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Abstract � To simultaneously solve the primal and dual linear programming (LP)
problems, it is proposed to use a new auxiliary function that is similar to the modi�ed
Lagrangian function and then apply the generalized Newton's method to its uncon-
strained minimization. This approach is applicable to solving LP problems with a
large number (up to several millions) of nonnegative variables and a moderate num-
ber (several thousands) of equality constraints. The results of test calculations on
a Pentium-IV computer are presented. They show that the solution of problems of
the size indicated above takes from several dozen to several thousand seconds.
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1. INTRODUCTION

It is well known that the exact solution to a primal linear programming (LP) problem can be
found by using a smooth penalty function with a �nite penalty coe�cient applied to the dual LP
problem (see, e.g., [1] � [3]). Such a function is convex, piecewise quadratic, and continuously
di�erentiable, but it does not have the Hessian matrix. However, introducing the generalized
Hessian matrix, one can construct the generalized Newton's method for this penalty function.
In [4] � [6], the �nite global convergence of the generalized Newton's method as applied to the
minimization of a convex piecewise quadratic function was proved. The minimization of this
penalty function applied to the dual LP problem makes it possible to obtain the exact normal
solution (i.e., a solution with the minimal Euclidean norm) to the primal problem beginning
from a certain �nite value of the penalty coe�cient.

In this paper, we propose to use an auxiliary function similar to the modi�ed Lagrangian
function (see, e.g., [7] � [9]) rather than a piecewise quadratic penalty function, which is tradi-
tionally used. This approach can be described as follows. Starting from a certain �xed value
of the penalty coe�cient obtained by the single unconstrained maximization of the auxiliary
function, we calculate the exact projection of the given point on the solution set of the primal
LP problem, using simple formulas provided by Theorem 1 below. Under a certain assumption,
this theorem yields a formula for the threshold value of the penalty coe�cient. Substituting
the determined projection into the auxiliary function and then maximizing it, we obtain the
exact solution to the dual LP problem (Theorem 2). Theorem 3 asserts that the iterative pro-
cess described below produces the exact solutions to the primal and dual problems in a �nite
number of steps; this assertion is true for any penalty coe�cient and any initial vector of the
primal problem. The auxiliary maximization problem is solved using the generalized Newton's
method, which converges for this problem in a �nite number of steps.

The proposed method was implemented in Matlab 6.5 on a Pentium-IV computer with
1 Gb RAM. The numerical experiments with random LP problems demonstrated that the
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method is highly e�cient in solving LP problems with a large number (up to several million)
of nonnegative variables and a moderate number (several thousand) of equality constraints.
The execution time for these problems was in the range from several dozen to several thousand
seconds. These results can be explained by the fact that the basic computational e�ort in our
method is consumed by solving the auxiliary unconstrained maximization problem. Its size is
determined by the number of equality constraints, which is substantially less than the number
of variables in the original LP problem.

2. BASIC THEOREMS

Let the primal LP problem be given in the canonical form :

f∗ = min
x∈X

c>x, X = {x ∈ Rn : Ax = b, x ≥ 0n}. (P)

The problem dual to (P) has the form

f∗ = max
u∈U

b>u, U = {u ∈ Rm : A>u ≤ c}. (D)

Here, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are given; x is the vector of primal variables; u is the
vector of dual variables; and 0i is the zero vector of dimension i. Assume that the solution
set X∗ of the primal problem (P) is nonempty; hence, the solution set U∗ of the dual problem
(D) also is nonempty. The necessary and su�cient optimality conditions (the Kuhn�Tucker
conditions) for problems (P) and (D) have the form

Ax∗ − b = 0m, x∗ ≥ 0n, x>∗ v∗ = 0, (1)

v∗ = c− A>u∗ ≥ 0n. (2)
Here, the nonnegative vector of auxiliary variables v = c − A>u ≥ 0n is introduced into the
constraints of the ratal problem (D).

