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The paper contains some new results and a survey of some known results related to auxiliary (Lagrange-
type) functions in constrained optimization. We show that auxiliary functions can be constructed by
means of two-step convolution of constraints and the objective function and present some conditions
providing the validity of the zero duality gap property. We show that auxiliary functions are closely
related to the so-called separation functions in the image space of the constrained problem under
consideration. The second part of the paper (see Evtushenko et al., General Lagrange-type functions
in constrained global optimization. Part II: Exact Auxiliary functions. Optimization Methods and
Software) contains results related to exact auxiliary functions.
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1 INTRODUCTION

In recent years global optimization has attracted attention of many researchers. One of the
main reasons for this to happen is that the global optimization appears, in a huge variety
of forms, in practical live and in pure theoretical study. In 1991 a new �Journal of Global
Optimization� started to publish numerous results in this �eld. Among the published books we
mention the �rst book �Towards global optimization� by Dixon and Szego [5]. An impressive
number of books and papers have been published in this �eld later. The publications devoted
to global optimization combined entirely new approaches with generalization of well-known
local results. In this paper we develop the generalization of Lagrange saddle-point approach to
global optimization. It contains new results and a survey of some results related to the so-called
auxiliary (Lagrange-type) functions in mathematical programming.

Consider the following mathematical programming problem P (f, g):

�nd the global minimum of a function f subject to inequality constraints g(x) ≤ 0, x ∈ X,
where X is a metric space, g(x) = (g1(x), . . . , gm(x)), f and gi are real-valued functions
de�ned on X.
1Corresponding author.
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(We can consider problems with equality constraints as a special case of problem P (f, g).
Indeed, each equality constraint gi(x) = 0 can be presented in the inequality form: gi(x) ≤ 0,
−gi(x) ≤ 0.)

One of the main approaches in the study of the problem P (f, g) consists in the construction
of a unconstrained optimization problem, which is equivalent (in a certain sense) to the initial
problem P (f, g). The well-known example of such a problem of unconstrained minimization is
the global minimization over X of the Lagrangian (Lagrange function) of P (f, g):

L(x, ω) := f(x) +
m∑

i=1

ωigi(x), (1)

where ω = (ω1, . . . , ωm) is a certain nonnegative vector. Unfortunately, the minimization of
Lagrangian is equivalent to P (f, g) only under suitable assumptions. The Lagrangian allows
one to de�ne the so-called dual objective function Q for the problem P (f, g):

Q(ω) = inf
x∈X

L(x, ω),

and consider the following problem of unconstrained global maximization (dual problem to
P (f, g)):

Q(ω) −→ sup subject to ω = (ωi)m
i=1 ≥ 0.

If the optimal value of this problem is equal to that of P (f, g) (the zero duality gap pro-
perty holds), then we can �nd a sequence of vectors ωk such that the optimal values of the
unconstrained problems L(x, ωk) tends to the optimal value of P (f, g).

A similar approach is based on the penalty function of the form:

L+(x, ω) := f(x) +
m∑

i=1

ωigi
+(x), (2)

leads to exact penalization or to duality based on L+. (Here a+ := max(a, 0)).
There exist many other functions, which can serve for constructing unconstrained problems,

which are equivalent (in a certain sense) to P (f, g). Such functions are very useful in the study
(both theoretical and numerical) of problem P (f, g). We shall call them auxiliary functions for
P (f, g).

First, we consider auxiliary functions which do not depend on a parameter. An auxiliary
function M of a problem P (f, g) can be constructed as a convolution of the objective function
f and constraints gi : M(x) = h(f(x), g1(x), . . . , gm(x)). In this paper we shall study mainly
two-step convolution functions, that is, functions of the form M(x) = φ(f(x) − η, ψ(g(x)).
In other words, �rst we convolute given constraints gi, i = 1, . . . , m, to a single constraint
ψ(g(x)) and then we convolute this new constraint and the objective function. Parameter η is
an estimation of a global minimum of a function f(x) on the feasible set.

There is a close connection between auxiliary functions and the so-called separation func-
tions, which have been studied in [21] in the frameworks of the so-called Giannessi scheme.
Let R1+m = R × Rm be the image space [12] of the problem P (f, g). This problem gene-
rates the set T = {(u, v) ∈ R1+m : u = f(x), v = g(x), x ∈ X} (image of the problem
P (f, g)) and its shifts Tη = T (X) − ηe0, where e0 = (1, 0, . . . , 0) is a unit vector. In order
to describe su�cient (and sometimes necessary) conditions for global minimum of problem
P (f, g) it is su�cient to establish that the intersection of the set Tη with certain η and the set
H− = {(u, v) ∈ R1+m : u < 0, v ≤ 0} is empty. The simplest way to prove the emptiness of the
intersection is to �nd a function h, which separates sets Tη and H−, that is, h(u, v) > h(u′, v′)
for all (u, v) ∈ Tη and (u′, v′) ∈ H−. We show that auxiliary functions can be considered as a
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certain tool for constructing separation functions, hence they can serve for achieving optimality
conditions.

Auxiliary functions

M(x, ω) = q(ω0f(x), ω1g1(x), . . . , ωmgm(x))

depending on a certain parameter ω = (ω0, ω1, . . . , ωm) are very useful in the study of opti-
mization problems. The simplest and well-known examples of auxiliary functions depending on
a parameter are Lagrange function (1) (where q(y0, y1, . . . , ym) =

m∑

i=0

yi) and penalty function

(2) (q(y0, y1, . . . , ym) = y0 +
m∑

i=1

yi
+). We mention here also augmented Lagrangians (see [17]

and references therein).
The auxiliary function M(x, ω) depending on a parameter ω leads to construction of the

dual function
Q(ω) = inf

x∈X
M(x, ω).

One of the main problems related to auxiliary functions is to establish the zero duality gap
property, that is, to describe conditions under which

sup
ω∈Ω

Q(ω) = inf
x∈X0

f(x), (3)

where X0 = {x ∈ X : g1(x) ≤ 0, . . . , gm(x) ≤ 0} is the set of feasible points of P (f, g).
If (3) holds, then a solution of the problem P (f, g) can be found by solving a sequence of
unconstrained optimization problems. It is very interesting to describe auxiliary functions which
provide the zero duality gap for broad classes of problems P (f, g) without any assumptions,
related to convexity and di�erentiability. Some of such classes were described in [19, 20, 13, 22].

In 1967 Eremin [6] and Zangwill [23] introduced a notion of exact penalty (EP) functions.
Later, exact augmented Lagrangian (EAL) functions was proposed in [15]. EP and EAL func-
tions proved to be a very valuable tool both in theoretical study of optimization problems and
in the development of numerical algorithms because they gave an opportunity to solve nonli-
near programming problems by means of a single minimization of an unconstrained function.
Subsequently, the properties of these functions were studied in numerous publications. The
interested reader is referred to [14, 3, 16, 4] and references therein for a detailed account of the
developments in this �eld.

A quite natural generalization of the notions EP functions and EAL functions is the so-
called exact auxiliary (EA) functions. These functions were introduced and studied in [7, 8, 9].
By de�nition, an EA function for P (f, g) is an auxiliary function M , which enjoys the following
property: the set of all unconstrained minima of M (under some rather simple conditions)
coincides with the solution set to P (f, g). If an auxiliary function M depends on a parameter
ω, then this function is exact if there exists a set of values ω0 of the parameter such that the
auxiliary function M(·, ω0) is exact for any ω0 from this set. It was shown in [7, 8, 9] that the
class of EA functions is much broader than classes of EP functions and EAL functions and
some of EA functions more convenient for applications than EP and EAL functions. Many new
EA functions have been described in these papers. We mention here only exact interior penalty
functions, exact Morrison's function, composite exact exterior-interior functions. The simplest
EA function is a convolution of a vector consisting of penalization for constraints violation and
parameterized objective function.

Like EP functions and EAL functions, general EA functions reduce the study of problem
P (f, g) to a single unconstrained minimization. Note that all considerations in [7, 8, 9] were
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carried out under the assumption that the Lagrangian of the original problem P (f, g) has
a saddle point. In this paper we demonstrate that this assumption can be replaced by a
substantially weaker one.

Note that auxiliary functions (especially, EA functions) can serve as a base for classifying
known numerical methods and designing new ones. However, in this paper we do not consider
the numerical aspect of EA functions.

This paper is the �rst part of the work, consisting of two parts. This part is devoted to
separation functions, convolution functions, auxiliary functions. We provide a classi�cation
of convolution and auxiliary functions and give several examples. We also consider auxiliary
functions depending on the parameters and study the zero duality gap property. This �rst part
contains both new results and a survey of known results (we give them mainly without proofs).

The EA functions are studied in the second part (see [10]).

