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This paper is a continuation of [13]. For each constrained optimization problem we consider certain
unconstrained problems, which are constructed by means of auxiliary (Lagrange-type) functions. We
study only exact auxiliary functions, it means that the set of their global minimizers coincides with the
solution set of the primal constrained optimization problem. Su�cient conditions for the exactness of
an auxiliary function are given. These conditions are obtained without assumption that the Lagrange
function has a saddle point. Some examples of exact auxiliary functions are given.
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1 INTRODUCTION

This paper is the second part of [13]. We consider the nonlinear programming problem:

P (f, g) : f(x) → min subject to x ∈ X, g(x) ≤ 0,

where X is a metric space, f(x) and g(x) = (g1(x), . . . , gm(x)) are functions mapping X into
the real line R and into the m-dimensional Euclidean space Rm, respectively. We assume that
the set of feasible elements X0 = {x ∈ X : g(x) ≤ 0} is not empty and the problem P (f, g) has
a solution. Let ρ be the optimal value of P (f, g):

ρ = min{f(x) : x ∈ X0}, (1)

and let X∗ = {x ∈ X0 : f(x) = ρ} be the solution set.
Various auxiliary functions for problem P (f, g), which are similar in certain sense to the

classical Lagrange function were introduced in [13]. These functions are de�ned on X × Ω,
where Ω is a set of parameters. Let M(x, ω) be an auxiliary function, X0 ⊆ Y ⊆ X and
ω∗ ∈ Ω. We will examine an �unconstrained� problem of the form:

M(x, ω∗) → min subject to x ∈ Y . (2)

Here we study auxiliary functions M(x, ω) which enjoy the following property: there exists a
set Ω∗ ⊆ Ω such that for any ω∗ ∈ Ω∗ the solution set of (2) coincides with the solution set
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X∗ of P (f, g). Such auxiliary functions are called exact auxiliary (EA) functions. We survey
known results related to EA functions and present some new results.

The well-known representatives of EA functions are exact penalty (EP) functions introduced
and studied by I.I. Eremin [8] and W. Zangwill [27] in 1967. Later on these functions were
investigated by many authors. We mention only [1, 2, 4, 6, 7, 9, 14, 18, 21, 22, 26]. EP
functions are very important from theoretical and practical point of view. It turned out that
during a long period of time other EA functions were not considered. More than a decade ago
it became clear that among auxiliary functions, which are used in various realizations of the
method of centers there are also EA functions. The estimation (either upper or lower) of the
optimal value of P (f, g) appears as a parameter for this kind of EA functions. This estimation
is used instead of penalty coe�cient to provide exactness. The theoretical study of such type
auxiliary functions were carried out in papers [10, 11], where the notion of EA function was
�rst introduced. Several other examples of EA functions were proposed in these papers as well.

As in [13] we are mainly concerned with auxiliary functions of the form

M(x, η) = ϕ(f(x)− η, ψ(g(x))), (3)

where ϕ and ψ are convolution functions (see, for detail, [13]), and η is an estimation of the
optimal value ρ. We also shall consider convolution functions

M(x, η, ω) = ϕ(f(x)− η, ψ(g(x); ω)) (4)

depending on a parameter ω ∈ Ω. Necessary and su�cient optimality conditions for P (f, g)
were obtained in [13] in terms of functions (4). A penalty function can be presented in the
form (4) if the outer convolution function ϕ is linear and the function ψ possesses some natural
properties. If ϕ di�ers from a linear function we obtain in particular various auxiliary functions,
which were used in the study of methods of centers (external or internal).

The method of centers was introduced by P. Huard [15] in 1964. A suitably de�ned auxiliary
function was introduced and applied in this paper. This function is convex in the interior of
feasible set, and is in�nite on its boundary, so it is attained its minimum at an interior point.
Unconstrained minima of this function converge to the solution of the constrained problem. The
method of external centers was proposed by D. Morrison [17]. All minimizers of the auxiliary
function, which is exploited in this method, do not belong to the feasible region. Moreover, a
lower estimation of the optimal value is used, which is updated at each step of the iterative
process. Some other variants of the method of centers were considered in [25, 5, 16].

The property for auxiliary function being exact depends both on the structure of the problem
P (f, g) and on the type of convolution functions used in (3) or (4). Our aim here is to show
that this property is not inherent only to penalty functions for which ϕ is a linear convolution
function. It turns out that, if the convolution function ψ has the form, similar to those used
in EP functions, the auxiliary functions (3) or (4) with the nonlinear function ϕ may be also
exact.

In [10, 11] all results related to EA functions were obtained for a problem P (f, g) such that
its classical Lagrange function has a saddle point. In this paper we examine more general class
of problems. We assume only that a certain generalization of the Lagrange function has a saddle
point. It allows one to consider much more broad class of problems. We express conditions
providing exactness in terms of generalized polar functions.

The paper is organized as follows. In Section 2 we formulate su�cient optimality conditions
based on the function (4) where the outer convolution ϕ is linear. In Section 3 we introduce the
notion of generalized polar function and give some examples of such functions. Various classes
of exact auxiliary functions are presented in Section 4.
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Since this paper is a continuation of [13], we use terminology and notations from [13] without
special explanations.

2 AUXILIARY FUNCTIONS WITH LINEAR OUTER CONVOLUTION
FUNCTION

The aim of this section is to make more precise the results obtained in [13] for linear outer con-
volution functions ϕ in (4). These results, relating mainly to su�cient conditions for optimality,
will be used in the study of the problem P (f, g).

Let Y ∈ Y := {Y : X0 ⊆ Y ⊆ X}. Denote by T (Y ) the image of Y under the mapping
(f, g) : Y → R1+m, that is, the set

T (Y ) = {(u, v) ∈ R1+m : u = f(x), v = g(x), x ∈ Y }.