Let x̂ be an arbitrary vector in Rn. We consider the problem of �nding the projection x̂∗ of
x̂ on the solution set X∗ of the primal problem (P):

1

2
‖x̂∗ − x̂‖2 = min

x∈X∗

1

2
‖x− x̂‖2, X∗ = {x ∈ Rn : Ax = b, c>x = f∗, x ≥ 0n}. (3)

Henceforth, we use the Euclidean norm of vectors.
De�ne the Lagrangian function for problem (3):

L(x, p, β, x̂) =
1

2
‖x− x̂‖2 + p>(b− Ax) + β(c>x− f∗).

Here, p ∈ Rm and β ∈ R1 are the Lagrange multipliers, and x̂ will be interpreted as a �xed
vector parameter. The dual problem for (3) has the form

max
p ∈Rm

max
β∈R1

min
x ∈Rn

+

L(x, p, β, x̂). (4)

The Kuhn�Tucker conditions for problem (3) are as follows:

x− x̂− A>p + βc ≥ 0n, D(x)(x− x̂− A>p + βc) = 0n, x ≥ 0n, (5)
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Ax = b, c>x = f∗, (6)
where D(z) denotes the diagonal matrix whose ith diagonal entry is the ith component of the
vector z. It is easy to verify that formulas (5) are equivalent to

x = (x̂ + A>p− βc)+, (7)

where a+ is obtained by replacing the negative components in a by zeros.
Formula (7) yields the solution to the inner minimization problem in (4). Substituting (7)

into the lagrangian function L(x, p, β, x̂), we obtain the dual function

L̃(p, β, x̂) = b>p− 1

2
‖(x̂ + A>p− βc)+‖2 − βf∗ +

1

2
‖x̂‖2.

The function L̃(p, β, x) is concave, piecewise quadratic, and continuously di�erentiable. The
dual problem (4) is reduced to solving the outer maximization problem

max
p ∈Rm

max
β∈R1

L̃(p, β, x̂). (8)

Having solved problem (8), we �nd the optimal p and β. Substituting them into (7),
we obtain the projection x̂∗, i.e., the solution to problem (3). The necessary and su�cient
optimality conditions for problem (8) have the form

L̃p(p, β, x̂) = b− A(x̂ + A>p− βc)+ = b− Ax = 0m,

L̃β(p, β, x̂) = c>(x̂ + A>p− βc)+ − f∗ = c>x− f∗ = 0,

where x is de�ned by formula (7). These conditions are ful�lled if and only if x ∈ X∗ and
x = x̂∗.

Unfortunately, the unconstrained optimization problem (8) contains the a priori unknown
quantity f∗, which is the optimal value of the objective function of the LP problem. However,
one can avoid this drawback by simplifying problem (8). To this end, we propose replacing (8)
by the following simpli�ed unconstrained maximization problem:

I1 = max
p∈Rm

S(p, β, x̂). (9)

Here, x̂ is a �xed vector, β is a �xed scalar, and the function S(p, β, x̂) is de�ned by

S(p, β, x̂) = b>p− 1

2
‖(x̂ + A>p− βc)+‖2. (10)

Without loss of generality, one can assume that the �rst ` components of the vector x̂∗ are
strictly positive. Accordingly, we write the vectors x̂∗, x̂, c, and the matrix A as

x̂>∗ =
[
[x̂`
∗]
>, [x̂d

∗]
>]

, x̂> =
[
[x̂`]>, [x̂d]>

]
, c> =

[
[c`]>, [cd]>

]
, A = [A` | Ad], (11)

where x̂`
∗ > 0`, x̂d

∗ = 0d, and d = n− `.
Using this notation, we can rewrite the necessary and su�cient optimality conditions (5),

(6) for problem (3) in a more detailed form

x̂`
∗ = x̂` + A>

` p− βc` > 0`, (12)

x̂d
∗ = 0d, x̂d + A>

d p− βcd ≤ 0d,

A`x̂
`
∗ = b, c`>x̂`

∗ = f∗.
(13)
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The system of linear equations in the unknown p appearing in (12) is consistent. Assuming
that A` has the full rank m and ` ≥ m, we can �nd the unique solution p to this system by the
formula

p = (A`A
>
` )−1A`(x̂

`
∗ − x̂` + βc`). (14)

