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1. Introduction and Preliminaries
Newton's method has been widely used for solving systems of nonlinear equations, nonlinear

programming problems, optimal control problems and, recently, for linear programming (LP).
We mention only a few references [23, 10, 32, 11]. Due to extensive activity in this area, the list
is not complete. Many publications are devoted to path-following interior-point algorithms for
linear programming. Extensive theoretical investigations, convergence analysis, and practical
implementation are given in numerous papers and reports, e.g., [3]-[9], [33, 34, 36, 12].

In this paper, Newton's method is applied to a nonlinear system of equations derived from
the optimality conditions for the LP problem. The method is stated as an initial-value problem
involving a system of ordinary di�erential equations. We consider continuous and discrete
versions of the primal-dual Newton method for solving the LP problem. We present some
results on convergence rate and give a description of the algorithm that was implemented.

The paper is organized as follows. In the remainder of this section, we formulate the linear
program in standard form and consider some properties of this program.

In Section 2, we describe the continuous version of Newton's method. The right-hand side
of the ordinary di�erential equation de�nes the Newton search directions that are determined
from the solution of a linear system with 2n unknowns. In Section 3 we present various special
cases and consequences of proposed numerical method. In Section 4, we reduce this system to
2×2-block system with n unknowns and to a system with symmetric well-de�ned matrix which
does not have any singular terms in the vicinity of the optimal solution. In this linear system,
in addition to the matrix of constraints, we introduce an additional matrix whose range space
coincides with the null space of the matrix of constraints.

1Research was supported by Grants N◦ 99-01-01186 and N◦ 96-15-96124 from the Russian Foundation for
Basic Research and by FAPESP Grant N◦ 96-6631-5.
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In Section 5, we present some new results concerning the convergence rate of the method.
In Section 6, we consider the discrete version of the method. We use the steepest descent
approach for choosing the step lengths. These step lengths are determined from the solution of
the auxiliary problem.

Let A be m× n full-rank matrix, m < n, b, u ∈ Rm, and c, x ∈ Rn. Consider the standard
form of the linear program

(P)





minimize c>x
subject to Ax = b,

x ≥ 0n,

and its dual
(D)

{
maximize b>u
subject to c− A>u ≥ 0n,

where 0s is an s-dimensional null vector, 0sk is an s × k rectangular null matrix. Subscripts
will be used to distinguish values of quantities at a particular iteration while superscripts will
indicate components of vectors.

For a matrix A of full row rank, the associated right n×m pseudoinverse matrix is de�ned
as

A+ = A>(AA>)−1.

The orthogonal projector onto the range space of the matrix A> is de�ned as

(A>)‖ = A+A. (1)

The orthogonal projector onto the null space of matrix A is given by

(A>)⊥ = In − (A>)‖,

where In is the unit square matrix of order n.
Let K be a matrix whose rows span the null space of A. By choosing a basis for this space

we can assume that K is an `× n matrix with the row rank `, with m + ` = n. This de�nition
yields the orthogonality condition:

KA> = 0`m. (2)
We partition A and K as

A = [B | N ], K = [KB | KN ], (3)
where B is an arbitrary nonsingular square matrix of order m, KN is a nonsingular square
matrix of order `, N and K>

B are m× ` matrices. Popular choice for K is

K = [−N>(B>)−1 | I`]. (4)

By multiplying this matrix on the right by A>, we obtain that in this case the condition (2)
holds.

Since the maximum rank of K is `, we can de�ne the pseudo-inverse matrix

K+ = K>(KK>)−1

of K and use the orthogonal projector (K>)⊥ onto the null space of the matrix K and the
orthogonal projector (K>)‖ onto the range space of the matrix K>. The relations between the
projectors are as follows:

(A>)⊥ = (K>)‖, (K>)⊥ = (A>)‖. (5)
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De�ne the vector of dual slacks v ∈ Rn and consider the overdetermined linear system of n
equations with m unknowns

A>u = c− v. (6)
The vector u can be regarded as an implicit function of v. In general, this equation does not
have a solution. Therefore, we de�ne the unique pseudosolution

u(v) = (AA>)−1A(c− v). (7)

Substituting this expression into (6), we obtain A>u(v) = (A>)‖(c− v). Clearly, the pseudoso-
lution u(v) solves (6) if and only if (A>)⊥(c− v) = 0n, i.e., the vector c− v belongs to the row
space of matrix A. According to (5), in this case K(A>)⊥(c−v) = K(K>)‖(c−v) = d−Kv = 0`,
where d = Kc.