2 PRELIMINARIES

We shall use the following notations:

• R = (−∞, +∞) is the real line,

• R̄ = [−∞, +∞] is the extended real line,

• R+∞ = (−∞, +∞], R−∞ = [−∞, +∞),

• Rn is the n-dimensional Euclidean space, equipped with the coordinate-wise order relation
≥,

• Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0 for all i} is the non-negative orthant,

• Rn
− = {x = (x1, . . . , xn) ∈ Rn : xi ≤ 0 for all i} is the non-positive orthant,

• Rn
++ = {x = (x1, . . . , xn) ∈ Rn : xi > 0 for all i} is the positive orthant,

• Rn
−− = {x = (x1, . . . , xn) ∈ Rn : xi < 0 for all i} is the negative orthant,

• En
+ = Rn\Rn

−− is the complement to the negative orthant Rn
−−,

• En
++ = Rn\Rn

− is the complement to the non-positive orthant Rn
−.

Note that En
+ is a closed set and En

++ is an open set.
Let X be a metric space. Consider a function f : X → R, a mapping g : X → Rm and the

minimization problem P (f, g), which is de�ned by the objective function f and the inequality
constraint g:

P (f, g) : f(x) −→ min subject to g(x) ≤ 0. (4)
Let

X0 := {x ∈ X : g(x) ≤ 0} (5)
be the set of feasible elements of P (f, g). We assume that X0 is non-empty. Denote by ρ the
optimal value of P (f, g):

ρ := inf{f(x) : x ∈ X0}.
We shall consider the function f and the mapping g on some subsets of X which contain X0.
Let

Y := {Y : X0 ⊆ Y ⊆ X}.

4



Consider the image space R1+m = R×Rm of P (f, g) and the mapping (f, g) : X →→ R1+m.
This mapping maps a set Y ∈ Y onto the image set

T (Y ) := {(u, v) ∈ R1+m : u = f(x), v = g(x), x ∈ Y }.
The set T (Y ) generates the family (Tη(Y ))

η∈R of its shifts. By de�nition

Tη(Y ) = {(u− η, v) : (u, v) ∈ T (Y )} = T (Y )− ηe0,

where e0 := (1, 0, . . . , 0) is the unit vector. Clearly, we have

Tη(X0) ⊆ Tη(Y ) (6)

for any η ∈ R and any Y ∈ Y . Consider also the set

H− = {(u, v) ∈ R1+m : u < 0, v ≤ 0}.
Obviously, clH− = R1+m

− .
Proposition 2.1. Let Y ∈ Y. The intersection Tη(Y ) ∩ H− is empty if and only if η is a

lower estimate of the value ρ of the problem P (f, g), i.e. η ≤ ρ.
Proof. Let Tη(Y )∩H− = ∅. It follows from (6) that Tη(X0)∩H− = ∅ as well. Since g(x) ≤ 0

for all x ∈ X0, it follows that f(x) − η ≥ 0 for all x ∈ X0, so ρ = inf{f(x) : x ∈ X0} ≥ η.
Conversely, if ρ ≥ η, then the inequality g(x) ≤ 0 implies f(x) − η ≥ 0, so Tη(X0) does not
intersect H−. Since Tη(Y ) = Tη(X0)∪Tη(Y \X0) and Tη(Y \X0) does not intersect H−, we have
Tη(Y ) ∩H− = ∅.

Corollary 2.1. The following holds:

ρ = sup{η : Tη(Y ) ∩H− = ∅}.

Indeed, the optimal value of the problem coincides with the exact upper bound of its lower
estimates.

Proposition 2.2. Let Y ∈ Y. Assume that H− ∩ Tη∗(Y ) = ∅ and R1+m
− ∩ Tη∗(Y ) 6= ∅.

Then η∗ = ρ.
Proof. Due to Proposition 2.1, we have η∗ ≤ ρ. Assume that η∗ < ρ. Since ρ = sup{η :

H− ∩ Tη(Y ) = ∅}, it follows that there exists η′ > η∗ such that Tη′(Y ) ∩ H− = ∅. Let
δ = η′ − η∗ > 0. Since

R1+m
− ∩ Tη∗(Y ) 6= ∅ and H− ∩ Tη∗(Y ) = ∅,

we deduce that there exists a vector ν ∈ Rm
− such that (0, ν) ∈ Tη∗(Y ). We have

(−δ, ν) ∈ Tη∗(Y )− δe0 = T (Y )− η∗e0 − (η′ − η∗)e0 = T (Y )− η′e0 = Tη′(Y ).

On the other hand, (−δ, ν) ∈ H−. Therefore, H−∩Tη′(Y ) 6= ∅, which contradicts the de�nition
of η′. Thus, the result follows.

In order to check that the intersection of two sets A and B is empty, it is convenient to �nd
a function h (in general, nonlinear), which guarantees disjunctive separation of these sets in
the following sense: for all a ∈ A and for all b ∈ B either h(a) < 0 ≤ h(b) or h(a) ≤ 0 < h(b).
We assume in the sequel that the solution set

X∗ := {x ∈ X0 : f(x) = ρ}
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of the problem P (f, g) is nonempty.
Proposition 2.3. Let Y ∈ Y. Then R1+m

− ∩ Tρ(Y ) = {(0, g(x∗)) : x∗ ∈ X∗}.
Proof. Let x∗ be a solution of the problem P (f, g). Then f(x∗) = ρ, so (f(x∗)−ρ, g(x∗)) =

(0, g(x∗)) ∈ R1+m
− . Clearly, (f(x∗) − ρ, g(x∗)) ∈ Tρ(Y ). Thus, (0, g(x∗)) ∈ R1+m

− ∩ Tρ(Y ).
Conversely, let (u, v) ∈ Tρ(Y )∩R1+m

− . Since (u, v) ∈ Tρ(Y ), it follows that there exists x∗ ∈ X0

such that v = g(x∗) ≤ 0 and u = f(x∗)−ρ. Since ρ is the value of P (f, g), it follows that u ≥ 0.
On the other hand, since (u, v) ∈ R1+m

− , it follows that u ≤ 0. Thus, u = 0, so f(x∗) = ρ. We
have proved that x∗ ∈ X∗, so (u, v) ∈ {(0, g(x∗)) : x∗ ∈ X∗}.

3 OPTIMALITY CONDITIONS VIA SEPARATION FUNCTIONS

We now present conditions for minimum in terms of separation functions. First we consider
necessary conditions. Recall that, due to Proposition 2.1, H− ∩ Tρ(Y ) = ∅ for any Y ∈ Y .

Proposition 3.1. Let Y ∈ Y and let η∗ be a number such that:

1) there exists a function h: R1+m → R̄, which strictly separates H− and Tη∗(Y ), that is

h(u, v) < 0 ≤ h(u′, v′) for all (u, v) ∈ H−, (u′, v′) ∈ Tη∗(Y ); (7)

2) R1+m
− ∩ Tη∗(Y ) 6= ∅.

Let x∗ be a solution of the problem P (f, g). Then f(x∗)η∗. If h is lower semicontinuous, then
h(0, g(x∗)) = 0.

Proof. It follows from (7) that Tη∗(Y ) ∩ H− = ∅. Proposition 2.2 demonstrates now that
η∗ = ρ. Let x∗ be a solution of the problem P (f, g). Then f(x∗) = ρ = η∗. Assume now that
h is lower semicontinuous. Consider a point (0, g(x∗)). Due to Proposition 2.3, we conclude
that (0, g(x∗)) ∈ R1+m

− ∩ Tρ(Y ). Since (0, g(x∗)) ∈ Tρ(Y ), we have h(0, g(x∗)) ≥ 0. Since
(0, g(x∗)) ∈ R1+m

− , we conclude, by applying lower semicontinuity of h, that h(0, g(x∗)) ≤ 0.
Hence, h(0, g(x∗)) = 0.

We now present a su�cient condition for a minimizer of the problem P (f, g) in terms of
separation functions.

Proposition 3.2. Let Y ∈ Y. Assume that there exist a function h : R1+m → R̄ and a
number η∗ such that (7) holds. Let x∗ ∈ X0 be a point such that f(x∗) = η∗. Then x∗ is a
solution of the problem P (f, g).

Proof. Assume that there exists x̄ ∈ X0 such that f(x̄) < f(x∗) = η∗. Then ū :=
f(x̄)− η∗ < 0 and v̄ := g(x̄) ≤ 0, so (ū, v̄) ∈ H−. Thus, h(ū, v̄) < 0. On the other hand,

(ū, v̄) ∈ Tη∗(X0) ⊆ Tη∗(Y ),

so h(ū, v̄) ≥ 0. We have a contradiction, which shows that f(x̄) ≥ f(x∗) for all x̄ ∈ X0.
The following version of Proposition 3.2 will be convenient for applications.
Proposition 3.3. Let h : R1+m → R̄ be a function such that h(u, v) < 0 for all (u, v) ∈ H−.

Let x∗ ∈ X0, η∗ = f(x∗) and
inf
x∈Y

h(f(x)− η∗, g(x)) ≥ 0, (8)

where Y ∈ Y. Then x∗ is a solution of the problem P (f, g).
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Proof. It follows from (8) that (f(x) − η∗, g(x)) /∈ H− for all x ∈ Y . Let x ∈ X0, that is,
g(x) ≤ 0. Since (f(x)− η∗, g(x)) /∈ H−, it follows that f(x) ≥ η∗ = f(x∗).