Substituting this expression into (13), we obtain the inequality

q ≤ βz, (15)

where we use the notation q = x̂d + A>
d (A`A

>
` )−1A`(x̂

`
∗ − x̂`) and z = cd − Ad(A`A

>
` )−1A`c

`.
If p is de�ned by (14) and β satis�es inequality (15), then the pair [p, β] is a solution to the

dual problem (8). Let us �nd the minimal value of β satisfying (15).
In accordance with partition (11), we write the optimal vector of the auxiliary variables v∗

in the Kuhn�Tucker conditions (1), (2) for problems (P) and (D) in the form v>∗ = [v`>
∗ , vd>

∗ ].
Then, by the complementary slackness condition x>∗ v∗ = 0, x∗ ≥ 0n, v∗ ≥ 0n, and expression
(2) can be written as

v`
∗ = c` − A>

` u∗ = 0`, (16)
vd
∗ = cd − A>

d u∗ = 0d. (17)

From (16), we obtain u∗ = (A`A
>
` )−1A`c

`. Substituting this expression into (17), we �nd that
vd
∗ = z ≥ 0d. Now, we de�ne the index set σ = {` + 1 ≤ i ≤ n : (vd

∗)
i > 0}.

If σ = ∅, then (15) is ful�lled for any β. De�ne

β∗ =





max
i∈σ

qi

(vd∗)i
, σ 6= ∅,

α > −∞, σ = ∅,
(18)

where α is an arbitrary scalar. Then, inequality (15) is valid for any β ≥ β∗, and one can solve
the simpli�ed unconstrained maximization problem (9). Its solution yields, at the same time,
a solution to the dual problem (8). Then, using formula (7), one obtains the projection x̂∗.
Thus, we have proved the following proposition.

Theorem 1. Let the solution set X∗ of problem (P) be nonempty. Assume that the matrix
A` corresponding to the nonzero components of the vector x̂∗ has rank m. Then, for any β ≥ β∗,
the projection x̂∗ of the point x̂ on the solution set X∗ of the primal problem (P) is given by the
formula

x̂∗ = [x̂ + A>p(β)− βc]+, (19)
where p(β) is the solution to the unconstrained maximization problem (9).

This theorem allows us to replace problem (8), containing the a priori unknown scalar f∗,
by problem (9), where this scalar is replaced by the interval [β∗, +∞). Computationally, the
latter problem is much simpler. The theorem extends the results obtained in [10], which are
related to �nding the normal solution to a primal LP problem (i.e., the projection of the zero
on the solution set of problem (P)). It is obvious that the value β∗ found by formula (18) can
be negative. A corresponding example of projecting the origin is given in [10].

From the formal point of view, the unconstrained maximization problem (9) has no La-
grangian function; hence, the corresponding dual problem cannot be constructed. However,
one can introduce auxiliary variables into problem (9) and use them to generate arti�cial con-
straints. This results in an equivalent nonlinear programming problem that already admits
the dual problem. This (rather unconventional) approach to constructing the dual problem is
based on a two-step representation of problem (9) (see, e.g., [11, 12]).
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We de�ne the vector of auxiliary variables y = x̂ + A>p− βc. Then, problem (9) reduces to
the equivalent constrained minimization problem

I1 = max
[p,y]∈G

{
b>p− 1

2
‖y+‖2

}
, G = {[p, y] ∈ Rm+n : y = x̂ + A>p− βc}. (20)

The Lagrangian function for the quadratic programming problem (20) has the form

L(p, y, x) = b>p− 1

2
‖y+‖2 − x>(x̂ + A>p− βc− y),

where x ∈ Rn is the vector of Lagrange multipliers. Consider the minimax problem

I2 = min
x∈Rn

max
p∈Rm

max
y∈Rn

L(p, y, x), (21)

which is dual to problem (20). From the optimality conditions for the inner maximization
problem

Lp(p, y, x) = b− Ax = 0m, Ly(p, y, x) = −y+ + x = 0n

we have x = y+, Ax = b. Substituting y+ = x in L(p, y, x) and taking into account the
conditions Ax = b, x ≥ 0n, we obtain the dual function

L̃(x) = βc>x +
1

2
‖x− x̂‖2 − 1

2
‖x̂‖2.