Let q be an arbitrary n-dimensional vector (some of its components can be negative) that
satis�es the following condition:

Aq = b.

De�ne n-dimensional functions w(v) and w̃(x) associated with the primal and dual problems:

w(v) = c− v − A>u(v), w̃(x) = q − x−K>ũ(x),

where ũ(x) is a pseudosolution

ũ(x) = (KK>)−1K(q − x) (8)

of the equation
K>ũ = q − x. (9)

The projections of a vector z onto the null space and row space of matrix A are denoted,
respectively, by z⊥ and z‖. Taking into account (5), (7), (8) and (9), we obtain

w(v) = (A>)⊥(c− v) = c⊥ − v⊥, w̃(x) = (A>)‖(q − x) = q‖ − x‖, (10)
A>u(v) = (A>)‖(c− v) = c‖ − v‖, K>ũ(x) = (A>)⊥(q − x) = q⊥ − x⊥. (11)

Below D(z) denotes the diagonal matrix whose entries are the components of a vector z.
We denote component-wise operations on vectors by the usual notation for real numbers. Thus,
given two vectors z, h of the same dimension, D(z/h) denotes the diagonal matrix, whose i-th
diagonal element is zi/hi.

Let Rn
+ and Rn

++ denote nonnegative and, respectively, strictly positive orthants in Rn.
Introduce feasible sets for the primal variable x and for the dual slacks v:

X = {x ∈ Rn
+ : b− Ax = 0m}, V = {v ∈ Rn

+ : Kv − d = 0`}.

Their relative interior parts are de�ned as intersections with the positive orthant

X+ = X ∩ Rn
++, V+ = V ∩ Rn

++.

We assume that the sets X+ and V+ are nonempty and that primal and dual nondegene-
racy hold. In this case, both problems have unique solutions x∗ and u∗, respectively, strict
complementarity holds (i.e., |xi

∗|+ |vi
∗| 6= 0 for all i), and the following inequalities are valid:

‖b‖ 6= 0, ‖d‖ 6= 0. (12)
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In the sequel, the optimal dual slacks v∗ = c−A>u∗ will be also referred to as a solution of the
dual problem (D).

The �rst-order necessary and su�cient optimality conditions for problems (P) and (D) can
be written as a system of 2n equalities:

Dλ(x)v = 0n,
Kv − d = 0`,
Ax− b = 0m,

(13)

and 2n inequalities:
x ≥ 0n, v ≥ 0n, (14)

where λ is a positive scalar. In (13), we introduced the expression Dλ(x)v instead of the com-
monly used D(x)v. It was motivated by our previous work on space transformation techniques
[5], [7]-[17]. The expression will allow us to obtain di�erent step sizes for the primal and dual
variables.

In system (13), we have 2n scalar equality equations and 2n unknown scalar variables.
If we �nd solutions x∗, v∗ of (13) and (14), then we de�ne u∗ = u(v∗) from (7). Clearly, the
pair [x∗, u∗] coincides with the unique solutions of (P) and (D), respectively.

2. Continuous Version of the Method
We use the continuous version of Newton's method for solving the system of equalities (13).

The computation is described by the system of ordinary di�erential equations:

Dλ−1(Ξ)W (x, v)

[
ẋ
v̇

]
= −Dλ−1(Ξ)D(γ)R(x, v), (15)

where W is a square 2n matrix, R is a 2n-dimensional vector:

W (x, v) =




λD(v) D(x)
0`n K
A 0mn


 , R(x, v) =




D(x)v
Kv − d
Ax− b


 ,

the diagonal matrix D(γ) has the �rst n + ` diagonal components equal to α and m other
diagonal components equal to τ ; the �rst n components of the vector Ξ coincide with the
vector x and the other n components are equal to one. In the sequel we will simplify (15) and
investigate the following system of 2n di�erential equations:

W (x, v)

[
ẋ
v̇

]
= −D(γ)R(x, v). (16)

We have introduced three auxiliary parameters λ, α, and τ . For the sake of simplicity, we
assume that λ = α/τ .

By following the trajectories satisfying (16), we can, in theory, obtain a solution of the
system of nonlinear equations (13). In practice, we build the iterative procedures using a
discretization of these di�erential equations. The vectors ẋ and v̇, de�ned by (16), are called
the Newton directions.