Remark 3.1. Let the function h be lower semicontinuous. Then h(0, g(x∗)) = 0. (In such
a case the in�mum in (8) is attained and equal to zero).

Indeed, we have

(f(x∗)− η∗, g(x∗)) = (0, g(x∗)) ∈ R1+m
− ∩ Tη∗(X0),

so R1+m
− ∩ Tη∗(X0) 6= ∅. Thus, Proposition 3.1 demonstrates that h(0, g(x∗)) = 0.
Let h be a function with the following property:

u < 0 ⇒ h(u, v) < h(0, v) for all v ∈ Rm
− . (9)

Then instead of strict separation of sets H− and Tη∗(Y ) we can consider nonstrict separation
of R1+m

− and Tη∗(Y ).
Proposition 3.4. Let Y ∈ Y. Let h : R1+m → R̄ be a function such that (9) holds. Assume

that
sup{h(u, v) : (u, v) ∈ R1+m

− } ≤ 0 ≤ inf{h(u′, v′) : (u′, v′) ∈ Tη∗(Y )}. (10)
Let x∗ ∈ X0 be a point such that f(x∗) = η∗. Then x∗ is a solution of the problem P (f, g).

Proof. Due to Proposition 3.2, it is su�cient to show that h(u, v) < 0 for all (u, v) ∈ H−.
Assume that there exists (u, v) ∈ H− such that h(u, v) = 0. Since u < 0, it follows that
h(0, v) > h(u, v) = 0, which is impossible.

Condition (9) holds if the function h(u, v) is strictly increasing in the �rst coordinate, that is,
u1 < u2 ⇒ h(u1, v) < h(u2, v) for all v. The function h(u, v) = u+ψ(v) is the simplest example
of the strictly increasing in the �rst coordinate function. We shall consider various examples of
such functions later. Note that the function h(u, v) = max(u, v1, . . . , vm) does not possess the
property (9). Convenient su�cient conditions can be given for problems P (f, g), when a certain
regularity condition holds. These conditions exclude constraints of the form gi(x) ≤ 0, where
gi is a nonnegative function (in such a case the inequality constraints gi(x) ≤ 0 is equivalent to
the equality constraint gi(x) = 0).

Let X̃0 = {x ∈ X : g(x) ¿ 0}. (The inequality v ¿ 0 means that all coordinates of a vector
v are negative.)

Regularity Condition. A problem P (f, g) is called regular if f is a lower semicontinuous
function and the feasible set X0 := {x ∈ X : g(x) ≤ 0} is such that

cl X̃0 = X0. (11)

Proposition 3.5. Let regularity condition hold. Assume that there exist a function h :
R1+m → R̄ and a number η∗ such that

h(u, v) < 0 for all (u, v) ¿ 0 (12)

and
0 ≤ h(u′, v′) for all (u′, v′) ∈ Tη∗(Y ) with Y ∈ Y . (13)

Let x∗ be a point such that f(x∗) = η∗. Then x∗ is a solution of the problem P (f, g).
Proof. Since f is lower semicontinuous and cl X̃0 = X0, it follows that

inf{f(x) : x ∈ X̃0} = min{f(x) : x ∈ X0}. (14)
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Assume that x∗ is not a solution of P (f, g). Then, due to (11) and (14), there exists a point
x̄ ∈ X̃0 such that f(x̄) < f(x∗) = η∗. We have ū := f(x̄) − η∗ < 0 and v̄ := g(x̄) ¿ 0, so
(ū, v̄) ¿ 0. It follows from (12) that h(ū, v̄) < 0. On the other hand, (ū, v̄) ∈ Tη∗(X0) ⊆ Tη∗(Y ),
so (13) implies h(ū, v̄) ≥ 0. We have a contradiction. Thus, the result follows.

We now present two more su�cient conditions for optimality. In contrast with Proposi-
tion 3.3, we do not assume now that x∗ is a feasible element.

Proposition 3.6. Let Y ∈= Y and let h : R1+m → R̄ be a function such that h(u, v) > 0
for all (u, v) /∈ Rm+1

− . Assume that there exist η∗ ∈ (−∞, ρ] and x∗ ∈ Y such that

h(f(x∗)− η∗, g(x∗)) = min
x∈Y

h(f(x)− η∗, g(x)) = 0. (15)

Then x∗ is a solution of P (f, g).
Proof. We have from (15) that (u, v) = (f(x∗) − η∗, g(x∗)) ∈ Rm+1

− . Thus, x∗ ∈ X0 and
f(x∗)− η∗ ≤ 0. Since η∗ ≤ ρ and f(x) ≥ ρ for all x ∈ X0, it means that f(x∗) = ρ.

Proposition 3.7. Let regularity condition hold and Y ∈ Y. Let also h be a function such
that h(u, v) < 0 for all (u, v) ¿ 0 and h(u′, v′) > 0 for all (u′, v′) /∈ Rm+1

− . Assume that there
exist a number η∗ and x∗ ∈ Y such that (15) holds. Then x∗ is a solution of P (f, g).

Proof. The same argument as in the proof of Proposition 3.6 demonstrates that x∗ ∈ X0

and f(x∗) ≤ η∗. If x∗ is not a solution of P (f, g), then there exists a point x̄ ∈ X̃0 such that
f(x̄) < f(x∗) ≤ η∗. Hence, h(f(x̄)− η∗, g(x̄)) < 0, which contradicts (15).

We now give necessary and su�cient condition for optimality.
Proposition 3.8. Let h : R1+m → R̄ be a function such that

h(u, v) < 0 ⇐⇒ (u, v) ∈ H−; (16)

and
h(0, v) = 0 ⇐⇒ v ≤ 0. (17)

Let x∗ ∈ Y , where Y ∈ Y and f(x∗) = η∗. Then x∗ is a solution of P (f, g) if and only if

min
x∈Y

h(f(x)− η∗, g(x)) = h(0, g(x∗)) = 0. (18)

Proof.
1) Assume that (18) holds. Since h(0, g(x∗)) = 0, we conclude, by applying (17), that g(x∗) ≤ 0.
Thus, x∗ ∈ X0. Proposition 3.3 demonstrates that x∗ is a solution of P (f, g).
2) Let x∗ be a solution of P (f, g). Since g(x∗) ≤ 0, it follows from (17) that h(0, g(x∗)) = 0,
so we only need to check that h(f(x) − η∗, g(x)) ≥ 0 for all x ∈ Y . First, consider x ∈ X0.
Then f(x) − f(x∗) = f(x) − η∗ ≥ 0, hence (f(x) − η∗, g(x)) /∈ H−. It follows from (16) that
h(f(x)− η∗, g(x)) ≥ 0.

Consider now a point x ∈ Y such that g(x) 6≤ 0. Then again (f(x) − η∗, g(x)) /∈ H−, so
h(f(x)− η∗, g(x)) ≥ 0.

Remark 3.2. We can assume, in particular, that Y = X in Proposition 3.8. Then a
separation function with properties indicated in this proposition allows us to establish that an
arbitrary point x∗ ∈ X such that (18) holds is a solution of P (f, g) (in particular, x∗ is a feasible
element of P (f, g)).
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Remark 3.3. Assume that h is lower semicontinuous and (16) holds. Then (17) follows
from the condition similar to (9):

u < 0 ⇒ h(u, v) < h(0, v) for all v ∈ Rm.

Indeed, let v ≤ 0 and let u < 0. Then (u, v) ∈ H−, so h(u, v) < 0. Since h is lower semi-
continuous, it follows that h(0, v) ≤ 0. On the other hand, since (0, v) /∈ H−, it follows that
h(0, v) ≥ 0. Thus, h(0, v) = 0.

Assume now that h(0, v) = 0. Then h(u, v) < h(0, v) = 0 for u < 0. Hence (u, v) ∈ H−,
which implies v ≤ 0.

Remark 3.4. It follows from (16) that the level set {(u, v) : h(u, v) < 0} of the func-
tion h from Proposition 3.8 is not open, so this function is not upper semicontinuous, hence
discontinuous.

The following function h satis�es conditions of Proposition 3.8: h(u, v) = u + δ(v), where δ
is the indicator function of the cone Rm

− :

δ(v) =

{
0, if v ∈ Rm

− ,
+∞, if v /∈ Rm

− .

We can get more interesting results if we consider a separation functions depending on a pa-
rameter (see Section 4). Separation functions in a parametric form �rst were considered by
Giannessi (see [11, 12, 21] and references therein). In the next section we shall present main
ideas of Giannessi scheme.

4 GIANNESSI SCHEME AND CONDITIONS FOR OPTIMALITY IN A PARA-
METRIC FORM

The approach, which was presented in previous sections, can be considered as a modi�cation of
the approach, which was proposed by Giannessi (see [11] and also [21] and references therein).
We indicate some ideas behind the original Giannessi scheme conformably to the problem
P (f, g). As it was mentioned in [11], the separation of two sets by a not necessary linear
function plays a key role in the study of optimality conditions.