Thus, the dual problem (21) is reduced to the quadratic programming problem

I2 = min
x∈X

{
βc>x +

1

2
‖x− x̂‖2 − 1

2
‖x̂‖2

}
, X = {x ∈ Rn : Ax = b, x ≥ 0n}. (22)

Since the objective function in problem (22) is strictly convex, its solution x(β) is unique.
Problem (22) is dual to problem (20) and hence to problem (9). By the duality theorem, the
optimal values of the objective functions of these problems are the same: I1 = I2. This can
be written as b>p(β) = βf∗ + x(β)> [x(β)− x̂], where p(β) is an arbitrary solution to problem
(9). One can show in the standard way that the unconstrained maximization problem (9) for
the piecewise quadratic function S(p, β, x̂) de�ned by formula (10) is dual to the quadratic pro-
gramming problem (22). Thus, the unconstrained maximization problem (9) and the quadratic
programming problem (22) can be considered as mutually dual problems. Problem (22) can be
considered as a perturbed or regularized problem (P). The solution x(β) to problem (22) can
be obtained from an arbitrary solution p(β) to problem (9) by the formula

x(β) = [x̂ + A>p(β)− βc]+,

which, according to Theorem 1, turns into formula (19) for β ≥ β∗; i.e., in this case, we have
x(β) = x̂∗.

If the rank of the matrix A` is equal to m, then, by Theorem 1, β∗ can be arbitrary when
‖v∗‖ = 0; in particular, it can be negative. If q ≤ 0d, then β∗ ≤ 0. If one sets β = 0, then the
regularized problem (22) turns into the problem of �nding the projection x̂∗ of a given vector x̂
on the feasible set X of problem (P). The vector x̂∗ is at the same time a solution to problem
(22) for any β ≥ β∗ and a solution to problem (3). Therefore, in the case when β∗ ≤ 0, the
distance from a given vector x̂ to the solution set X∗ of problem (P) is the same as the distance
from x̂ to the feasible set X of problem (P).
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Consider the particular case of Theorem 1, where x̂ = 0n. From (19), we obtain the following
formula for the normal solution x̃∗ of the primal problem (P):

x̃∗ = [A>p(β)− βc]+.

Here, p(β) is a solution to the unconstrained maximization problem

max
p∈Rm

{
b>p− 1

2
‖(A>p− βc)+‖2

}
(23)

for any β ≥ β∗. Problem (23) and the quadratic programming problem

min
x∈X

{
βc>x +

1

2
‖x‖2

}
, X = {x ∈ Rn : Ax = b, x ≥ 0n} (24)

are mutually dual. For any β ≥ β∗, the unique solution x̃∗ to problem (24) is the projection
of the zero on the solution set X∗ of the primal problem (P); i.e., x̃∗ is the normal solution to
problem (P) and can be determined from the problem

min
x∈X∗

1

2
‖x‖2, X∗ = {x ∈ Rn : Ax = b, x ≥ 0n, c>x = f∗}. (25)

The following problem is mutually dual to problem (25):

max
p ∈Rm

max
β∈R1

{
b>p− 1

2
‖(A>p− βc)+‖2 − βf∗

}
. (26)

The solution x̃∗ to the quadratic programming problem (25) can be obtained from an arbitrary
solution [p, β] to the unconstrained maximization problem (26) by the formula

x̃∗ = (A>p− βc)+.

Consider the case β ≥ β∗ and β > 0. We change the variables in problem (23), setting
p = βu. Then, (23) is replaced by the equivalent problem

max
u∈Rm

{
b>u− β

2
‖(A>u− c)+‖2

}
, (27)

i.e., we arrive at the method of exterior quadratic penalty applied to problem (D). In this
case, Theorem 1 implies that the vector u(β) obtained as a result of the maximization of
the di�erentiable exterior penalty function in problem (26) determines the normal solution to
problem (P) by the formula x̃∗ = β[A>u(β) − c]+ when β > β∗. It follows from the well-
known properties of the method of exterior quadratic penalty (see [13]) that u(β) = p(β)/β
asymptotically tends to u∗ as β → +∞. Problem (23) was introduced in [10, 6]. Since problem
(23) is equivalent to (27), it can be considered as a new variant of the exterior-penalty method
applied to the dual problem (D).

