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The method of nonuniform coverings as applied to the global optimization of functions
of several variables was proposed in 1971 in [1] and was further developed in numerous
works, e.g., in [2]–[5]. Various versions of the method were implemented as software codes
and were used for computations on multiprocessor systems [4, 5].

This paper gives a more general treatment of the method than in [1, 2]. The method
is applied to the simplest nonlinear programming problem of finding a global isolated
minimum. The computations were performed with and without using the integer-valued-
ness condition. The introduction of this condition led to a considerable reduction in the
computation time.

Given a continuous function f : Rn → R, the problem is to find its global minimum
on the feasible set X ⊆ Rn:

f∗ = glob min
x∈X

f(x) = f(x∗), (1)

where x∗ is any global minimizer point yielding the global minimum f∗. For this problem,
the solution set X∗ and the ϵ-optimal solution set Xϵ are defined as

X∗ = {x ∈ X : f(x) = f∗},
Xϵ = {x ∈ X : f(x) ≤ f∗ + ϵ}, ϵ > 0.

(2)

Assume that X∗ is not empty. The goal is to find at least one point of Xϵ.
Given a set Z ⊆ Rn, a function f(x) : Rn → R, and a constant λ ∈ R, we define

the Lebesgue set S(Z, f(x), λ) = {x ∈ Z : f(x) ≥ λ} and the open Lebesgue set
S ′(Z, f(x), λ) = {x ∈ Z : f(x) > λ}.

Consider the collection of sets {Xi}, Xi ⊆ Rn, i = 1, 2, . . . , k. On Xi, we define a
minorant µi(x) such that f(x) ≥ µi(x) for all x ∈ Xi. Given a feasible point xr ∈ X and
a collection of sets {Si} satisfying the conditions

Si ⊆ S(Xi, µi(x), f(xr)− ϵ), i = 1, 2, . . . , k, (3)

we say that {Si} covers the set X if

X ⊆
k∪

i=1

Si. (4)
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Theorem 1. A sufficient condition for a feasible point xr to be an ϵ-optimal solution
of problem (1) that satisfies the estimate

f(xr) ≥ f∗ ≥ f(xr)− ϵ (5)

on the set X is that there exists a collection of sets {Xi} and a collection of minorants
{µi(x)} for which the covering condition (4) holds.

Theorem 1 is a theoretical basis for implementing various computational schemes for
the nonuniform covering method. The cardinality and structure of the set X can be
arbitrary. To use Theorem 1 in global minimization, we need a method for finding a
feasible point xr and verifying condition (4). Consider the case when the feasible set in
problem (1) is given by functional constraints:

X = {x ∈ Rn : g(x) ≤ 0m}, (6)

where g(x) : Rn → Rm is a continuous vector function.
Assume that the feasible set X is bounded and X ⊆ P , where P is an n-dimensional

parallelepiped.
Given δ ∈ R, the δ-feasible set is defined as

Xδ = {x ∈ Rn : gj(x) ≤ δ, j = 1, 2, . . . ,m}. (7)

The set Xδ can be equivalently defined using the function

ϕ(x) = max
(
g1(x), . . . , gm(x)

)
: Xδ = {x ∈ P : ϕ(x) ≤ δ}.

Since g(x) is a continuous function, ϕ(x) is continuous as well.
Define δ = inf{δ : Xδ ̸= ∅}, δ̄ = sup{δ : Xδ ⊆ P}.
For δ < δ < δ̄, we set

f δ
∗ = min

x∈Xδ
f(x).

The function f δ
∗ is called the sensitivity function. It has the following well-known proper-

ties [6, 7]:
1. f 0

∗ = f∗.
2. The set Xδ does not decrease and the sensitivity function monotonically does not

increase as δ grows:

Xδ1 ⊆ Xδ2 , f δ1
∗ ≥ f δ2

∗ for any δ1, δ2, δ < δ1 ≤ δ2 < δ̄. (8)

3. For any δ0 such that δ < δ < δ̄, the sensitivity function is right continuous:

lim
δ→δ0+0

f δ
∗ = f δ0

∗ . (9)

For ϵ ∈ R+ and δ1, δ2, δ < δ1 ≤ δ2 < δ̄, define the set

Xδ1,δ2
ϵ =

{
x ∈ Xδ2 : f(x) ≤ f δ1

∗ + ϵ
}
.

In the special case of δ1 = 0 and δ2 = δ, it is called the set of ϵ, δ-optimal solutions and
is denoted by Xδ

ϵ :
Xδ

ϵ = {x ∈ Xδ : f(x) ≤ f∗ + ϵ}.
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Consider the collection of sets P1, P2, . . . , Pk, Pi ⊆ P . Define minorants µi(x) such
that f(x)(x) ≥ µi(x) for all x ∈ Pi and minorants νi(x) such that ϕ(x) ≥ νi(x) for all
x ∈ Pi. Let δ < δ1 ≤ δ2 < δ̄, xr ∈ Xδ2 , and the sets Si satisfy the relation

Si ⊆ S(Pi, µi(x), f(xr)− ϵ) ∪ S ′(Pi, νi(x), δ1). (10)