Giannessi proposed to study the separation of the set H−, which we exploit here, and the
following set:

Kx̄ = {(u, v) ∈ R1+m : u = f(x)− f(x̄), v = g(x), x ∈ X},
where x̄ ∈ X. He also considered a separation by a family of separation functions h(u, v; ω)
depending on a parameter ω ∈ Ω. In particular, the following de�nition from [21] is very useful.

De�nition 4.1. A function h : R1+m × Ω → R̄ is called a regular weak separation (RWS)
function if h(u, v; ω) < 0 for all (u, v) ∈ H− and all ω ∈ Ω; for each (u, v) /∈ H− there exists
ω ∈ Ω such that h(u, v; ω) ≥ 0.

The main tool in the study of optimality conditions by means of RWS functions is the
so-called theorem of the alternative [11].

Proposition 4.1 (weak alternative). Let h : R1+m × Ω → R̄ be a RWS function and let
x̄ ∈ X. Then the following assertions are not simultaneously true:

1) for each x ∈ X there exists ω ∈ Ω such that: h(f(x)− f(x̄), g(x); ω) ≥ 0;
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2) H− ∩ Kx̄ 6= ∅.
Proof.

1) Assume that there exists (u, v) ∈ H− ∩ Kx̄. Since (u, v) ∈ Kx̄, it follows that there exists
x ∈ X such that u = f(x) − f(x̄), v = g(x). Since (u, v) ∈ H− and h is a RWS function, it
follows that h(f(x)− f(x̄), g(x); ω) < 0 for all ω ∈ Ω, so Assertion 2) does not hold.
2) Assume now that H− ∩ Kx̄ = ∅. Then for each x ∈ X there exists ω ∈ Ω such that
h(f(x)− f(x̄), g(x); ω) ≥ 0, so Assertion 1) is valid.

We now present a simple example of a RWS function. Let Ω = (0, +∞) and

h(u, v; ω) = φ(u) + ω max(0, v1, . . . , vm),

where φ(u) < 0 = φ(0) for u < 0 and φ(u) ≥ 0 for u > 0. We now check that h is a RWS
function. Indeed, let (u, v) ∈ H−, that is, u < 0 and vi ≤ 0 for all i. Then h(u, v; ω) = φ(u) < 0
for all ω > 0. Assume now that (u, v) /∈ H−, then either u ≥ 0, or v /∈ Rm

− . If u ≥ 0 and
v ≤ 0, then h(u, v; ω) = φ(u) ≥ 0 for all ω > 0. If v /∈ Rm

− , then max(0, v1, . . . , vm) > 0, so
h(u, v; ω) > 0 for su�ciently large ω.

Results of previous subsections can be easily reformulated in terms of RWS functions. We
present only a reformulation of Proposition 3.1 and Proposition 3.3 (see Proposition 4.2 and
Proposition 4.3, respectively).

Proposition 4.2. Let h : R1+m × Ω → R̄ be a RWS function such that the function
(u, v) 7→ h(u, v; ω) is lower semicontinuous for each ω ∈ Ω. Let Y ∈ Y and let η∗ be a number
such that

1) for all (u′, v′) ∈ Tη∗ there exists ω ∈ Ω such that h(u′, v′; ω) ≥ 0;

2) R1+m
− ∩ Tη∗(Y ) 6= ∅.

Let x∗ be a solution of the problem P (f, g). Then f(x∗) = η∗ and there exists ω′ ∈ Ω such that
h(0, g(x∗); ω′) = 0.

Proposition 4.3. Let h : R1+m×Ω → R̄ be a RWS function. Let x∗ ∈ X0, η∗ = f(x∗) and
there exists ω′ ∈ Ω such that

inf
x∈Y

h(f(x)− η∗, g(x); ω′) ≥ 0, (19)

where Y ∈ Y. Then x∗ is a solution of P (f, g). If the function (u, v) 7→ h(u, v; ω′) is lower
semicontinuous, then

h(0, g(x∗); ω′) = inf
x∈Y

h(f(x)− η∗, g(x); ω′) = 0.

5 CONVOLUTION FUNCTIONS

The results obtained in Section 3 demonstrate that the problem P (f, g) may be reduced to
minimization of the function x 7→ h(f(x) − η, g(x)) over a set Y ∈ Y (in particular, over the
entire space X). Here h is a separation function (or similar to a separation function as in
Proposition 3.6). The class of separation functions h(u, v) is rather broad. Many separation
functions may be constructed by the composition of some special functions, which are called
convolution functions, since they are used for the convolution of the objective function f and
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coordinate functions g1, . . . , gm of the constraint mapping g. As a rule, we shall consider a two-
step convolution. First, we shall convolute all constraints to a single constraint. Second, we
shall convolute the objective function and the obtained single constraint. In terms of separation
it means that a separation function h(u, v) has the form

h(u, v) = q1(u, q2(v)), (20)

where q1 : R2 → R and q2 : Rm → R̄ are convolution functions. A function h de�ned by (20) is
a separation function only if convolution functions q1 and q2 possess some properties. In this
section we shall formulate some of these properties for a functions de�ned on the space Rn,
provide a classi�cation of convolution functions and give some examples of such functions.

We de�ne continuity for functions mapping into the extended real line R̄ by the usual way:
a function q : Rn → R̄ is called continuous on Rn if lim

k→∞
q(zk) = q(z) for any z ∈ Rn and any

sequence zk → z.
De�nition 5.1. A continuous function q : Rn → R̄ is called a convolution function if q

strictly separates Rn
−− and Rn

++, that is, q(z1) < q(z2) for any z1 ∈ Rn
−− and z2 ∈ Rn

++.
Note that, due to continuity, any convolution function strictly separates the origin from one

of the orthants Rn
−− or Rn

++, that is, either q(0) > q(z) for any z ∈ Rn
−− or q(0) < q(z) for any

z ∈ Rn
++. In the case of increasing convolution function we shall use abbreviation IC function.

(A function q de�ned on Rn is called increasing if z1 ≤ z2 implies q(z1) ≤ q(z2). Note also
that each continuous strictly increasing function q : Rn → R is an IC function (q is strictly
increasing if z1 ¿ z2 implies q(z1) < q(z2)).

De�nition 5.2. A convolution function q(z) is called interior if there exists a constant
γ ∈ R+∞ such that

q(z1) < γ for all z1 ∈ Rn
−− and q(z2) = γ for all z2 ∈ Rn

+.

If
q(z1) < γ for all z1 ∈ Rn

−− and q(z2) = γ for all z2 ∈ En
+,

then the convolution function q(z) is called strictly interior.
De�nition 5.3. A convolution function q(z) is called exterior if there exists a constant

γ ∈ R−∞ such that

q(z1) = γ for all z1 ∈ Rn
− and q(z2) > γ for all z2 ∈ Rn

++.

If
q(z1) = γ for all z1 ∈ Rn

− and q(z2) > γ for all z2 ∈ En
++,

then the convolution function q(z) is called strictly exterior.
De�nition 5.4. A convolution function q(z) is called common if there exist a constant

γ ∈ R such that
q(z1) < γ < q(z2) for all z1 ∈ Rn

−− and z2 ∈ Rn
++.

If
q(z1) < γ < q(z2) for all z1 ∈ Rn

−− and z2 ∈ En
++,

then the convolution function is called strictly common.
If q(z) is strictly interior, strictly exterior or strictly common convolution function, then,

due to continuity, it has the same value γ on the boundary of the orthant Rn
−, where γ is the
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constant from the de�nitions of these functions. Note that unlike to an ordinary convolution
function the common convolution function necessarily strictly separates the origin from the
orthants Rn

−− and Rn
++ simultaneously. For strictly common convolution function we have

Rn
−− = {z : q(z) < γ}, Rn

− = {z : q(z) ≤ γ}.

De�nition 5.5. The convolution function q(z) is called proper if −∞ < γ < +∞, otherwise
it is called improper.

Below we restricted ourselves mainly by application of proper convolution functions. We
assume for simplicity that the constant γ for any proper convolution function is equal to zero.
The following implications follow directly from the de�nitions:
1) if q is a proper strictly interior convolution function, then

q(z) < 0 ⇐⇒ z ∈ Rn
−−;

2) if q is a proper strictly exterior convolution function, then

q(z) > 0 ⇐⇒ z /∈ Rn
−; (21)

3) if q is a proper strictly common convolution function, then (see (22)):

q(z) < 0 ⇐⇒ z ∈ Rn
−−, q(z) > 0 ⇐⇒ z /∈ Rn

−. (22)

Thus, a strictly interior convolution function strictly separates the open set Rn
−− and the

closed set En
+. A strictly exterior convolution function strictly separates the closed set Rn

− and
the open set En

++. A strictly common convolution function strictly separates Rn
−− from En

+ and
Rn
− from En

++ simultaneously.
Note that any �nite convolution function is a proper convolution function. We shall describe

some other properties of �nite convolution functions.
Proposition 5.1. Let q1(z) and q2(z) be �nite convolution functions, and let c > 0,

a ∈ Rn
++. Then the following functions are also �nite convolution functions:

q(z) = cq1(z),
q(z) = q1(z) + q2(z),
q(z) = min{q1(z), q2(z)},
q(z) = max{q1(z), q2(z)},
q(z) = q1(D(a)z),

(23)

where D(a) = diag (a) is a diagonal matrix with a vector a on the diagonal. Moreover, if
both functions q1(z) and q2(z) are simultaneously interior, exterior or common convolution
functions, then the resulting function q(z) is also a convolution function of the same type.