Denote also by Tη(Y ) the η-shift of T (Y ) along the �rst coordinate: Tη(Y ) = T (Y ) − ηe0,
where e0 = (1, 0, . . . , 0) is the unit vector. Recall (see [13]) that optimality conditions, which
we consider, express the separability of the set Tρ(Y ) with ρ de�ned by (1) and the set

H− = {(u, v) ∈ R1+m : u < 0, v ≤ 0}

by a non-necessarily linear function.
Consider the outer convolution function ϕ(u,w) = u + w and assume that an inner convo-

lution function ψ depends on a parameter ω ∈ Ω. Due to a special form of ϕ we can consider
the auxiliary function (4) without the parameter η (see [13] for details). Then the auxiliary
function M ≡ Mψ has a form:

Mψ(x, ω) = f(x) + ψ(g(x); ω)), (x ∈ X, ω ∈ Ω). (5)

Let ψ(·; ω) be a proper convolution function for each ω ∈ Ω and let Mψ be the corresponding
auxiliary function (5).

De�nition 2.1. We say that the triplet (ψ, Mψ, Y ) enjoys the property
(A) if there exist x∗ ∈ X0 and ω∗ ∈ Ω such that

Mψ(x∗, ω∗) = min
x∈Y

Mψ(x, ω∗), (6)
ψ(g(x∗); ω∗) = 0. (7)

The following assertion holds.
Proposition 2.1. Let Y ∈ Y. Let ψ(·; ω) be a proper convolution function for any ω ∈ Ω.

If (ψ, Mψ, Y ) satis�es the property (A), then x∗ is a solution of P (f, g).
Proof. It follows from [13, Proposition 6.1].
Remark 2.1. Let a triplet (ψ, Mψ, Y ) enjoy the property (A) and let (x∗, ω∗) be a point

such that (6) and (7) hold. Since ψ(·; ω) is a proper convolution function and g(x∗) ≤ 0, it
follows that

ψ(g(x∗); ω∗) = 0 ≥ ψ(g(x∗); ω) for all ω ∈ Ω,

hence,
Mψ(x∗, ω∗) = f(x∗) ≥ Mψ(x∗, ω) for all ω ∈ Ω.
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On the other hand, (6) implies

Mψ(x∗, ω∗) ≤ Mψ(x, ω∗) for all x ∈ Y .

Thus, (x∗, ω∗) is a saddle point of the function M(x, ω) on the set Y × Ω, that is,

Mψ(x, ω∗) ≥ Mψ(x∗, ω∗) ≥ Mψ(x∗, ω) ∀ x ∈ Y and ∀ ω ∈ Ω. (8)

Assume now that the function ψ possesses the following property:

sup{ψ(v; ω) : ω ∈ Ω} = 0 for all v ∈ Rm
− . (9)

Then (8) implies both (6) and (7). Indeed, it follows directly from (8) that Mψ(x∗, ω∗) =
min
x∈Y

Mψ(x, ω∗). We also have

ψ(g(x∗); ω∗) = sup
ω∈Ω

ψ(g(x∗); ω) = 0.

Thus, if (9) holds, then the property (A) is equivalent to the existence of a saddle point of the
function Mψ on the set Y × Ω.

For a function ψ : Rm × Ω → R consider the set

L+
ψ (ω) = {(u, v) ∈ R1+m : h(u, v; ω) ≥ 0},

where h(u, v; ω) = u + ψ(v; ω) is the separation function generated by the function φ(u,w) =
u + w and the function ψ(v; ω) (see [13] for details).

Proposition 2.2. Assume that ψ(·; ω) is a proper convolution function for each ω ∈ Ω;
assume also that (9) holds. Then (x∗, ω∗) ∈ X0 × Ω is a saddle point of the function Mψ(x, ω)
on Y × Ω if and only if

Tη(Y ) ⊆ L+
ψ (ω∗), where η = f(x∗). (10)

Proof. Let (10) hold. Then

f(x)− η + ψ(g(x); ω∗) ≥ 0, (x ∈ Y ). (11)

Since x∗ ∈ X0, we have
ψ(g(x∗); ω∗) ≤ 0. (12)

Combining (11) and (12), we conclude that

Mψ(x, ω∗) = f(x) + ψ(g(x); ω∗) ≥ η = f(x∗) ≥ f(x∗) + ψ(g(x∗); ω∗) = Mψ(x∗, ω∗).

It follows from (11) (with x = x∗) that ψ(g(x∗); ω∗) ≥ 0, so due to (12) we have ψ(g(x∗); ω∗) = 0,
hence

ψ(g(x∗); ω∗) = 0 = max{ψ(g(x∗); ω) : ω ∈ Ω}.
Thus, (x∗, ω∗) is a saddle point of the function Mψ on Y × Ω.

Assume now that (x∗, ω∗) is a saddle point. Then we have

f(x∗) + ψ(g(x∗); ω∗) = Mψ(x∗, ω∗) = max
ω∈Ω

Mψ(x∗, ω) = f(x∗) + max
ω∈Ω

ψ(g(x∗); ω).

Since (9) holds, it follows that

ψ(g(x∗); ω∗) = max
ω∈Ω

ψ(g(x∗), ω) = 0. (13)
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Let x ∈ Y . Applying (13), we conclude that

f(x) + ψ(g(x); ω∗) = Mψ(x, ω∗) ≥ Mψ(x∗, ω∗) = f(x∗) + ψ(g(x∗); ω∗) = η + ψ(g(x∗); ω∗) = η.

Thus, f(x)− η + ψ(g(x); ω∗) ≥ 0 for all x ∈ Y , so Tη(Y ) ⊆ L+
ψ (ω∗).

Corollary 2.1. Let (10) hold for some (x∗, ω∗). Then Mψ(x, ω) with ψ satisfying assump-
tions of Proposition 2.2 has a saddle point.