Thus, formula (18) for β∗ yields bounds for the penalty coe�cient in the classical method
of exterior quadratic penalty applied to problem (D), i.e., an LP problem with inequality
constraints. Using the solution u(β) to problem (27), we obtain the normal solution to the
primal problem (P) for any positive β if β∗ ≤ 0 and for any β ≥ β∗ if β∗ > 0.

Problem (27) is mutually dual to the following regularized LP problem (see, e.g., [14, 15, 1]):

min
x∈X

{
c>x +

1

2β
‖x‖2

}
.
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Let β∗ be de�ned as in Theorem 1. If β∗ > 0, then we set ε∗ = 1/β∗. If β∗ ≤ 0, then β∗ can be
set to any positive number. Thus, we arrive at a bound for the regularization parameter ε in
the classical Tikhonov regularization of the LP problem:

min
x∈X

{
c>x +

ε

2
‖x‖2

}
. (28)

For 0 < ε ≤ ε∗, the solution to problem (28) and the normal solution to problem (P) are the
same.

The point p(β), which is a maximizer of the function S(p, β, x̂), does not give a solution to
the dual problem (D) if x̂ /∈ X∗. However, when β ≥ β∗, formula (19) yields the exact solution
x̂∗ to problem (3) (which is the projection of x̂ on the solution set X∗ of the primal problem
(P)) and the exact normal solution to problem (P) in the case x̂ = 0n.

The next theorem asserts that if a point x∗ ∈ X∗ is available, then one can obtain a solution
to the dual problem (D) after solving the unconstrained maximization problem (9) one time.

Theorem 2. Let the solution set X∗ of problem (P) be nonempty. Then, for any β > 0
and any x̂ = x∗ ∈ X∗, the exact solution to the dual problem (D) is given by the formula
u∗ = p(β)/β, where p(β) is a maximizer of the function S(p, β, x∗).

Proof. The necessary and su�cient optimality conditions for problem (9) have the form

b− A(x∗ + A>p∗ − βc)+ = 0m. (29)

De�ne x = (x∗ + A>p∗ − βc)+. This expression is equivalent to the following three vector
relations:

x− (x∗ + A>p∗ − βc) ≥ 0n, x ≥ 0n, (30)

D(x)[x− (x∗ + A>p∗ − βc)] = 0n. (31)

Take x∗ as the vector x and βu∗ as the vector p∗. Then, from (29) � (31), we obtain, respectively,

Ax∗ = b, c− A>u∗ ≥ 0n, x∗ ≥ 0n, c>x∗ = b>u∗.

It follows that [x∗, u∗] is a Kuhn�Tucker point for the LP problem and u∗ is a solution to the
dual problem (D). The theorem is proved.

Function (10) can be considered as the modi�ed Lagrangian function for the dual problem
(D). We de�ne the following iterative process:

pk+1 ∈ arg max
p∈Rm

{
b>p− 1

2
‖(xk + A>p− βc)+‖2

}
, (32)

xk+1 = (xk + A>pk+1 − βc)+, (33)

where x0 is an arbitrary initial vector.
This is a �nite process, which yields both the exact solution x∗ to the primal problem (P)

and the exact solution u∗ to the dual problem (D).
Theorem 3. Let the solution set X∗ of the primal problem (P) be nonempty. Then, for any

β > 0 and any initial vector x0, the iterative process (32), (33) converges to x∗ ∈ X∗ in a �nite
number of steps ω. The formula u∗ = pω+1/β yields the exact solution to the dual problem (D).
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Changing the variables to p = βu in (32), (33), we arrive at the method of the modi�ed
Lagrangian function proposed in [7, 8] for solving the LP problem:

uk+1 ∈ arg max
u∈Rm

{
βb>u− 1

2

∥∥[xk + β(A>u− c)]+
∥∥2

}
, (34)

xk+1 = [xk + β(A>uk+1 − c)]+. (35)

The �nite convergence of method (34), (35) was proved in [8]. This proof can be adapted
to method (32), (33) in an obvious way.