Proof. It is clear that any function q(z) from (23) is continuous. The inequality q(z1) <
q(z2) for z1 ∈ Rn

−− and z2 ∈ Rn
++ follows directly from corresponding inequalities for functions

q1(z) and q2(z) and from the fact that D(a)z1 ∈ Rn
−−, D(a)z2 ∈ Rn

++ for any z1 ∈ Rn
−−,

z2 ∈ Rn
++. The proof of the second conclusion is similar.

Proposition 3.3 demonstrates that su�cient optimality conditions can be obtained by ex-
ploiting of a separation function h de�ned on R1+m = R1 × Rm with the property:

h(u, v) < 0 for all (u, v) ∈ H− = R1
−− × Rm

− .

12



Proper convolution functions of various kinds will allow us to construct a function with such a
property.

A lot of various convolution functions can be proposed. For some applications it is impor-
tant to have functions, which do not destroy the convexity. Otherwise, in the case of convex
programming we lose opportunity to use the local minimization techniques. Note that IC func-
tions are more preferable from this point of view. In particular, if q(z) is a convex IC function,
then the convolution of convex functions by means of q(z) is a convex function as well.

Let S := {α ∈ Rn
+ :

n∑

i=1

αi = 1} be the unit simplex. For each α ∈ S set I(α) = {i : αi 6= 0}.
For p 6= 0 and α ∈ S we de�ne a function ‖z‖p,α : Rn → R. If p > 0, then

‖z‖p,α =


n

∑

i∈I(α)

αi|zi|p



1/p

. (24)

If p < 0, then ‖z‖p,α(z) = 0 if zi = 0 for at least one index i ∈ I(α), otherwise, ‖z‖p,α(z) is
de�ned by (24). It follows from the de�nition that ‖ · ‖p,α is positively homogeneous of degree
one function.

We de�ne also the function ‖ · ‖p,α for p = 0 by the following way

‖z‖0,α =
√

n
∏

i∈I(α)

|zi|αi

. (25)

Limit cases with p = +∞ or p = −∞ lead to the functions:

‖z‖+∞,α = max
i∈I(α)

|zi|, ‖z‖−∞,α = min
i∈I(α)

|zi|.

The function ‖z‖p,α is convex for p ≥ 1. Clearly, this function is a seminorm and it is a
norm if α À 0. In particular, if p 6= +∞, then ‖z‖p,α is a scaled H�older norm. If p < 1, then
‖z‖p,α is concave on any orthant of Rn and, strictly speaking, the notation ‖ · ‖, which means a
norm, cannot be used (norm is obligatory a convex function). Nevertheless we use this notation
understanding this violation. In what follows we shall omit the parameter a in notation of the
function ‖z‖p,α, if α = n−1e, where e is a vector of ones.

Let z = (z1, . . . , zn) ∈ Rn. Denote the positive part and the negative part of z by z+ and
z−, respectively. By de�nition,

z+ = (z1
+, . . . , zn

+), z− = (z1
−, . . . , zn

−),

where a+ = max (a, 0), a− = min (a, 0) for a ∈ R.
The following classes of IC functions are widely used in constrained optimization.
1) The class of exterior IC functions

q(z) = ‖z+‖p,α, −∞ ≤ p ≤ +∞. (26)

If p > 0 and α À 0, then the function (26) is a strictly exterior IC function.
2) The class of interior IC functions

q(z) = −‖z−‖p,α, −∞ ≤ p ≤ +∞. (27)

If p ≤ 0 and α À 0, then the function (27) is a strictly interior IC function.
3) The third class is a class of common IC function consisting of sums of the functions (26)

and (27):
q(z) = ‖z+‖p1,α − ‖z−‖p2,α, (28)
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where −∞ ≤ p1 ≤ +∞ and −∞ ≤ p2 ≤ +∞.
Note that if p1 = p2 = 1, then (28) becomes a linear function

q(z) =
n∑

i=1

aizi, (29)

with a vector a = (ai) = nα. If p = p1 ≥ 1 and p2 = −p1, then (28) has a form

q(z) = ‖z+‖p,α − ‖z−‖−p,α. (30)

This convex function is a strictly common IC function if α À 0.
Let I = {1, . . . , n}. If p = +∞ and α À 0, then (30) becomes the strictly common IC

function
q(z) = max

i∈I
zi. (31)

The common (but not strictly common) IC function

q(z) = min
i∈I

zi (32)

can be derived from (30) with p = −∞ and α À 0. Observe that all functions (26) � (32)
are proper IC functions. The following two functions are the simplest examples of unproper
strictly interior and strictly exterior IC functions, respectively:

q(z) =

{ ‖z−‖−p
−p, z ∈ Rn

−−,

+∞, z ∈ En
+,

q(z) =

{ −‖z+‖−p
p , z ∈ En

++,

−∞, z ∈ Rn
−,

where p > 0.
We now describe another set of IC functions, which is based on the notion of IPH functions.

Let T coincides with either the space Rn or the cone Rn
+. A function q : T → R is called IPH if

q is increasing and positively homogeneous of degree one (q(λx) = λq(x) for λ > 0). Examples
of IPH functions are given by (26) � (32). We present some other examples of IPH functions.
The following functions de�ned on the entire space Rn are IPH:

q(z) = max
i∈I

aizi with a = (ai) ∈ Rn
+\{0}. (33)

Note that q(z) > 0 for all z ∈ Rn
++ and q(z) < 0 for all z ∈ Rn

−−. If ai > 0 for all i ∈ I, then
q(z) > 0 for all z ∈ En

++.

q(z) = min
i∈I

aizi with a = (ai) ∈ Rn
+\{0}. (34)

We have q(z) > 0 for all z ∈ Rn
++ and q(z) < 0 for all z ∈ Rn\Rn

+.

q(z) =

(∑

i∈I

ai(zi)p

)1/p

with ai ≥ 0 and p = . . . ,
1

5
,
1

3
, 1, 3, 5, . . . . (35)

If ai > 0 for all i ∈ I, then q(z) < 0 for all z ∈ Rn
−\{0} and q(z) > 0 for all z ∈ Rn

+\{0}.
Note that (33) and (34) are generalizations of (31) and (32), respectively. The following

functions are IPH as well:

q1(z) = max
`∈V

〈`, z〉, q2(z) = min
`∈V

〈`, z〉, (36)
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where 〈`, z〉 is the inner product of vectors ` and z. Here V ⊂ Rn
+ is a compact set. Clearly,

(33) and (34) are special cases of q1 and q2, respectively.
If q is an IPH function de�ned on Rn, then its restriction to Rn

+ is again IPH, so functions
de�ned on Rn

+ by (33) and (34) are IPH. The following functions de�ned on Rn
+ are IPH as

well:
q(z) =

(∑

i∈I

ai(zi)p

)1/p

, (z ∈ Rn
+), (37)

where a = (ai) ∈ Rn
+\{0}, p > 0. If a = nα, where α = (α1, . . . , αn) ∈ S, then (37) coincides

with the restriction to Rn
+ of functions ‖ · ‖p,α de�ned by (24). If p = . . . , 1/3, 1, 3, . . ., these

functions coincide with the restriction to Rn
+ of functions de�ned by (35).

Let us give one more example of an IPH function de�ned on Rn
+. Let α ∈ S and αi > 0 for

all i ∈ I. Let c > 0. Then the function

q(z) = czα1

1 . . . zαn

n , (z ∈ Rn
+), (38)

is IPH. If c =
√

n, then (38) coincides with restriction of (25) on Rn
+. (In economics the function

(38) is called Cobb�Douglas function.)
Let q be an IPH function de�ned on either Rn or Rn

+. Then q(0) = q(2 · 0) = 2q(0), hence
either q(0) = 0 or q(0) = ±∞, so, if q is a proper function, then q(0) = 0. Assume now that q
is a proper function de�ned on Rn. Since q is increasing, it follows that q(z) ≤ 0 for z ∈ Rn

−
and q(z) ≥ 0 for z ∈ Rn

+.
Proposition 5.2. Let q : Rn → R̄ be a continuous IPH function such that q(0) = 0. Assume

that there exist z1 ∈ Rn
−− and z2 ∈ Rn

++ such that −∞ < q(z1) < 0 and 0 < q(z2) < +∞. Then
q is a �nite common IC function.