The simplest example of a proper convolution function ψ is a linear function

ψ(v; ω) = 〈ω, v〉, ω ∈ Ω := Rm
+ , (14)

where 〈·, ·〉 stands for the inner product. Clearly, this function satis�es (9), therefore, the
property (A) is equivalent to the existence of a saddle point of Mψ on Y × Rm

+ . The function
Mψ with ψ of (14) coincides with the classical Lagrange function.

It follows from Proposition 2.2 that the existence of a saddle point (x∗, ω∗) of the Lagrange
function is equivalent to the following assertion: Tρ(Y ) belongs to half-space L+

ψ (ω∗), where
L+

ψ (ω) is de�ned by
L+

ψ (ω) = {(u, v) ∈ R1+m : 〈(u, v), (1, ω)〉 ≥ 0}.
We now give two more examples:
Example 2.1. Consider the function

ψ(v; ω) = max[〈ω1, v〉, 〈ω2, v〉], ω = [ω1, ω2] ∈ Ω := Rm
+ × Rm

+ ; (15)

It is easy to check that ψ(·; ω) is a proper convolution function for any ω ∈ Ω.
Example 2.2. Consider the function

ψ(v; ω) =
α

2




∥∥∥∥∥
(

v

α
+ ω1

)

[0,ω1+ω2/α]

∥∥∥∥∥
2

− ‖ω1‖2


 , (16)

where
ω = [ω1, ω2, α] ∈ Ω := Rm

+ × Rm
++ × R++,

and (x)[a,b] is the orthogonal projection of a vector x onto the box set {x ∈ Rm : ai ≤ xi ≤ bi,
1 ≤ i ≤ m}. It can be shown that ψ(·; ω) is a proper convolution function for any ω ∈ Ω (see
[13] for details).

Both functions (15) and (16) were introduced in [12]. In the limit case, when ωi
2 = +∞,

1 ≤ i ≤ m, the function (16) transfers to the augmented Lagrangian [3].
For many problems P (f, g) it is possible to �nd a proper convolution function ψ and a

set Y ∈ Y such that the triplet (ψ, Mψ, Y ) enjoys property (A), even the classical Lagrange
function for this problem has no saddle points.

Consider an inner convolution function ψ de�ned by (15) from this point of view. Exploiting
an outer convolution function ϕ(u,w) = u + w and the function ψ, we obtain the separation
function

h(u, v; ω) = u + max[〈ω1, v〉, 〈ω2, v〉]. (17)
The auxiliary function Mψ, corresponding to this separation function (see [13, Section 6]), has
the form

Mψ(x, ω) = f(x) + max[〈ω1, g(x)〉, 〈ω2, g(x)〉].
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Clearly, ψ possesses (9), so the property (A) for the triplet (ψ, Mψ, Y ) is equivalent to the
existence of a saddle point of the function Mψ on Y × Ω. It follows from Proposition 2.2 that
a saddle point exists if and only if Tρ(Y ) ⊆ L+

ψ (ω∗) for some ω∗ ∈ Ω, where

L+
ψ (ω) = {(u, v) ∈ R1+m : u + max[〈ω1, v〉, 〈ω2, v〉] ≥ 0}.

Let
L+

i (ω) = {(u, v) ∈ R1+m : 〈(u, v), (1, ωi)〉 ≥ 0}, i = 1, 2.

Since u + max
i=1,2

〈ωi, v〉 = max
i=1,2

(u + 〈ωi, v〉), it follows that L+
ψ (ω) can be presented as the union

of half-spaces L+
1 (ω) and L+

2 (ω).
Thus, property (A) holds for the triplet (ψ, Mψ, Y ) with ψ of (15) if and only if Tρ(Y ) is

contained into the union of two half-spaces, which are de�ned by vectors (1, (ω∗)1) and (1, (ω∗)2),
respectively, where (ω∗)i ∈ Rm

+ , i = 1, 2. (Recall that property (A) holds for (ψ,Mψ, Y ), where
Mψ is the classical Lagrange function, if and only if Tρ(Y ) is a subset of a half-space de�ned
by a vector (1, ω∗)).

It is clear that (17) is an increasing positively homogeneous (IPH) function on R1+m. More-
over, if ω1 6= 0 and ω2 6= 0, then h(u, v; ω) is a regular weak separation function (see [13, Section
4]).

The function
ψ(v; ω) = max

i=0,1,...,p
〈ωi, v〉, (18)

where
ω = (ω0, ω1, . . . , ωp), ωi ∈ Rm

+ , i = 0, 1, . . . , p, p > 2,

is a natural generalization of (15). The corresponding separation function and auxiliary function
have the following forms respectively:

h(u, v; ω) = u + max[〈ω0, v〉, 〈ω1, v〉, . . . , 〈ωp, v〉], (19)
Mψ(x, ω) = f(x) + max[〈ω0, g(x)〉, 〈ω1, g(x)〉, . . . , 〈ωp, g(x)〉]. (20)

Here ω ∈ Ω := Rm(1+p)
+ . Note that the function ψ de�ned by (18) enjoys (9).

Assume that there exist x∗ ∈ X0 and ω∗ ∈ Ω such that (6) and (7) hold. Then, applying
Proposition 2.1, we conclude that x∗ is a solution of P (f, g). Consider the set L+

ψ (ω) corre-
sponding to the separation function (19). Let Jp = {0, 1, . . . , p}. Then

L+
ψ (ω) = {(u, v) : h(u, v; ω) ≥ 0} = {(u, v) : (∃ i ∈ Jp)u + 〈ωi, v〉 ≥ 0},

so
L+

ψ (ω) =
⋃

i∈Jp

{(u, v) : u + 〈ωi, v〉 ≥ 0}.