Note that xω = x∗ ∈ X∗ is a projection of xω−1 on the solution set X∗ of problem (P).

3. THE GENERALIZED NEWTON'S METHOD

The unconstrained maximization in (9) and (32) can be performed by any method, say, by
the conjugate gradient method. However, O. Mangasarian showed that the unconstrained opti-
mization of a piecewise quadratic function can be most e�ciently performed by the generalized
Newton's method (see [4, 5]). We give a brief description of this method and numerical results.

The objective functions S(p, β, xk) and S(p, β, x̂) of problems (32) and (9), respectively, are
concave, piecewise quadratic, and di�erentiable. These functions have no conventional Hessian
matrices. Indeed, the gradient

Sp(p, β, xk) = b− A(xk + A>p− βc)+

of S(p, β, xk) is not di�erentiable. However, for this function, one can de�ne the generalized
Hessian matrix which is an m-by-m symmetric negative semide�nite matrix of the form

∂2
pS(p, β, xk) = −AD](z)A>.

Here, D](z) denotes the n-by-n diagonal matrix whose ith diagonal entry zi is equal to one if
(xk + A>p− βc)i > 0 and zi is equal to zero if (xk + A>p− βc)i ≤ 0 (i = 1, 2, . . . , n). Since the
generalized Hessian matrix can be singular, the following modi�ed Newton direction is used:

−[∂2
pS(p, β, xk)− δIm]−1Sp(p, β, xk),

where δ is a small positive number (in our computations, we typically set δ = 10−4) and Im is
the identity matrix of order m.

In this case, the modi�ed Newton's method has the form

ps+1 = ps − [∂2
pS(ps, β, xk)− δIm]−1Sp(ps, β, xk). (36)

We used the following stopping criterion for this method:

‖ps+1 − ps‖ ≤ tol.

Mangasarian studied the convergence of the generalized Newton's method as applied to
the unconstrained minimization of a convex piecewise quadratic function of this type with
the steplength chosen by the Armijo rule. The proofs of the �nite global convergence of the
generalized Newton's method can be found in [4] � [6].
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4. RESULTS OF NUMERICAL CALCULATIONS

We solved random LP problems with a large number (up to several million) of nonnegative
variables and a moderate number (up to several thousand) of equality constraints; i.e., it held
that n À m.

Thus, the prescribed quantities were the integers m and n, determining the number of rows
and columns, respectively, in the matrix A, and the density ρ of nonzero entries in A. In
particular, ρ = 1 means that all the entries in A were generated as random numbers, whereas
ρ = 0.01 indicates that only one percent of the entries in A were generated randomly and
the others were set to zero. The random entries in A were taken from the interval [−50, 50].
The solution x∗ to the primal problem (P) and the solution u∗ to the dual problem (D) were
generated as follows. It was assumed that n − 3m components of x∗ were zero, while the
rest were taken randomly from the interval [0, 10]. Half of the components of u∗ were set to
zero, while the rest were taken randomly from the interval [−10, 10]. The solutions x∗ and u∗
were used to calculate the coe�cients in the objective function c and the right-hand sides b of
problem (P). The vectors b and c were de�ned by the formulas

b = Ax∗, c = A>u∗ + ξ.

Here, ξi = 0 if x∗i > 0, whereas, if x∗i = 0, then the component ξi was taken randomly from
the interval

0 ≤ γi ≤ ξi ≤ θi.

In the calculations whose results are shown below, we set γi = 1 and θi = 10 for all i. Note
that, if γi is small, then the quantity ξi = (c − A>u∗)i = (vd

∗)
i can also be very small. Then,

according to formula (18), the a priori unknown quantity β∗ can be very large. In this case,
the generated LP problem can be hard to solve.