From the system (16), we have

Kv̇ = α(d−Kv), (17)
Aẋ = τ(b− Ax). (18)
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Let x(t), v(t) denote the solutions of the Cauchy problem (16) with initial conditions x0 = x(0),
v0 = v(0). Using orthogonal decomposition of the vectors x(t) and v(t), we will seek a solution
of the system (16) in the following form:

x(t) = x‖(t) + x⊥(t), v(t) = v‖(t) + v⊥(t). (19)

We substitute these representations in (17) and (18). By multiplying both sides of di�e-
rential equation (17) on the left by the matrix K+ and multiplying (18) on the left by A+, we
obtain

v̇⊥ = α[c⊥ − v⊥] = αw, (20)
ẋ‖ = τ [q‖ − x‖] = τw̃. (21)

Di�erentiating (10) and using the above equations produces

ẇ = −αw, ˙̃w = −τw̃. (22)

The equations (20), (21) and (22) can be easily integrated:

w(v(t)) = c⊥ − v⊥(t) = [c⊥ − v⊥(0)]e−αt, (23)
w̃(x(t)) = q‖ − x‖(t) = [q‖ − x‖(0)]e−τt. (24)

By multiplying the solution (23) on the left by −K and the solution (24) on the left by −A,
we obtain

Kv(t)− d = [Kv0 − d]e−αt, (25)
Ax(t)− b = [Ax0 − b]e−τt. (26)

Di�erentiating (19) and taking into account (10), (20), (21), we have:

ẋ(t) = τw̃(x(t)) + ẋ⊥(t), v̇(t) = αw(v(t)) + v̇‖(t). (27)

We introduce an m-dimensional vector function g(t) and an `-dimensional vector function g̃(t)
and use the following representation:

ẋ⊥(t) = −τK>g̃(t), v̇‖(t) = −αA>g(t). (28)

The pseudosolutions u(v(t)) and ũ(x(t)), de�ned by (7) and (8), are composite functions of
the independent variable t. Considering (28), these functions satisfy the following di�erential
equations:

u̇ = αg, ˙̃u = τ g̃.

Substituting (27) and (28) in (16), we observe that the vectors g and g̃ satisfy the following
linear algebraic system of n equations in n unknowns:

D(x)A>g + D(v)K>g̃ = D(x)[c⊥ − v⊥] + D(v)[q‖ − x‖] + D(x)v. (29)

The initial conditions for the system of ordinary equations (28) are as follows:

x⊥(0) = x0 − x‖(0), v‖(0) = v0 − v⊥(0).

We introduce an n-dimensional indicator vector:

y = D−1(v)(A>g − w(v)). (30)
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This vector can be also represented in the following form:

y = en + D−1(x)(w̃(x)−K>g̃), (31)

where es denotes the vector of ones in Rs.
Using this notation, we can rewrite (28) as follows:

ẋ⊥(t) = −τ [D(x)(en − y) + w̃], v̇‖(t) = −α[D(v)y + w].

The vectors ẋ⊥(t) and v̇‖(t) are orthogonal. Therefore, at each t we have:

w̃>D(v)y + w>D(x)(en − y) = y>D(xv)(y − en). (32)

The system (16) can be written in original variables as follows:

ẋ = τD(x)[y − en], v̇ = −αD(v)y. (33)

The vector y satis�es the following conditions:

AD(y)x = b, (34)
KD(en − y)v = d. (35)

As the vectors D(y)x− q and D(en−y)v− c belong to the null spaces of A and K, respectively,
they are orthogonal, i.e.,

c>D(x)y + q>D(v)(en − y) = c>q + y>D(xv)(en − y).

The �rst integral of the system (16) is

Dλ(x(t))v(t) = Dλ(x0)v0e
−αt. (36)

From this expression we conclude that all components of the vectors x(t) and v(t) do not
change their signs along the trajectories of the system (16). Therefore, if the starting points
are x0 ∈ X+, v0 ∈ V+, the solution of (16) exists for all 0 ≤ t < ∞ and x(t) ≥ 0n, v(t) ≥ 0n.
If xi

0 = 0, vj
0 = 0, then xi(t) ≡ 0, vj(t) ≡ 0 for all t ≥ 0. Hence we can say that the system (16)

has an adhesion property.
Let λ = 1, x0 ∈ X+, v0 ∈ V+ and let the pairwise products xi

0v
i
0 be identical for all i.

It follows from (36) that the subsequent products xi(t)vi(t) are also identical for all i. Hence in
this particular case, the trajectory of the system (16) belongs to so-called central path which
plays a vital role in the theory of primal-dual algorithms.

3. Special Cases
We introduce two scaled matrices

Ā = AD1/2
(

x

v

)
, K̃ = KD1/2

(
v

x

)
.

Many special cases of the system (16) have been studied extensively in the literature.
We mention only few of them.