Thus, L+
ψ (ω) can be represented as the union of (p + 1) half-spaces

L+
i (ω) = {(u, v) ∈ R1+m : 〈(u, v), (1, ωi)〉 ≥ 0}, i ∈ Jp,

which are de�ned by vectors (1, ωi) with ωi ∈ Rm
+ , (i ∈ Jp). It follows from Proposition 2.2 that

the auxiliary function Mψ has a saddle point on Y ×Ω if and only if a vector ω∗ = ((ω∗)i)
p
i=0 ≥ 0

can be found such that Tρ(Y ) ⊂ ⋃
i∈Jp

L+
i (ω∗), where ρ = min

x∈X0

f(x) is the value of the problem

P (f, g).
Consider now the complement L−ψ (ω) to the set L+

ψ (ω). Clearly,

L−ψ (ω) = {(u, v) : u + 〈ωi, v〉 < 0, i ∈ Jp} (21)
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is an open convex cone. Let (u, v) ∈ H−, that is, u < 0, v ≤ 0. Since ωi ≥ 0, it follows that
u + 〈ωi, v〉 < 0, so H− ⊂ L−ψ (ω). We have proved the following assertion:

Proposition 2.3. Let ψ be a convolution function de�ned by (18) and Y ∈ Y. Then an
auxiliary function (20) has a saddle point on the set Y × Ω if and only if there exists a vector
ω∗ = ((ω∗)i)i∈Jp such that the open convex cone L−ψ (ω∗) separates the sets Tρ(Y ) and H− in the
following sense: H− ⊂ L−ψ (ω∗) and Tρ(Y ) ∩ L−ψ (ω∗) = ∅.

Remark 2.2. We can express the statement of Proposition 2.3 in terms of separation
function h de�ned by (19):

h(u, v; ω∗) < 0 for all (u, v) ∈ H−;

h(u, v; ω∗) ≥ 0 for all (u, v) ∈ Tρ(Y ).

Recall, that Tρ(Y )∩H− = ∅ for any problem P (f, g) and any Y ∈ Y (see [13, Proposition 2.1]).

We now show that, if H− and Tρ(Y ) can be separated by a convex cone and ψ(v; ω) is a
convolution function de�ned by (18) with p = m, then auxiliary function Mψ has a saddle point
on the set Y × Ω.

First we remind the following de�nition. A convex cone K ⊂ Rn is called simplicial if
K is a convex hull of n linearly independent vectors z1, . . . , zn. Let K be a simplicial cone.
Since K =

{
n∑

i=1

αizi : αi ≥ 0, i = 1, . . . , n

}
, it follows that K is isomorphic to Rn

+. It follows

from this isomorphism that there exist n linearly independent vectors `1, . . . , `n such that
K = {z : 〈`i, z〉 ≤ 0 : i = 1, . . . , n}. In other words,

K = {z ∈ Rn : max
i=1,...,n

〈`i, z〉 ≤ 0}.

Clearly that
int K = {z ∈ Rn : max

i=1,...,n
〈`i, z〉 < 0},

where int K is an interior of K.
Theorem 2.1. Consider the problem P (f, g) and a set Y ∈ Y. Let ψ(v, ω) be a convolution

function de�ned by (18) with p = m. Then the auxiliary function Mψ has a saddle point on the
set Y × Ω if and only if there exists an open convex cone K ⊂ R1+m which separates H− and
Tρ(Y ), that is, H− ⊂ K and Tρ(Y ) ∩ K = ∅.

Proof.
1. If a saddle point (x∗, ω∗) exists, then the cone K = L−ψ (ω∗) de�ned by (21) satis�es required
properties.
2. Assume that an open convex cone K, separating H− and Tρ(Y ) exists. Let ε > 0. Consider
unit vectors ēi = (ē0

i , ē
1
i , . . . , ē

m
i ), 0 ≤ i ≤ m, with components

ēj
i =

{
1, j = i,
0, j 6= i,

and vectors ēi,ε = (ē0
i,ε, ē

1
i,ε, . . . , ē

m
i,ε), 0 ≤ i ≤ m, with components

ēj
i,ε =

{
1, j = i,
−ε, j 6= i,

0 ≤ j ≤ m.

Let
si,ε =

{
−ēi,ε, −ēi ∈ K,
−ēi, −ēi /∈ K,

0 ≤ i ≤ m,
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and Kε be a cone hull of vectors s0,ε, s1,ε, . . . , sm,ε. Assume that ε is a su�ciently small number.
Then intKε ⊂ K and vectors si,ε, (i = 0, . . . , m) are linearly independent. Hence, Kε is a
simplicial cone. The simpliciality of Kε implies the existence of m + 1 linear independent
vectors (di, ωi) ∈ R1+m such that Kε = {(u, v) : diu + 〈ωi, v〉 ≤ 0}. It is easy to check that
H− ⊂ intKε. This inclusion implies ωi ≥ 0 and di > 0 for all i = 0, 1, . . . , m. Indeed, we have
diu + 〈ωi, v〉 ≤ 0 for an arbitrary v ≤ 0 and u < 0. Turning u to zero, we have 〈ωi, v〉 ≤ 0 for
all v ≤ 0, hence ωi ≥ 0. We also have 〈(di, ωi), ē0〉 = di ≤ 0, so di ≥ 0.

If di = 0 for an index i, then 〈(di, ωi), ē0〉 = 0. Since

intKε = {(u, v) : 〈(di, ωi), (u, v)〉 < 0, i = 0, 1, . . . , m},

it follows that −ē0 is a boundary point of Kε. This contradicts inclusions −ē0 ∈ H− ⊂ intKε.
Hence di > 0. Assume without loss of generality that di = 1 for all i. Let ω∗ = (ω0, ω1, . . . , ωm).
Then

intKε = {(u, v) : u + 〈ωi, v〉 < 0, i = 0, 1, . . . , m} = L−ψ (ω∗),

where L−ψ (ω∗) is the cone de�ned by (21). Since intKε ⊂ K and K ∩ Tρ(Y ) = ∅, it follows that
also intKε∩Tρ(Y ) = ∅. Since intKε ⊃ H−, we can conclude that Kε = L−ψ (ω∗) separates Tρ(Y )
and H−. The desired result follows now from Proposition 2.3.