Proof. Since z2 À 0, it follows that for each z ∈ Rn there exists λ > 0 such that z ≤ λz2.
We have q(z) ≤ q(λz2) = λq(z2) < +∞. If z À 0, then there exists µ > 0 such that z À µz2,
hence q(z) > µq(z2) > 0. The similar argument shows that q(z) > −∞ for all z ∈ Rn and
q(z) < 0 for z ∈ Rn

−−.
Proposition 5.3. Let q1 : Rn

+ → R̄ be a continuous IPH function such that q1(0) = 0 and
q1(z) > 0 for all z ∈ Rn

+\{0}. Assume that there exists z1 ∈ Rn
++ such that q1(z1) < < +∞.

Then the function
q(z) = q1(z+) (z ∈ Rn) (39)

is a �nite strictly exterior IC function.
Proof. For each z ∈ Rn there exists λ > 0 such that z+ ≤ λz1, therefore, q1(z) ≤ λq1(z1) <

+∞. If z ∈ Rn
−, then z+ = 0, so q(z) = 0. If z /∈ Rn

−, then z+ ∈ Rn
+ and z+ 6= 0, so q(z) > 0.

Since z1
+ ≤ z2

+ for all z1 ≤ z2, the function (39) is increasing.
Proposition 5.4. Let q1 : Rn

+ → R̄ be a continuous IPH function such that q1(z) = 0 for
all boundary points z of Rn

+. Assume that there exists z1 À 0 such that q1(z1) > 0. Then the
function

q(z) = −q1(−z−) (z ∈ Rn) (40)
is a �nite strictly interior IC function.

Proof. The same argument as under proof of Proposition 5.2 shows that q1 is �nite and
q1(z) > 0 for all z ∈ Rn

++. If z ∈ Rn
−−, then −z− ∈ Rn

++, so q(z) = −q1(−z−) < 0. If z /∈ Rn
−−,

then −z− /∈ Rn
++, so −z− is a boundary point of Rn

+. Hence q(z) = 0. The function (40) is
increasing because of the function −q1(z) is decreasing and z1

− ≤ z2
− for all z1 ≤ z2.
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Remark 5.1. Conditions of Proposition 5.4 are valid for the Cobb�Douglas function de�ned
by (38).

6 AUXILIARY FUNCTIONS

Consider the problem P (f, g) de�ned by (4). We shall use the optimality conditions obtained
in Section 3 for examination of this problem. For this purpose we shall construct separation
functions of the form (20) by a two step convolution procedure. First we shall convolute
constraints g = (g1, . . . , gm) by means of a convolution function ψ : Rm → R. Second, we shall
convolute the objective function f and the new constraint ψ(g(·)) by means of a convolution
function ϕ : R2 → R̄. Thus, we shall consider functions h : : R1+m → R̄ of the form

h(u, v) = ϕ(u, ψ(v)). (41)

As a rule, we assume that ϕ and ψ are proper IC functions and, moreover, the function ϕ(·, 0)
possesses the following property:

u < 0 =⇒ ϕ(u, 0) < 0 = ϕ(0, 0). (42)

Note that (42) can be expressed in the following form: the function ϕ(·, 0) is either strictly
interior or strictly common convolution function de�ned on R.

We shall often assume that ψ is either proper strictly exterior or proper strictly common
convolution function. It easy to check that in both cases

g(x) ≤ 0 ⇐⇒ ψ(g(x)) ≤ 0. (43)

Indeed, if ψ is strictly exterior, then (43) follows directly from (21), if ψ is strictly common,
then (43) directly follows from (22). Hence, the feasible set X0 can be described by a single
constraint ψ(g), that is,

X0 = {x ∈ X : ψ(g(x)) ≤ 0}. (44)
The function h, de�ned on the image space R1+m by (41), allows us to de�ne the following

function M : X × R→ R̄:
M(x, η) = ϕ(f(x)− η, ψ(g(x))). (45)

A variable η can be considered as an estimation (lower or upper) of the optimal value ρ of the
problem P (f, g).

We are interested in auxiliary functions for problem P (f, g), that is, functions M such that
their unconstrained minimization on the set Y ∈ Y is equivalent (in a certain sense) to solving
problem P (f, g). Here we shall study only auxiliary functions of the form (45).

We shall show in next Proposition that, if ψ is a proper convolution function and ϕ is
a proper IC function, then (41) is a separation function, so it is possible to reformulate the
su�cient conditions obtained in Section 3 in terms of convolution functions ϕ and ψ and
corresponding auxiliary function M . Recall that Y = {Y ⊆ X : X0 ⊂ Y }.

Proposition 6.1. Let Y ∈ Y. Let ψ be a proper convolution function and ϕ be a proper IC
function such that (42) holds. Assume that x∗ ∈ X0 and η∗ ∈ R possess the following properties:

f(x∗) = η∗, (46)
ψ(g(x∗)) = 0, (47)

M(x∗, η∗) = min
x∈Y

M(x, η∗). (48)
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Then x∗ is a solution of the problem P (f, g).
Proof. Consider the function h(u, v) = ϕ(u, ψ(v)). We shall check that all conditions of

Proposition 3.3 hold for this function. It follows from (46) � (48) that

h(f(x∗)− η∗, g(x∗)) = min
x∈Y

h(f(x)− η∗, g(x)) = 0. (49)

Since ψ(v) is a proper convolution function, it follows that ψ(v) ≤ 0 for all v ∈ Rm
− . Moreover,

since ϕ is a proper IC function, we have ϕ(u, ψ(v)) ≤ ϕ(u, 0) for v ∈ Rm
− and any u ∈ R.

Applying (42), we conclude that

h(u, v) = ϕ(u, ψ(v)) ≤ ϕ(u, 0) < ϕ(0, 0) = 0

for all (u, v) ∈ H−.
Remark 6.1. Let ψ be a strictly exterior or strictly common convolution function. Then

(see (44)) ψ(g(x)) = 0 implies x ∈ X0, so, due to (47), we can omit the assumption x∗ ∈ X0.
Proposition 6.2. Let regularity condition hold. Let also ϕ be a proper strictly interior

convolution function and ψ be a proper interior convolution function. If there exist x∗ ∈ X0

and η∗ ∈ R such that f(x∗) = η∗ and

M(x∗, η∗) = min
x∈X0

M(x, η∗), (50)

then x∗ ∈ X∗.
Proof. Since ψ(v) is a proper interior convolution function, we have ψ(v) < 0 for all

v ∈ Rm
−−. Similarly, since ϕ(u, ψ(v)) is a proper strictly interior convolution function, it follows

that ϕ(u, ψ(v)) < 0 for any (u, v) ∈ R2
−−. These relations imply the inequality h(u, v) < 0 for

all (u, v) ∈ Rm+1
−− , where h is the function de�ned by (41). Moreover, it follows from (50) that

h(f(x∗)− η∗, g(x∗)) = min
x∈X0

h(f(x)− η∗, g(x)).

Since f(x∗) − η∗ = 0 and ψ(g(x∗)) ≤ 0, we have for the proper strictly interior convolution
function ϕ that

h(f(x∗)− η∗, g(x∗)) = ϕ(f(x∗)− η∗, ψ(g(x∗))) = 0.

Therefore, h(u, v) ≥ 0 for all (u, v) ∈ Tη∗(X0). Applying Proposition 3.5, we conclude that
x∗ ∈ X∗.

Note that (46) and (47) imply that

M(x∗, η∗) = 0. (51)

However, in general two equalities (46) and (47) cannot be replaced by one equality (51).
Indeed, if ψ is a strictly exterior or strictly common convolution function, then ψ(g(x∗)) =
0 =⇒ g(x∗) ≤ 0, hence x∗ is a feasible point. We cannot provide the feasibility of x∗ using only
(51). Nevertheless, we can replace (46) and (47) by (51) under some additional assumptions.

Proposition 6.3. Let Y ∈ Y and let ϕ and ψ be proper strictly exterior convolution
functions. If there exist x∗ ∈ Y and η∗ ≤ ρ such that (48) and (51) hold, then x∗ is a solution
of P (f, g).

Proof. Since ϕ and ψ are proper strictly exterior convolution functions, it follows that
h(u, v) > 0 for all (u, v) ∈ Em+1

++ . (Here h is de�ned by (41)). We also have from (48) and (51)
that (15) holds. Thus, by Proposition 3.6, x∗ ∈ X∗.
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Proposition 6.4. Let regularity condition hold and Y ∈ Y. Let also ϕ and ψ be proper
strictly common convolution functions. If there exist x∗ ∈ Y and η∗ ∈ R such that (48) and
(51) hold, then x∗ is a solution of P (f, g).

Proof. Let conditions in the proposition hold. Then the function (41) possesses the follo-
wing properties:

h(u, v) < 0 for all (u, v) ∈ Rm+1
−− and

h(u′, v′) > 0 for all (u′, v′) /∈ Rm+1
− .