1. Let v0 ∈ V+. Then the vector v0 − c belongs to the row space of the matrix A, and,
according to (23), we have w(0) = w(t) = 0n for all t. Hence this property holds on the
remainder of the trajectory. In this case, the formula for y is simpli�ed, that is,

y = D−1(v)A>g = D−1/2(xv)Ā+b.
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Expressions (33) yield

ẋ = τ
[
D1/2

(
x

v

)
Ā+b− x

]
, v̇ = −αD1/2

(
v

x

)
Ā+b. (37)

This case was investigated in [1, 2, 17].
2. Let x0 ∈ X+ and v0 ∈ V+. According to (23) and (24), w(0) = w(t) = 0n, w̃(0) =

= w̃(t) = 0n, all trajectories x(t) and v(t) will remain in the sets X+, V+, respectively, for all
t ≥ 0. Setting b = Ax, (30), (31), (32), and (33) yield

y = D−1(v)A>(ĀĀ>)−1b = en −D−1(x)K>(K̃K̃>)−1d,

y>D(xv)(y − en) = 0, v̇‖ = v̇, ẋ⊥ = ẋ, (38)

ẋ = τ
[
D

(
x

v

)
A>(AA>)−1Ax− x

]
, v̇ = −αA>(ĀĀ>)−1Ax. (39)

This case was investigated in [2, 11].
3. Let α = τ . Then from (39) we have:

D(v)ẋ + D(x)v̇ = −τD(x)v.

If τ = 1, we have the pure Newton method.
4 . Setting α = 0, τ = 1 and v = en in (33), we obtain the following method:

ẋ = D1/2(x)[Â⊥ĉ + Â+(Ax− b)], (40)

where Â = AD1/2(x). This method was proposed and investigated in [8], where it was shown
to converge exponentially to an optimal solution point x∗ which is an asymptotically stable
attractor, while all other vertices are nonstable stationary points for system (40). This variant
is considered in [17].

5. Simplifying the method (40) to consider an interior variant, where x(t) ∈ X+ for all t,
yields the following from (40):

ẋ = D(x)[A>(AD(x)A>)−1AD(x)− en]c. (41)

This method also converges exponentially but, in contrast to (40), it does not have the asymp-
totic stability property with respect to the equality constrain Ax = b.

This method was proposed, studied and implemented in 1977 (see [8]). It was called a
�barrier-projection method�. Method (41) resembles Dikin's algorithm [4], sometimes called
the �variation on Karmarkar's algorithm� [3]. It has better local convergence properties than
Dikin's method. The di�erences between these methods are analyzed in [17]. Recently this
method was reinvented in [19, 22] and [24].

6. Setting α = 1, τ = 0 and x = en in (33), we have:

u̇ = (AD−1(v)A>)−1b, v̇ = −A>(AD−1(v)A>)−1b.

This method was introduced in [8]. It is similar to the a�ne-scaling algorithm proposed in [1].
Comparative analysis of the local convergence properties is given in [16, 17, 18].
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4. Computation of Newton's Directions
Most of the computational e�ort in implementation of Newton's method is spent in solving

the linear system (29). Here we focus on this system. Let G be an n-dimensional vector,
G> = [g>, g̃>]. We rewrite (29) as

M(x, v)G = F (x, v), (42)

where
M(x, v) = [D(x)A> | D(v)K>],
F (x, v) = D(x)v + D(x)w(v) + D(v)w̃(x).

(43)

This system is uniquely solvable in Rn
++×Rn

++. Consider the two simplest cases where this sys-
tem can be easily solved by eliminating either g or g̃. Assume that v ∈ Rn

++. Then multiplying
both sides of equation (42) on the left by AD−1(v) and taking into account the orthogonality
condition (2), we obtain the linear system in m unknowns:

AD
(

x

v

)
A>g = AD

(
x

v

)
w(v) + b. (44)

This approach is very popular in publications devoted to interior point techniques. Suppose
now that x ∈ Rn

++. Since the diagonal of D(x) is strictly positive, we can rearrange the system
(42). Multiplying on the left by KD−1(x), we �nd another linear system in ` unknowns:

KD
(

v

x

)
K>g̃ = KD

(
v

x

)
w̃(x) + d. (45)

It is su�cient to solve only one system � either (44) or (45) � because on substituting the
computed solution in (29), we obtain all the expressions necessary for determining the Newton's
directions (27). We usually choose the system with the smallest dimensionality.