The auxiliary function (20) possesses the remarkable property. Namely, if there exists an
open convex cone, which separates H− and Tρ(Y ), then the equality (6) holds not only for the
particular value ω∗ but also for a fairly broad set of parameters ω. It follows from the fact that
we may change e and consequently take various cones Kε. Moreover, we may de�ne the cone Kε

by means of a vector-parameter ε = (ε0, . . . , εm). This leads to a variety of directional vectors
(d0, ω0), . . . , (dm, ωm). Then (6) holds for corresponding vectors ω∗ as well. In what follows the
functions with such property will be called exact auxiliary (EA) functions. These functions will
be examined in Section 4.

3 GENERALIZED POLAR FUNCTIONS

A polar function is a very e�cient tool for obtaining various evaluations of the image Tρ(Y ) of
the problem P (f, g), especially if assumptions of Proposition 2.1 hold for this problem. The
classical notion of polarity closely related to bilinear coupling function. Since we consider a
general coupling function ψ(v; ω) instead of bilinear function 〈v, ω〉, we need corresponding
generalization of polarity. Various concepts of generalized conjugacy and, in particular, gene-
ralized polarity are based on the notion of abstract convexity (see [24] and also [19, 20]). Here
we introduce generalized polar functions which are more convenient for our purposes. The
proposed de�nition is based on the Minkowski�Mahler inequality. In other words, we try to
de�ne the generalized polar function in order to obtain the best possible inequality of the form
F (z, z0) ≤ q(z)q0(z0) for a coupling function F with a given function q. (Here q0 is a polar
function).

Classical polar functions have been studied only with respect to nonnegative functions q,
however, we shall not restrict ourselves by considering only nonnegative functions. We shall
consider not only functions de�ned on the entire space but also its restrictions to some subsets.
In such a case we can obtain �nite polar functions. In particular, we shall de�ne polar functions
to common and interior convolution functions (see [13] for the de�nition of these functions). We
also de�ne and study generalized polarity for the restriction of interior convolution functions
to the non-positive orthant.

Let F : Rm × Rs → R be a coupling function, and let Z ⊆ Rm. Let further q : Rm → R.
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For each z0 ∈ Rs consider the set

Λ(z0) = {λ ∈ R̄ : F (z, z0) ≤ λq(z) for all z ∈ Z} = {λ ∈ R̄ : ∆z0(λ) ≤ 0},

where
∆z0(λ) := sup

z∈Z
[F (z, z0)− λq(z)].

Note that Λ(z0) is a closed segment on the extended real line (maybe empty). Let

Z0 = {z0 ∈ Rs : Λ(z0) 6= ∅}.

For each z0 ∈ Z0 we are interested in a point λ(z0) from the segment Λ(z0) (which can be equal
to +∞ or to −∞), which provides the exact evaluation of F in the following sense: the function
λ(z0)q is the least function proportional to q, which is a majorant of F (·, z0) on Z. It means
that λ(z0) is satis�ed to the following two conditions:
(1) λ(z0) ∈ Λ∗(z0) := {λ0 ∈ Λ(z0) : ∆z0(λ0) ≥ ∆z0(λ) ∀ λ ∈ Λ(z0)};
(2) there does not exist another λ ∈ Λ∗(z0) such that

F (z, z0) ≤ λq(z) ≤ λ(z0)q(z) for all z ∈ Z

with the right inequality being strict for some z ∈ Z.
Such a point λ(z0) always exists, however, sometimes this point is not unique. Denote by

Λ0(z0) the set of all such λ0(z0). We now give some examples:

(1) Let both F (z, z0) and q(z) be positive for all z ∈ Z. Then Λ(z0) ⊆ R+ and λ(z0) is the
left end of Λ(z0). The set Λ0(z0) consists of one point.

(2) Let both F (z, z0) and q(z) be negative for all z ∈ Z. Then λ(z0) is the right end of Λ(z0).
The set Λ0(z0) also consists of one point.

(3) Let Z = [−1, 1] and Φ(z, z0) = −0.5 + zz0 with z0 = 1. Then for the function q(z) =
max[0.5z, 2z] we have Λ0(z0) = {0.25, 3}, that is, Λ0(z0) consists of two points.

(4) Let Z, z0 and q(z) be the same as in the previous example. Then for the function
Φ(z, z0) = zz0 the set Λ0(z0) is the closed segment [0.5, 2].

In the case, when the cardinality of Λ0(z0) is greater then one, we take an arbitrary element
from Λ0(z0) as λ(z0).

The function q0
F,Z(z0) := λ(z0) is called the generalized polar function to q(z) on the set Z

with respect to the coupling function F . By de�nition,

q0
F,Z(z0) ∈ Argmax

λ∈Λ(z0)
∆z0(λ). (22)

Note that since Λ(z0) is non-empty closed segment (maybe with one of the extreme point equal
to +∞ or −∞), the function q0

F,Z(z0) is well de�ned. If Z coincides with the entire space Rm,
then we use notation q0

F (z0) instead of q0
F,Z(z0).

The following Minkowski�Mahler inequality follows directly from the inclusion (22):

F (z, z0) ≤ q(z)q0
F,Z(z0), ∀ z ∈ Z, ∀ z0 ∈ Z0. (23)
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If q(z) ≥ 0 for all z ∈ Z, then the de�nition of q0
F,Z(z0) can be rewritten in the classic form

q0
F,Z(z0) = sup

z∈Z, q(z)>0

F (z, z0)

q(z)
. (24)

It is assumed that the supremum over empty set is equal to −∞. Similarly, if q(z) ≤ 0 for all
z ∈ Z, we have:

q0
F,Z(z0) = inf

z∈Z, q(z)<0

F (z, z0)

q(z)
, (25)

where the in�mum over empty set is equal to +∞.
We now present the simplest examples of polar functions.