Thus, the result follows from Proposition 3.7.
Su�cient conditions given by Propositions 6.1 � 6.4 are based on the auxiliary unconstrained

optimization problem
M(x, η) −→ min subject to x ∈ Y , (52)

which we denote by PY (f, g; η). We have to select functions ϕ and ψ such that a solution of
PY (f, g; η) exists and, moreover, this solution is feasible for P (f, g).

The simplest example of a convolution function ϕ is the linear function

ϕ(u,w) = u + w. (53)

In such a case M(x, η) = f(x) − η + ψ(g(x)). Clearly, the variable η does not a�ect on the
solution set of the minimization problem PY (f, g; η), so we can exclude it from M(x, η). Thus,
having the convolution function (53), we can consider the following auxiliary function:

M(x) = f(x) + ψ(g(x)), (x ∈ X). (54)

Remark 6.2. A well-known example of an auxiliary function (54) is Augmented Lagrangian
(see [17] and references therein). The following assertion holds:

Proposition 6.5. Let Y ∈ Y and let M be an auxiliary function de�ned by (54). Let ψ be
a proper convolution function. If there exists x∗ ∈ X0 ∩ Y , such that

1) x∗ is a minimizer of the function (54) on the set Y ;

2) ψ(g(x∗)) = 0.

Then x∗ ∈ X∗.
Proof. The proof follows directly from Proposition 6.1.
The solution set of (52) with the objective function (54) coincides with the solution set of

P (f, g) only under some rather restrictive assumptions. Thus, we need to consider more general
functions h(u, v), which are determined by nonlinear IC function ϕ.

7 AUXILIARY FUNCTIONS DEPENDING ON A PARAMETER

Consider the separation function h depending on a parameter ω ∈ Ω, where Ω is an arbitrary
set. Let Y ∈ Y be a set such that the objective function f of the problem P (f, g) is bounded
from below on Y and let η < γ := inf

x∈Y
f(x). Then f(x)− η > 0 for all x ∈ Y . Without loss of

generality we assume in the current section that f is positive on Y and inf
x∈Y

f(x) > 0, otherwise,
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we can consider the function f−η. Introduce an auxiliary function depending on the parameter
ω:

M(x, ω) = h(f(x), g(x); ω),

and consider the following problem PY (f, g; ω) of unconstrained minimization

M(x, ω) −→ min subject to x ∈ Y . (55)

We assume in the sequel that this problem has a solution. It is interesting to �nd conditions
such that

sup
ω∈Ω

min
x ∈ Y

M(x, ω) = min
x∈X0

f(x), (56)

where X0 = {x ∈ X : g(x) ≤ 0} is the set of feasible elements of the problem P (f, g). The
equality (56) is usually called the zero duality gap property. If the zero duality gap property
holds, then the problem P (f, g) can be reduced to a sequence of unconstrained optimization
problems.

In this section we consider only separation functions h(u, v; ω) with the following property:

(u > 0, v ≤ 0) =⇒ h(u, v; ω) = u for all ω ∈ Ω. (57)

Lemma 7.1. M(x, ω) = h(f(x), g(x); ω) = f(x) for all x ∈ X0 and ω ∈ Ω.
Proof. The result follows directly from (57), since f(x) > 0 and g(x) ≤ 0 for all x ∈ X0.

Let (x∗, ω∗) be a saddle point of the function M(x, ω). Assume that (57) holds and

(u > 0, h(u, v; ω) ≤ h(u, v; ω∗) =⇒ v ≤ 0.

Then x∗ is a solution of P (f, g). Indeed, we have

h(f(x∗), g(x∗); ω) ≤ h(f(x∗), g(x∗); ω∗) (ω ∈ Ω),

hence g(x∗) ≤ 0, that is, x∗ ∈ X0. On the other hand, keeping in mind Lemma 7.1, we have
for x ∈ X0

f(x) = h(f(x), g(x); ω∗) ≥ h(f(x∗), g(x∗); ω∗) = f(x∗).

Let Ω = Rm
+ and h : R1+m × Rm

+ → R be a linear function of the form

h(u, v; ω) = u +
m∑

i=1

ωivi.

Then the auxiliary function M(x, ω) coincides with the Lagrange function of the problem
P (f, g). It is well-known that the zero duality gap property holds in such a case only under
some additional assumptions. Thus, if we want to provide the existence of the zero duality
gap property for a broad class of problems, we need to suggest some conditions, which exclude
linearity. We now present one of a possible set of such conditions. We shall use the approach
developed by Andramonov [1].

Consider the problem P (f, g). Let α > 0 be a su�ciently small number. De�ne the following
set-valued mapping G : [0, α] → X:

G(ε) = {x ∈ Y : gj(x) ≤ ε, j = 1, . . . ,m}.

Clearly, G(0) = X0. First we need the following assumption, related to the problem P (f, g).
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Assumption 7.1.

1) The mapping G is upper semicontinuous at the origin, that is, for each µ ∈ [0, α] there
exists δ > 0 such that G(λ) ⊂ G(0) + µB for all λ ∈ (0, δ). Here B = {x : ‖x‖ ≤ 1}.

2) The function f is uniformly continuous on a set Y ∈ Y and

γ := inf
x∈Y

f(x) > 0. (58)

It is well-known that a set-valued mapping F is upper semicontinuous if its graph gr F is a
compact set (see, for example, [2]). Note that

gr G := {(x, ε) ∈ Y × [0, α] : gj(x) ≤ ε, j = 1, . . . , m, 0 ≤ ε ≤ α} ⊂
⊂ {x ∈ Y : gj(x) ≤ α, j = 1, . . . , m} × [0, α].

Thus, the mapping G is upper semicontinuous if the set {x ∈ Y : gj(x) ≤ α, j = 1, . . . ,m} is
compact.

Now we present a set of assumptions related to a set of parameters Ω and to a separation
function h(u, v; ω).

Assumption 7.2. A set of parameters Ω is a subset of the space Rk and Ω ⊃ Re, where
Re = {(λ, . . . , λ) : λ > 0} is the open ray starting from the origin and passing through e =
(1, . . . , 1).

Assumption 7.3. The separation function h : R1+m × Ω enjoys the following properties:

1) h(u, v; ω) = h(u, v+; ω) for all u > 0, v ∈ Rm and ω ∈ Ω;

2) h(u, 0; ω) = u for all u > 0 and ω ∈ Ω;

3) h(u, v; ω) → +∞ as min
i

ωi → +∞ for all u ≥ 0 and v ∈ Rm
+\{0};

4) the function (u, v) 7→ h(u, v; ω) is increasing on the set {(u, v) : u > 0, v ≥ 0} for all
ω ∈ Ω.

Note that (57) follows from 1) and 2). We now present some examples of the function h
with properties l) � 4):

1) Ω = Rm
++, h(u, v; ω) = u +

m∑

i=1

ωivi
+;

2) Ω = R+, h(u, v; ω) = u + ω max(0, v1, . . . , vm) ≡ u + ω max
j

vj
+;

3) Ω = Rm
+ , h(u, v; ω) =


|u|p +

m∑

j=1

(ωj|vj
+|)p,




1/p

, p > 0.

Remark 7.1. Consider a stronger version of Assumption 7.3, where items 1)�4) hold for all
u ∈ R, not only for u > 0. Then h is a RWS function (see Section 4). Indeed, let (u, v) ∈ H−.
Then u < 0, v < 0, hence h(u, v; ω) = h(u, 0; ω) = u < 0 for all ω ∈ Ω. Consider now a point
(u, v) /∈ H−. Then either u > 0, v ≤ 0 or v /∈ Rm

− . If the former holds, then h(u, v; ω) = u ≥ 0
for all ω ∈ Ω. If the latter is valid, then, due to 3), there exists ω′ ∈ Ω such that h(u, v; ω′) > 0.
Note that the functions h from Examples 1) and 2) above possess properties, mentioned here.
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Let ω ∈ Ω. Consider the problem PY (f, g; ω), de�ned by (55). Let x∗(ω) be a solution of
this problem (we assume that such a solution exists).

Lemma 7.2. For any δ > 0 there exists ` = `(δ) > 0 such that x∗(ω) ∈ G(δ) if min
i

ωi ≥ `.

Proof. Assume, in the contrary, that there exists δ′ > 0 such that for any positive integer
` > 0 it is possible to �nd ω` ∈ Ω with the following properties:

1) min
i

ωi
` ≥ `;

2) x∗(ω`) /∈ G(δ′), that is, there exists j such that gj(x∗(ω`)) > δ′.

Assume, without loss of generality, that the index j does not depend on `. Consider the
vector ej = (ei) where ei = 0 for i 6= j and ej = δ′. Let u` = f(x∗(ω`)) and v` = g(x∗(ω`)). Then
(v`)+ ≥ ej and u` ≥ γ, where γ is de�ned by (58). Due to properties 2) and 4) of separation
function h (see Assumption 7.3), we have

h(u`, v`; ω`) = h(u`, (v`)+; ω`) ≥ h(γ, ej, ω`).

