equations:

u∗>1 (A1x− b1) + ρ/2 = 0, u∗>2 (b2 − A2x)− ρ/2 = 0,

where u∗1, u∗2 is an arbitrary solution to the system

A>
1 u1 + A>

2 u2 = 0n, b>1 u1 + b>2 u2 = ρ > 0, u1 ≥ 0k, u2 ≥ 0`. (104)

By Theorem 6, to �nd a separating hyperplane, one must solve the problem of unconstrained
minimization of the residual of the inconsistent system (I) in Rn, whereas Eremin's theorem [2]
implies that one must solve the consistent system (104) in m unknowns.

8. THE GORDAN AND STTEMKE THEOREMS OF THE ALTERNATIVE

The Gordan theorem of the alternative states that only one of the systems

Ax > 0m, (I)8

A>u = 0n, u ≥ 0m, ‖u‖1 > 0 (II)8

is solvable. This result does not follow directly from Theorem 3. By setting b = ρem, where em

is the m-dimensional unit vector, systems (I)6 and (II)6 are transformed into

Ax ≥ ρem, (I)∗8

A>u = 0n, u ≥ 0m, ρ‖u‖1 = ρ. (II)∗8

Systems (I)8 and (I)∗8 are solvable simultaneously; i.e., if system (I)8 is solvable, then its solution
x′ determines the value of the parameter ρ equal to the minimal component of the vector Ax′.
The vector x′ corresponding to this value of ρ satis�es (I)∗8. Vice versa, if system (I)∗8 has a
solution, then this solution obviously satis�es system (I)8. Similarly, if u′ solves system (II)8,
then u = u′/‖u′‖1 is a solution to (II)∗8. The converse is also true. Hence, the alternative in
the Gordan theorem can be replaced by the alternative represented by systems (I)∗8 and (II)∗8,
which de�ne closed sets. Therefore, unlike (I)8 and (II)8, the alternative systems (I)∗8 and (II)∗8
can have normal solutions, which can be found by applying Theorem 3.

Note that both sides of the last equality in (II)∗8 can be divided by ρ. However, in doing so,
one must take into account the multiplier ρ2 in the expression

pen (x,X) =
√
‖A>u‖2 + ρ2(1− ‖u‖1)2
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to ensure that (46) holds. Only under this condition can all results of Section 6 be extended to
systems (I)∗8 and (II)∗8. In particular, formulas (94) and (95) become

x̃∗ =
A>u∗

ρ(1− ‖u∗‖1)
, ũ∗ =

ρ(ρem − Ax∗)+

‖(ρem − Ax∗)+‖2
.

The Stiemke theorem states that only one of the systems Ax ≥ 0m, ‖Ax‖ > 0, and A>u = 0n,
u > 0m is solvable.

As in the case of the Gordan theorem, the alternative systems in the Stiemke theorem can
be replaced by systems that may have normal solutions. By introducing a vector of additional
variables ξ ∈ Rm, the �rst system in the Stiemke theorem is rewritten as

Ax− ξ = 0m, ‖ξ‖1 = ρ, ξ ≥ 0m. (I)∗∗8

This system is solvable simultaneously with the �rst system in the Stiemke theorem. System
(II)∗∗8 is a special case of the general system (I) considered in Section 2. Therefore, its alternative
is

A>u = 0n, −u + emσ ≤ 0m, ρσ = ρ > 0.

In a more compact form, it is written as

A>u = 0n, u ≥ em. (II)∗∗8

System (II)∗∗8 is solvable simultaneously with the second alternative system in the Stiemke
theorem. Now, Theorem 3 can be applied to the alternative systems (II)∗∗8 and (II)∗∗8 .

9. SYSTEMS OF LINEAR EQUATIONS IN NONNEGATIVE VARIABLES

Suppose that the system determining the set X has the form

Ax = b, x ≥ 0n, (I)9

where A is an m × n matrix, b ∈ Rm, and ‖b‖ 6= 0. The alternative system de�ning the set U
has the form

A>u ≤ 0n, b>u = ρ > 0, (II)9

where ρ is an arbitrary �xed constant.
By Theorem 3, only one of these systems, (I)9 or (II)9, is consistent. With the second relation

in (II)9 written as b>u > 0, this proposition is known as the Farkas lemma.
The vectors x∗ and u∗ are found by solving the problems

min
x∈Rm

+

‖b− Ax‖2/2 = ‖b− Ax∗‖2/2, (105)

min
u∈Rm

[‖(A>u)+‖2 + (ρ− b>u)2
]
/2 =

[‖(A>u∗)+‖2 + (ρ− b>u∗)2
]
/2. (106)

The necessary and su�cient minimality conditions for problems (105) and (106) are

−A>(b−Ax∗) ≥ 0n, D(x∗)
[
A>(b− Ax∗)

]
= 0n, x∗ ≥ 0n, A(A>u∗)+ − b(ρ− b>u∗) = 0m.

Applying Theorems 1 � 3 and the results of Section 4, we obtain b⊥ = z∗ = b − Ax∗,
b‖ = Ax∗, and w∗> = [w∗>

1 , w∗
3], where w∗

1 = (A>u∗)+, and w∗
3 = ρ− b>u∗.
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If X 6= ∅, then ‖b⊥‖ = 0, U = ∅, w∗
3 > 0, and the normal solution to (I)9 is expressed in

terms of the solution to problem (106) as follows:

x̃∗ = (A>u∗)+/(ρ− b>u∗).

Using the condition x̃∗ ∈ X, we obtain an analogue of formula (75):

A(A>u∗)+ + bb>u∗ = ρb.

If ‖b⊥‖ 6= 0, then X = ∅, U 6= ∅, ‖z∗‖ 6= 0m, and the normal solution to (II)9 has the form

ũ∗ = ρ(b− Ax∗)/‖b− Ax∗‖2 = ρb⊥/‖b⊥‖2.

By applying the optimal correction procedure, the inconsistent system (I)9 is reduced to Ax =
= b‖, x ≥ 0n. Then, the alternative inconsistent system is written as A>u ≤ 0n, x∗>A>u = ρ >
> 0.
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