Example 3.1. Assume that a coupling function F coincides with the classical bilinear function
F1:

F1(z, z0) = 〈z, z0〉.
Let q1(z) = ‖z+‖p, where p > 1. Let Z = Rm. It is well known that

(q1)
0
F1

(z0) = ‖z0‖p∗ ,

where z0 ∈ Z0 = Rm
+ , p−1 + p−1

∗ = 1.
Consider now the function q2(z) = −‖z−‖p, where p < 1. Let Z = Rm

− . Then

q0
F1,Rm

−
(z0) = ‖z0‖p∗ ,

where z0 ∈ Z0 = Rm
+ . If p 6= 0, then p−1 + p−1

∗ = 1. If p = 0, then p∗ = p = 0.
Example 3.2. Consider now the coupling function F2, where

F2(z, z0) = max[〈z, ω0〉, . . . , 〈z, ωm〉], z0 = [ω0, . . . , ωm] ∈ Rm(1+m).

Then we have for functions q1 and q2, respectively:

(q1)
0
F2

(z0) = max[‖ω0‖p∗ , . . . , ‖ωm‖p∗ ], z0 ∈ Z0 = Rm(1+m)
+ ,

(q2)
0
F2,Rm

−
(z0) = min[‖ω0‖p∗ , . . . , ‖ωm‖p∗ ], z0 ∈ Z0 = Rm(1+m)

+ .

Example 3.3. Let F be a function de�ned by (16), that is, F (z, z0) = F3(z, z0), where

F3(z, z0) :=
α

2




∥∥∥∥∥
(

z

α
+ ω1

)

[0,ω1+ω2/α]

∥∥∥∥∥
2

− ‖ω1‖2


 ,

and z0 = [ω1, ω2, α] ∈ Z0 = Rm
+ × Rm

++ × R++. Then we have for the function q1(z) = ‖z+‖p

(see [12]):
(q1)

0
F3

(z0) =
1

‖ω2‖p

[
〈ω1, ω2〉+

‖ω2‖2
2

2α

]
.

Example 3.4. Let Z = Z0 = Rm
++ := {z ∈ Rm : zi > 0, i ∈ I}, where I = {1, . . . , m}.

Consider the coupling function F (z, z0) = min
i∈I

zizi
0. Let q be an IPH function de�ned on Z.

Then (see [20])
q0
F,Rm

++
(z0) =

1

q(1/z0)
,
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where
1

z0

=

(
1

z1
0

, . . . ,
1

zm
0

)
.

The functions (24) and (25) possess the following simple properties:
Proposition 3.1. Let the function F (z, z0) be convex with respect to z0 on the convex set

Z0. Then the function (24) is also convex on Z0, the function (25) is concave on Z0.
Proposition 3.2. Suppose that F (z, z0) is an IPH function with respect to z0. Then both

functions (24) and (25) are positively homogeneous. The function (24) is increasing and, vice
versa, the function (25) is decreasing.

Proposition 3.3. If the function q(z) is positive, then q0
F,Z(z0) is an increasing function

of the set Z. It means that q0
F,Z1

(z0) ≤ q0
F,Z2

(z0) for Z1 ⊆ Z2. If q(z) is negative, then q0
F,Z(z0)

is a decreasing function of the set Z, i.e. q0
G,Z1

(z0) ≥ q0
G,Z2

(z0) for Z1 ⊆ Z2.
The proofs of Propositions 3.1 � 3.3 follow immediately from the de�nitions (24) and (25).

4 EXACT AUXILIARY FUNCTIONS

Let ϕ be an outer convolution function, ψ be an inner convolution function. Consider the
corresponding separation function

h(u, v) = ϕ(u, ψ(v)) (26)

and the corresponding auxiliary function

M(x, η) = ϕ(f(x)− η, ψ(g(x))), (27)

de�ned by (3). We assume in this section that ϕ is a proper increasing convolution (IC) function.
Let Y ∈ Y and η ∈ H ⊆ R. Denote

XY (η) = Argmin
x∈Y

M(x, η),

and recall that X∗ is the solution set of the problem P (f, g).
De�nition 4.1. The function M de�ned by (27) is said to be an exact auxiliary (EA)

function on Y ×H, if XY (η) = X∗ for all η ∈ H.
According to this de�nition the function M is an EA function on Y ×H if and only if the

separation function h(u, v) = ϕ(u, ψ(v)) enjoys the following property:

Argmin
[u,v]∈Tη(Y )

h(u, v) = Tη(X∗) (28)

for all η ∈ H. Here Tη(Z) = {(f(z) − η, g(z)) : z ∈ Z} is the image of a set Z under the
mapping x 7→ (f(x) − η, g(x)). It is obvious, that (28) holds, if for each η ∈ H there exists a
constant γ = γ(η) such that

h(u, v) ≥ γ for all (u, v) ∈ Tη(Y ), (29)

and
h(u, v) = γ (30)

only for (u, v) ∈ Tη(X∗).
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Below we present some su�cient conditions for M to be an EA function. These condi-
tions depend on the problem P (f, g) (more precisely, on the set T (Y ), where Y ∈ Y and on
convolution functions ϕ and ψ of (27).

Consider a function F : Rm × Ω → R, where Ω is a set of parameters such that F (·, ω) is a
proper convolution function for any ω ∈ Ω. Let MF be the auxiliary function, which corresponds
to ϕ(u,w) = u + w and ψ(v) = F (v, ω):

MF (x, ω) = f(x) + F (g(x), ω) (x ∈ X, ω ∈ Ω).