In this case, the covering condition has the form

P =
k∪

i=1

Si. (11)

Theorem 2. Let δ < δ1 ≤ δ2 < δ̄. Let a point xr ∈ Xδ2 and a collection of sets {Pi} be
given such that the covering condition (11) holds. Then xr ∈ Xδ1,δ2

ϵ we have the estimate

f δ1
∗ + ϵ ≥ f(xr) ≥ f δ2

∗ . (12)

Consider the following two special cases of Theorem 2, which are the most important
in practice. In the first case, δ1 < 0 and δ2 = 0, the point xr is an approximate
feasible solution of the problem that satisfies the inequality f δ1

∗ + ϵ ≥ f(xr) ≥ f∗. Since
the sensitivity function is not left continuous, the difference between the approximate
and exact solutions can be arbitrarily large. Moreover, this approach is inapplicable to
problems with δ = 0.

In the second case, δ1 = 0 and δ2 > 0, the point xr is an approximate but possibly
infeasible solution that satisfies the inequality f∗ + ϵ ≥ f(xr) ≥ f δ2

∗ . According to
Proposition (9) and Theorem 2, as ϵ and δ2 decrease, the value of f(xr) tends to f∗.

Consider a possible scheme for the implementation of the nonuniform covering method,
namely, the bisection algorithm proposed in [2, 3]. The consideration is restricted to the
special case of δ1 = 0 and δ2 = δ > 0. The other important case (δ1 < 0, δ2 = 0) is
considered in an analogous fashion. As before, assume that we are given an n-dimensional
parallelepiped P such that its faces are parallel to the coordinate planes and it contains
the set Xδ. In the bisection method, the sets Pi are also parallelepipeds obtained by
partitioning the original one.

Let {xi} be a set of points that belong to P . The value of f(xi) is calculated at every
point xi. The record point xr in the set and the record point x′

r in X are determined using
the following result rule.

REC-UPDATE Rule. If xi ∈ Xδ and f(xi) < f(xr) or xr is not defined, then
execute xr := xi. If xi ∈ X and f(xi) < f(x′

r) or x′
r is not defined, then execute x′

r := xi.

In addition to the record point xr, we also determine the record value

fr =

{
f(xr), if xr is defined,
∞ otherwise.

Let f(x) and ϕ(x) satisfy the Lipschitz condition with constants ℓ1 and ℓ2, respectively.
Let xi be the center of the parallelepiped Pi. The support minorants µi(x) and νi(x) for
f(x) and ϕ(x) are defined as

µi(x) = f(xi)− ℓ1∥x− xi∥, νi(x) = ϕ(xi)− ℓ2∥x− xi∥. (13)
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Theorem 3. Let ℓ1 and ℓ2 be the Lipschitz constants for the functions f(x) and ϕ(x).
Then the following two assertions hold:

1. The set Si = {x ∈ Pi : ∥x− xi∥ < ρi}, where

ρi = max

{
f(xi)− fr + ϵ

ℓ1
,
ϕ(xi)

ℓ2

}
(14)

satisfies (10).

2. If the REC-UPDATE rule is used, then ρi ≥ ρ∗, where ρ∗ = min

{
ϵ

ℓ1
,
δ

ℓ2

}
.

Below is the simplest version of the method based on longest-edge bisections of paralle-
lepipeds.

Algorithm BISECT
Input parameters:
P is the original parallelepiped;
ϵ and δ are the prescribed accuracy of the objective function and the constraints;
ℓ1 and ℓ2 are the Lipschitz constants for the objective function and the constraints.

Output parameters:
xr is a record point;
x′
r is a feasible record point.

Internal variables:
L is the list of covered parallelepipeds.

Step 1. Place P in the list L: L = {P}. Set fr = ∞.
Step 2. Choose the current parallelepiped Pi ∈ L.
Step 3. Calculate the function value at the center xi of Pi and update the record

points xr and x′
r according to the REC-UPDATE rule.

Step 4. Use xi as the center of a covering ball, and calculate the radius ρi of the
covering ball by formula (14).

Step 5. If the covering ball contains Pi, then go to Step 2. Otherwise, divide Pi in
the longest-edge direction into two identical new parallelepipeds, which are added to the
list L.

Step 6. If the list is empty, then the algorithm terminates; otherwise, go to Step 2.

Steps 2–6 in the algorithm BISECT are cyclically repeated. Theorem 4 gives an upper
bound for the number of iterations in this cycle.

Theorem 4. The algorithm BISECT terminates after a finite number of iterations
not exceeding the values

4

(
ρ∗
ρ

)θ(n)

− 1, (15)

where
θ(n) =

2

log2

(
1− 3

4n

)
and ρ is the radius (half the distance between two most distant points) of the parallele-
piped P .