The proposed method for solving the primal and dual LP problems, which combines the
iterative process (32), (33) and the generalized Newton's method, was implemented in Mat-
lab 6.5. The calculations were conducted on a 2.6 GHz Pentium-IV computer with memory of
1 Gb. The results of solving the randomly generated LP problems are presented in the table,
where m and n indicate the size of the problem, ρ is the density of the nonzero entries in A,
T is the run time (in seconds) of solving an LP problem, and It is the number of iteration
steps of Newton's method in the �rst solution of the maximization problem (32). The fourth,
�fth, and sixth columns in the table show, respectively, the accuracy to which the constraints
of the primal problem are ful�lled, the similar quantity for the dual problem, and the di�erence
between the optimal values of the objective functions of the primal and dual problems. The
matrix A was partitioned into B blocks to improve the performance in calculating the matrix
product AD](z)A> or, in the event of an especially large-scale problem, just because of the
shortage of memory; then, multiplication was performed blockwise. The corresponding number
of blocks B is shown in the last column of the table.

In all the examples, the zero was taken as the initial vector for the iterative process (32),
(33): x0 = 0n. We always set β = 1, tol = 10−12. In all occasions, it turned out that β > β∗.
Thus, the normal solution x̂∗ to the primal problem (P) was obtained by a single iteration
step of process (32), (33), i.e., with ω = 1. The number of iteration steps of the generalized
Newton's method is shown in the third column of the table. By Theorem 2, the maximization
of the function S(p, β, x̂∗) with respect to p yields the vector p(β), which is equal to u∗β. In all
the examples, only two iteration steps of the generalized Newton's method (36) were required
for this maximization.
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Table

m× n× p T, c It ‖Ax̂∗ − b‖ ‖(A>u∗ − c)+‖ | c>x̂∗ − b>u∗| B

100× 106 × 0.01 29.3 17 1.7× 10−11 2.0× 10−13 9.7× 10−11 5
300× 106 × 0.01 42.0 13 1.0× 10−10 7.0× 10−13 2.6× 10−10 5
600× 106 × 0.01 68.4 12 3.1× 10−10 1.7× 10−12 2.8× 10−10 5

1000× 106 × 0.01 95.8 10 9.4× 10−10 3.5× 10−12 6.9× 10−10 8
3000× 104 × 0.01 81.5 7 2.0× 10−9 9.1× 10−12 3.7× 10−9 2
4000× 104 × 0.01 196.2 8 2.9× 10−9 1.2× 10−11 2.6× 10−8 2
500× (3× 106)× 0.01 179.1 12 3.2× 10−10 1.4× 10−12 1.9× 10−11 8

1000× (3× 106)× 0.01 309.1 11 1.2× 10−9 4.1× 10−12 4.9× 10−9 10
500× (5× 106)× 0.01 300.8 12 3.8× 10−10 1.6× 10−12 8.4× 10−11 10

1000× (5× 106)× 0.01 412.8 8 7.3× 10−9 7.4× 10−12 7.0× 10−8 100
500× 107 × 0.01 387.8 8 7.6× 10−9 3.6× 10−12 1.1× 10−7 400

1000× 104 × 1 117.2 7 1.3× 10−7 1.0× 10−10 2.9× 10−7 2
1000× 105 × 1 1496.5 5 5.2× 10−7 1.9× 10−10 8.2× 10−7 200
100× 106 × 1 376.5 9 4.2× 10−8 1.2× 10−11 3.0× 10−7 500

For the most part, the table presents the results of solving problems with a sparse matrix A.
As an exception, the last three rows show the results for problems with completely randomly
generated matrices.

The results in the table demonstrate the high e�ciency of the proposed method. For
instance, an LP problem with �ve million nonnegative variables and one thousand equality
constraints was solved to a good accuracy in less than seven minutes (see the tenth row of the
table). Note that only Matlab's facilities were exploited for the computer implementation of
our method.

For LP problems with a large number of nonnegative variables and a moderate number of
equality constraints, the computer implementation of the proposed method outperformed the
packages based on the simplex method for LP problems that were available to the authors.

The authors see the possibility for further progress of the proposed method in the use of
parallel computation for implementing the generalized Newton's method. This should make
possible solving LP problems with a larger number of equality constraints.
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