Assume that the triplet (F,MF , Y ) possesses the property A (see De�nition 2.1), that is, there
exists a pair (x∗, ω∗) ∈ X0 × Ω such that

min
x∈Y

MF (x, ω∗) = MF (x∗, ω∗), F (g(x∗), ω∗) = 0. (31)

It follows from Proposition 2.1 that x∗ is a solution of P (f, g), that is, x∗ ∈ X∗ and f(x∗) = ρ.
First we assume that ψ of (27) is an exterior convolution function.
Theorem 4.1. Let conditions (31) hold for Y ∈ Y at (x∗, ω∗). Let also ϕ be a proper IC

function and ψ be a proper strictly exterior convolution function such that

0 < ψ0
F (ω∗) < +∞. (32)

If there exists a set H ⊂ R such that the inequality

ϕ(u,w) > ϕ(u∗, 0) (33)

holds for all
u∗ ∈ ρ−H and w = (u∗ − u)+/ψ0

F (ω∗) with u 6= u∗,

then the function M de�ned by (27) is an EA on the set Y ×H.
Proof. Since ψ is a strictly exterior convolution function, it follows that h(u, v) = = h(u, 0)

for all v ∈ Rm
− , where h is a separation function de�ned by (26). We have

Tη(X∗) = {(u, v) ∈ R1+m : u = ρ− η, v = g(x∗), x∗ ∈ X∗}.
Thus

h(u, v) = ϕ(ρ− η, 0) := γ(η) (34)
for all (u, v) ∈ Tη(X∗)

Let g(Y ) be the image of the set Y under the mapping g : Rn → Rm. It follows from (31)
and from the Minkowski�Mahler inequality (23) that for all x ∈ Y

ρ = f(x∗) + F (g(x∗), ω∗) ≤ f(x) + F (g(x), ω∗) ≤ f(x) + ψ(g(x))ψ0
F,g(Y )(ω∗). (35)

The exterior convolution function ψ(v) is nonnegative on Rm, therefore, by Proposition 3.3,

ψ0
F,g(Y )(ω∗) ≤ ψ0

F (ω∗). (36)

Combining (35) and (36), we have

ρ ≤ f(x) + ψ(g(x))ψ0
F (ω∗)

for all x ∈ Y . This inequality can be rewritten as

u + ψ(v)ψ0
F (ω∗) ≥ ρ, (u, v) ∈ T (Y ). (37)
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Taking into account (32), we derive from (37) that

ψ(v) ≥ (ρ− η − u)/ψ0
F (ω∗), (u, v) ∈ Tη(Y ).

Moreover, since ψ(v) ≥ 0, we have

ψ(v) ≥ (ρ− η − u)+/ψ0
F (ω∗), (u, v) ∈ Tη(Y ).

Let u∗ = ρ− η and w = (u∗ − u)+/ψ0
F (ω∗). The function ϕ is increasing on R2, therefore

h(u, v) = ϕ(u, ψ(v)) ≥ ϕ(u,w).

If u 6= u∗, then (u, v) /∈ Tη(X∗). Moreover, due to (33),

ϕ(u,w) > ϕ(u∗, 0) = ϕ(ρ− η, 0) := γ(η). (38)

Therefore, h(u, v) > γ(η).
Suppose now that u = u∗ and (u, v) /∈ Tη(X∗). Then v /∈ Rm

− , that is, ψ(v) > 0. Since ϕ is
increasing, we have

h(u, v) = ϕ(u∗, ψ(v)) ≥ ϕ(u∗ − ψ0
F (ω∗)ψ(v), ψ(v)). (39)

Let u1 = u∗ − ψ0
F (ω∗)ψ(v). For such u1 we have u1 6= u∗ and w = (u∗ − u1)+/ψ0

F (ω∗) = ψ(v).
Thus, due to (33), we obtain

ϕ(u∗ − ψ0
F (ω∗)ψ(v), ψ(v)) = ϕ(u1, w) > ϕ(u∗, 0) = γ(η).

It follows from (34), (38) and (39) that both (29) and (30) hold. Therefore, M(x, η) EA function
on Y ×H

The inequality (33) has a simple geometrical interpretation. Denote by K1(u∗) the shift
along the horizontal axis of the cone

K1 = {(u,w) ∈ R2 : w ≥ (−u)+/ψ0
F (ω∗)},

that is, K1(u∗) = (u∗, 0) + K1. According to (33), the function ϕ(u, v) enjoys the following
property: for any u∗ = ρ − η with η ∈ H the level line of {(u, v) : ϕ(u, v) = ϕ(u∗, 0)} of the
function ϕ does not intersect the set K1(u∗) with the exception of the point (u∗, 0).

We now present three examples of EA functions.
Example 4.1. Let α < 0. Then the function

M(x, η) =

{
(η − f(x))α

+ + ψ(g(x)), f(x) < η,
+∞, f(x) ≥ η,

(40)

is EA function on Rn ×H, where

H = {η ∈ R : η > ρ + (αψ0
F (ω∗))1/(1−α)}. (41)

Example 4.2. Let β > 1. Then the function

M(x, η) = (f(x)− η)β
+ + ψ(g(x)) (42)
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is EA function on Rn ×H, where

H = {η ∈ R : ρ ≥ η > ρ− (βψ0
F (ω∗))1/(1−β)}. (43)

Example 4.3. Let t = 1− (f(x)− η)−ψ(g(x))t. The function

M(x, η) =





(f(x)− η)

t
, t > 0,

−∞, t ≤ 0,
(44)

is EA on the set Rn ×H, where

H =
{
η ∈ R : η > ρ + (ψ0

F (ω∗))1/2
}

. (45)

The functions (40), (42) and (44) were considered in [10]]. However, the lower and upper boun-
daries for η providing the exactness of auxiliary functions were obtained only under assumption
that there exists the saddle point of Lagrange function, and thus the usual polar function was
used in (41), (43) and (45) instead of generalized polar function. As it has been shown in [12],
for functions (40) and (42) this assumption may be replaced by the su�cient conditions given
by Proposition 2.1.