It follows from the property 3) of the function h that

h(u`, v`; ω`) → +∞ as ` → +∞. (59)

Consider now a solution x∗ of P (f, g). Let u∗ = f(x∗), v∗ = g(x∗) ∈ Rm
− . Since x∗(ω`) is a

solution of PY (f, g; ω`) and x∗ ∈ X0 ⊂ Y , we have, by applying Lemma 7.1,

h(u`, v`; ω`) = h(f(x∗(ω`)), g(x∗(ω`)); ω`) = min
x∈Y

h(f(x), g(x); ω`) ≤ h(u∗, v∗; ω`) = u∗,

which contradicts (59).
Theorem 7.1. Assume that Assumptions 7.1�7.3 hold. Then

sup
ω∈Ω

min
x ∈ Y

h(f(x), g(x); ω) = ρ,

where ρ is the value of P (f, g).
Proof. Let ε > 0. Since the function f is uniformly continuous on Y , there exists µ > 0 such

that ‖x−x′‖ ≤ µ implies |f(x)− f(x′)| < ε for all x, x′ ∈ Y . Since G is upper semicontinuous,
there exists δ > 0 such that G(λ) ⊂ X0 + µB if λ ≤ δ. It follows from Assumption 7.2 and
Lemma 7.2 that there exists ω′ ∈ Ω such that x∗(ω′) ∈ G(δ), hence x∗(ω′) ∈ X0 + µB. Let
x(ω′) ∈ X0 be an element such that ‖x∗(ω′)− x(ω′)‖ ≤ µ. Then

ρ ≤ f(x(ω′)) ≤ f(x∗(ω′)) + µ = min
x∈Y

h(f(x), g(x); ω′) + µ.

Since µ is an arbitrary positive number, we have

ρ ≤ sup
ω∈Ω

min
x ∈ Y

h(f(x), g(x); ω).

We now check that the opposite inequality is valid. Let x∗ be a solution of P (f, g). Since
x∗ ∈ Y , we have, by applying Lemma 7.1, for each ω ∈ Ω

ρ = f(x∗) = h(f(x∗), g(x∗); ω) ≥ min
x∈Y

h(f(x), g(x); ω).
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Thus,
ρ ≥ sup

ω∈Ω
min
x ∈ Y

h(f(x), g(x); ω).

We now present a di�erent set of conditions, which guarantees the zero duality gap property.
Let q : R1+m → R be a continuous increasing function with the following properties:

1) there exist positive numbers a1, . . . , am such that

q(u, y1, . . . , ym) ≥ max(u, a1y
m, . . . , amym), u ≥ 0, (y1, . . . , ym) ∈ Rm;

2) q(u, 0, . . . , 0) = u for all u ≥ 0.

Let Ω = Rm
+ . De�ne h : R1+m × Ω by

h(u, v; ω) = q(u, ω1v1, . . . , ωmvm), (u, v) ∈ R1+m, ω ∈ Ω.

The following result holds [19].
Theorem 7.2. Let X be a �nite-dimensional space. Consider the problem P (f, g) with

continuous f and g. Assume that the set X0 of feasible elements is compact. Let Y ∈ Y and
(if Y is unbounded),

lim
‖x‖→+∞, x∈Y

f(x) = +∞.

Then the zero duality gap property holds:

sup
ω∈Ω

min
x ∈ Y

h(f(x), g(x); ω) = min
x∈X0

f(x).

Consider now separation functions h of the form (41): h(u, v) = ϕ(u, ψ(v)). Assume that
h depends on a parameter ω. First we consider the case, where only the outer convolution
function ϕ depends on ω and give necessary and su�cient conditions for optimality.

Proposition 7.1. Let Ω be a set of parameters such that Assumption 7.2 holds. Consider
a mapping ϕ : R2 × Ω → R and a mapping ψ : Rm → R such that:

ϕ(u, 0; ω) = u for all u > 0 and ω ∈ Ω; (60)

ϕ(u,w; ω) → +∞ as min
i

ωi → +∞ for all u > 0;

ψ(v) = ψ(v+) for all v ∈ Rm.
(61)

Assume also that ϕ(u, 0) is increasing on (0, +∞) and ψ is increasing on Rm
+ . Let

h(u, v; ω) = ϕ(u, ψ(v); ω).

Then Assumption 7.3 holds for the function h.
Proof. The proof is immediate.
Consider now a separation function

h(u, v; ω) = ϕ(u, ψ(v; ω)), (u, v) ∈ R1+m, ω ∈ Ω, (62)

where Ω is a set of parameters such that Assumption 7.2 is valid.
Proposition 7.2. Let ϕ : R2 → R and ψ : Rm×Ω be mappings with the following properties:
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1) ϕ(u, 0) = u for u > 0, ϕ is an increasing function on {(u,w) : u > 0, w ≥ 0};
2) ψ(v, ω) = ψ(v+ω) for all v ∈ Rm and ω ∈ Ω; ψ(·, ω) is an increasing function on Rm

+ for
all ω ∈ Ω.

Then Assumption 7.3 holds for the function h de�ned by (62).
Proof. The proof is immediate.
It follows from Proposition 7.1 and Proposition 7.2 that the zero duality gap property holds

for Problem P (f, g) such that Assumption 7.2 holds and a separation function h possesses
properties described in one of these propositions.

8 AUXILIARY FUNCTIONSWITH SPECIAL OUTER CONVOLUTION FUNC-
TIONS

In this section we present a survey of results obtained in [20]. We consider an auxiliary function
M(x; ω) = ϕ(f(x), ψ(g(x)); ω) which is de�ned by functions ϕ and ψ with some special pro-
perties. Assume that Ω = R+ and ϕ(u,w; ω) = q(u, ωw+), where q is an IPH function de�ned
on R2

+ with the following properties:

q(1, 0) = 0, lim
w→+∞ q(1, w) = +∞. (63)

Clearly, the �rst equality in (63) holds if and only if (61) is valid for the function ϕ; the second
equality in (63) holds if and only if (61) is valid for ϕ. Assume that ψ is either a proper
strictly exterior or proper strictly common convolution function. Then (see (43) and (44))
X0 = {x ∈ X : ψ(g(x)) ≤ 0}. Let

h(u, v; ω) := ϕ(u, v; ω) = q(u+, ωψ+(v)), (u, v; ω) ∈ R1+m × R+. (64)

Let Y ∈ Y . We assume again that

inf
x∈Y

f(x) > 0,

however, we do not require now some properties like uniform continuity of f on Y or upper
semicontinuity of the mapping G. Instead we assume that the following assumption is valid,
which shows that the single constraint ψ(g(x)) ≤ 0 is essential.

Assumption 8.1. There exists a sequence xk ∈ Y such that ψ(g(xk)) > 0, ψ(g(xk)) → 0
and f(xk) → ρ := min

x∈X0

f(x).

We also consider the perturbation function β of the problem P (f, ψ(g)). By de�nition

β(f, ψ(g); w) = inf{f(x) : x ∈ Y , ψ(g(x)) ≤ w}.

The following result holds (see [20] and also [18]).
Theorem 8.1. Let Assumption 8.1 holds and let h be a separation function de�ned by (64),

where q is IPH function with properties (63). Then the zero duality gap property holds if and
only if the perturbation function β is lower semicontinuous at the origin.

The following result demonstrates that properties (63) are essential for the validity of the
zero duality gap property.
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Theorem 8.2. Let m = 1 and ψ(g) = g. Let q be a continuous IPH function de�ned on R2
+

and the zero duality gap property holds (with respect to h de�ned by (64)) for all problems P (f, g)
such that Assumption 8.1 is valid and the perturbation function β is lower semicontinuous. Then
(63) holds.

We now discuss the existence of ω ∈ Ω = R+ such that the problem

min
x∈Y

h(f(x), g(x); ω) → max subject to ω ∈ Ω (65)

has a solution. A solution of this problem is called the exact penalty parameter. The following
results hold (see [20] and also [18]):

Theorem 8.3. Let P (f, g) be a problem such that Assumption 8.1 holds and the perturbation
function β(f, ψ(g); ·) is lower semicontinuous. Then there exists a continuous IPH function q
with properties (63) such that the problem (65) has a solution (here h de�ned by (64)).

Theorem 8.4. Let m = 1 and ψ(g) = g. Let Y be a non-discrete set in the following
sense: there exists a function de�ned on Y and mapping onto R. Then for each continuous IPH
function q with properties (63) there exists a problem P (f, g) such that Assumption 8.1 holds,
the perturbation function β(f, g; ·) is lower semicontinuous and the supremum sup

ω∈Ω
h(u, v; ω)

does not attain.
Remark 8.1. It follows from Theorem 8.1 that the validity of zero duality gap property

does not depend on the choice of a continuous IPH function with properties (63). At the same
time, Theorem 8.3 demonstrates that the existence of ω′ ∈ Ω such that

min
x∈Y

h(f(x), g(x); ω′) = min
x∈X0

f(x) (66)

does depend on this choice. Theorem 8.4 shows that we can not �nd a continuous IPH func-
tion such that (66) holds for all problems P (f, g) with the lower semicontinuous at the origin
perturbation function.
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