4



Theorem 5. If the algorithm BISECT terminates in a finite number of steps, then
the following two assertions hold:

1. If no record point xr is found, then the feasible set X of problem (6) is empty.
Otherwise, the record point xr found is an ϵ, δ-optimal solution of problem (6) that satisfies
the inequality

f∗ + ϵ ≥ fr ≥ f δ
∗ . (16)

2. If a feasible record point x′
r is found, then the feasible set of solutions to problem

(6) is not empty and
f(x′

r) ≥ f∗. (17)

This algorithm can be successfully used to solve partially integer programming prob-
lems. For this purpose, the parallelepiped-partitioning method and the record-updating
rule in BISECT have to be modified. Consider problem (1) in which constraints (6) are
supplemented with the integer-valuedness conditions xj ∈ Z, j ∈ J , where J is the index
subset of integer variables.

In the bisection of the parallelepiped, the new boundaries of the resulting parallelepi-
peds are rounded off to the nearest integers if partition is in the direction of an integer
variable. Let Q = [a1, b1]× [a2, b2]× · · · × [an, bn] be the parallelepiped to be partitioned,
and let

s = arg min
i=1,...,n

|ai − bi|

be the index of the longest edge in the parallelepiped. The partition procedure yields two
parallelepipeds

Q1 = [a1, b1]× · · · × [as, cs]× · · · × [an, bn],

Q2 = [a1, b1]× · · · × [ds, bs]× · · · × [an, bn],

where

cs =


⌊
as + bs

2

⌋
, if s ∈ J,

as + bs

2
, if s /∈ J,

ds =


⌈
as + bs

2

⌉
, if s ∈ J,

as + bs

2
, if s /∈ J.

Before applying the REC-UPDATE rule, the point xi is transformed as follows:

xj
i :=

{
⌊xj

i⌋, if j ∈ J,

xj
i , if j ∈ J.

The other steps in BISECT remain unchanged.
In practice, various acceleration techniques are added to the above basic implementa-

tion of the bisection method. Specifically, for differentiable functions, it is more effective
to use the minorant следующей миноранты:

µi(x) = f(xi) + ⟨fx(xi), x− xi⟩+
ki
2
∥x− xi∥2, (18)

where ki is a lower bound for the Hessian spectrum of f(x) on Pi. Additionally, the
computations can be accelerated if the search domain is reduced by eliminating the part
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of the current parallelepiped that does not contain any optimum in the case when it
cannot be entirely eliminated. The results concerning the finite number of steps in the
basic BISECT version and the properties of approximate solutions remain valid in the
case of more sophisticated versions.

Variants of the nonuniform covering method have been successfully used to solve large-
scale problems. For example, the interaction energy of a molecular cluster was minimized
in [4]. Specifically, the nonuniform covering method was used to minimize a function of
255 variables.

We consider only the following simplest example (see [8]):

f(x) = x1 → min,

g1(x) = (x1 − 5)2 + 2(x2 − 5)2 + (x3 − 5)2 − 18 ≤ 0,

g2(x) = 100− (x1 + 7− 2x2)2 − 4(2x1 + x2 − 11)2 − 5(x3 − 5)2 ≤ 0.

(19)

Numerical results for various δ

δ Record xr ϕ(xr) Computation time, s Number of iterations
−0.01 (3.722, 7.276, 7.452) −0.00204 0.61 10602
−0.0001 (3.721, 7.15, 2.331) −0.00001 24.57 506351
0.0001 (0.997, 4.007, 4.999) 0.00007 7.94 165547
0.01 (0.965, 4.071, 4.994) 0.00993 0.16 2671

A feature of this problem is that the global minimum is reached at the isolated feasible
point x∗ = (1, 4, 5) with f(x∗) = 1, g1(x∗) = 0, and g2(x∗) = 0 (the point (1,3,5)) was
mistakenly indicated in [8]). The global minimization method used in [8] produced the
feasible point x̄ = (3.747692, 7.171420, 2.362317) with f(x̄) = 3.747692 in 33.703 seconds
on a Pentium IV 2.53 GHz computer.

The set P in the nonuniform covering method was specified as the parallelepiped
−10 ≤ xi ≤ 10, i = 1, 2, 3, which contains the feasible set of problem (19). The minorants
were defined by (18), and ϵ = |δ| was used. The experiments were performed on an Intel
Core 2 Quad 2.33 GHz personal computer with a single processor core. The numerical
results are presented in the table. The value of f(xr) coincides with the first component
of the vector xr given in the second column.

For δ > 0, the approximate solutions were found to be close to the optimal solu-
tion x∗. For δ > 0, the points found are feasible and close to x̄ with the resulting objective
function value being smaller in the third digit than that found in [8].

This problem was used to explore the possibility of finding an integer solution. For this
purpose, all the variables were assumed to be integers. The computations were performed
for three versions at ϵ = δ = 0. The first version relied on the basic BISECT scheme with
minorants (13) and the Lipschitz constants estimated from above by using interval analysis
on the current parallelepipeds. Minorants (18) were used in the second version. The part of
the parallelepiped that does not contain the optimal solution was additionally eliminated
in the third version. The global minimum was found after 585, 121, and 55 iterations in
the first, second, and third versions, respectively. Thus, the computations in this problem
are considerably accelerated by introducing the integer-valuedness condition. Therefore,
for complicated problems, it seems reasonable to introduce this condition deliberately in
order to find an approximate solution of the original continuous problem.
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