We now assume that the function ψ in (27) is a proper interior convolution function and
Y = X0.

Theorem 4.2. Let Y = X0 and conditions (31) be satis�ed at (x∗, ω∗). Let also ϕ be a
proper IC function and ψ be a proper interior convolution function such that

0 < ψ0
F,Rm

−
(ω∗) < +∞. (46)

If there exists a set H ⊂ R such that the inequality

ϕ(u,w) > ϕ(u∗, 0) (47)

holds for all u∗ ∈ ρ −H and w = (u∗ − u)/ψ0
F,Rm

−
(ω∗) with u > u∗, then the function M(x, η)

is EA on the set X0 ×H.
Proof. Since g(x) ∈ Rm

− and ψ(g(x)) ≤ 0 for all x ∈ X0 we have, combining (31), (23) and
Proposition 3.3,

ρ = f(x∗) + F (g(x∗), ω∗) ≤ f(x) + F (g(x), ω∗) ≤ f(x) + ψ(g(x))ψ0
F,g(X0)(ω∗) ≤

≤ f(x) + ψ(g(x))ψ0
F,Rm

−
(ω∗) ≤ f(x).

We derive from these inequalities that

(ρ− f(x))/ψ0
F,Rm

−
(ω∗) ≤ ψ(g(x)) ≤ 0 (48)

for all x ∈ X0.
Let u = f(x)− η, u∗ = ρ− η and w = (u∗ − u)/ψ0

F,Rm

−
(ω∗). Then the inequalities (48) can

be rewritten as
w ≤ ψ(v) ≤ 0 for all (u, v) ∈ Tη(X0). (49)
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Let η ∈ H and (u, v) ∈ Tη(X0). If u 6= u∗, then, combining (49) and (47), we have

h(u, v) = ϕ(u, ψ(v)) ≥ ϕ(u,w) > ϕ(u∗, 0) := γ(η).

If u = u∗, then (u, v) ∈ Tη(X∗) and w = 0. ue to (49), we have ψ(v) = 0. Therefore,

h(u, v) = ϕ(u∗, 0) = γ(η).

Thus, M(x, η) is EA function on the set X0 ×H.
The inequality (47) means geometrically that for any u∗ = ρ− η with η ∈ H the level line

{(u,w) : ϕ(u, w) = ϕ(u∗, 0)} of the function ϕ does not intersect the set

K2(u∗) =
{
(u,w) ∈ R2 : w ≥ (u∗ − u)/ψ0

F,Rm

−
(ω∗), u ≥ u∗

}
,

excepting the point (u∗, 0).
The functions (40), (42) and (44) with an interior convolution function ψ satisfy conditions

of Theorem 4.2. All these functions are EA on the set X0 × H, where the set H is equal to,
respectively:

H =
{
η ∈ R : ρ < η < ρ + (αψ0

F,Rm

−
(ω∗))1/(1−α)

}
,

H =
{
η ∈ R : η < ρ− (βψ0

F,Rm

−
(ω∗))1/(1−β)

}
,

H =

{
η ∈ R : ρ ≤ η < ρ +

(
ψ0

F,Rm

−
(ω∗)

)1/2
}

.

Assume now that ψ(v) is a strictly common convolution function.
Theorem 4.3. Lef Y ∈ Y and conditions (31) be satis�ed at (x∗, ω∗). Let also ϕ be a

proper IC function and ψ be a strictly common convolution function such that (32) and (46)
hold. Assume that there exists a set H ⊂ R such that

ϕ(u∗, 0) <





ϕ(u, (u∗ − u)/ψ0
F (ω∗)), u < u∗,

ϕ(u, (u∗ − u)/ψ0
F,Rm

−
(ω∗)), u > u∗.

for all u∗ ∈ ρ−H and u 6= u∗. Then M(x, η) is an EA function on the set Y ×H.
The proof is similar to those of Theorems 4.1 and 4.2.
Let ψ be a strictly common convolution function such that ψ0

F (ω∗) < ψ0
F,Rm

−
(ω∗). Then the

function (44) is EA on the set Y ×H, where the set H is equal to

H =

{
η ∈ R : ρ +

(
ψ0

F (ω∗)
)1/2

< η < ρ +
(
ψ0

F,Rm

−
(ω∗)

)1/2
}

.

A more general than (27) auxiliary function

M(x, ω) = ϕ(φ(f(x), ω), ψ(g(x))), (50)

was also considered in [10], where φ(u, ω) is an increasing convex function with respect to u ∈ R.
Let ω ∈ R. If φ(u, ω) = u − ω, then the function (50) coincides with (27). Let now

φ(u, ω) = u/ω. Assume that ρ > 0 and ψ is a strictly exterior convolution function. Assume
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also that the function ϕ and the set H ⊂ R are such that the inequality (33) holds for all
u∗ ∈ H, for all u 6= u∗, and for w = (u∗ − u)+/ψ0

F (ω∗). Then the function

M(x, ω) = ϕ(f(x)/ω, ψ(g(x)))

is EA on the set Y × Ω∗, where Ω∗ = {ω ≥ 1 : ρ/ω ∈ H}. Similar results may be obtained
for the general auxiliary function (50). Moreover, the function ψ may be of any type (strictly
exterior, interior or strictly common convolution function). Note also that it is possible to
consider the following generalization of the function (50)

M(x, η, ω) = ϕ(φ(f(x)− η, ω), ψ(g(x))).

For such a function the interval H of values η providing the exactness of the auxiliary function
may be essentially extended by choosing an appropriate value of the parameter ω.

Remark 4.1. All auxiliary functions (40), (42) and (44) may be used for solving con-
strained optimization problem P (f, g). If ψ0

F,g(Y )(ω∗) is a positive �nite number, then we have
an opportunity to �nd a global solution of P (f, g) by a single minimization of an unconstrained
function.
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