We can use the least squares approach to solve (42). We obtain the normal equations by
multiplying both sides of (42) by the square matrix M>:

M2(x, v)G = F2(x, v), (46)

where we introduced a symmetric positive de�nite n× n matrix with 2× 2 block matrices

M2(x, v) = M>(x, v)M(x, v) =

[
AD2(x)A> AD(xv)K>

KD(xv)A> KD2(v)K>

]

and n-dimensional vector
F2(x, v) = M>(x, v)F (x, v).

Lemma 1. If x ∈ Rn
++, v ∈ Rn

++, then the matrices M(x, v), M2(x, v) are nonsingular and
there is a one-to-one correspondence between their inverses:

M−1
2 = M−1(M−1)>, M−1 = M−1

2 M>, (47)

where

M−1(x, v) =




(
AD

(
x

v

)
A>

)−1

AD−1(v)
(
KD

(
v

x

)
K>

)−1

KD−1(x)


 . (48)
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Proof. Multiplying (48) on the right by M(x, v), we obtain the expression

M−1(x, v)M(x, v) = In,

which proves (48). Solving the systems (42) and (46), we have

G = M−1F = M−1
2 F2 = M−1

2 M>F. (49)

From these conditions we get the formulas (47).
Using (48), we �nd explicit expressions for vectors g and g̃. On substituting in (28), we

obtain
ẋ⊥ = −τK>

(
KD

(
v

x

)
K>

)−1

KD−1(x)F (x, v),

v̇‖ = αA>
(
AD

(
x

v

)
A>

)−1

AD−1(v)F (x, v).
(50)

All formulas (42) � (50) can be used for practical computations only if the vectors x and
v are not very close to the solutions of problems (P) and (D). All these formulas become
increasingly ill-conditioned when the trajectories approach the optimal solutions with some
components of the vectors x∗ and v∗ being zero. Matrices AD(x/v)A> and KD(v/x)K> may
be ill-conditioned or singular when the elements of the diagonal matrices D(x/v) or D(v/x)
take on both very large and very small values. This severe drawback is analyzed in many
publications. See, for example, [11]. Various modi�cations of Cholesky codes were proposed in
order to cope with these shortcomings.

We propose at later stages of the computation to refrain from solving the systems (44) or
(45) and, instead, to focus on the system (42). We will use the partition (3), where B is m× s
current matrix (not obligatory optimal basis). Let ε be a nonnegative number. We mention
three di�erent rules for the partition:

1. If xi > ε, then the i-th column of A is included in the matrix B, else it is included in N .

2. If vi > ε, then the i-th column of A is included in the matrix N , else it is included in B.

3. If xi > vi, then the i-th column of A is included in the matrix B, else it is included in N .

In the course of computation, the columns of the current matrices B and N will be altered.
It is desirable for the sequence of matrices B to converge to the primal optimal basis. If ε = 0,
the vectors x and v satisfy the conditions of complementarity and the strict complementarity
(i.e., xivi = 0, |xi|+ |vi| 6= 0 for all i), then all three rules yield the same partition.

We say that a pair x ∈ Rn
+, v ∈ Rn

+ satis�es ε-strict complementarity condition, if

|xi|+ |vi| ≥ 2ε

for all i.
Let us use the �rst partition rule. Without loss of generality, we assume that a current

point x is such that only the �rst s components of the vector x belong to the matrix B. If ε �
strict complementarity condition holds, then we have

x =

[
xB

xN

]
, xB ≥ εes, v =

[
vB

vN

]
, vN ≥ εe`1 ,

where `1 = n− s. Using this notation, we can rewrite (29) as follows:

D(xB)B>g + D(vB)K>
B g̃ = D(xB)vB+

+ D(xB)
[
(c⊥)B − (v⊥)B

]
+ D(vB)

[
(q‖)B − (x‖)B

]
,

(51)

9



D(xN)N>g + D(vN)K>
N g̃ = D(xN)vN+

+ D(xN)
[
(c⊥)N − (v⊥)N

]
+ D(vN)

[
(q‖)N − (x‖)N

]
.

(52)

Let us denote
K̄B = KBD

(
vB

xB

)
, N̄ = ND

(
xN

vN

)
.

Multiplying (51) on the left by the nonsingular matrix D−1(xB) and (52) by D−1(vN), we obtain
the equivalent system:

B>g + K̄>
B g̃ = (v‖)B + (c⊥)B + D

(
vB

xB

)
[(q‖)B − (x‖)B],

N̄>g + K>
N g̃ = (x⊥)N + (q‖)N + D

(
xN

vN

)
[(c⊥)N − (v⊥)N ].

We rewrite this system as follows:
M̄G = F̄ , (53)

where M̄ = D̄M , F̄ = D̄F and

D̄ =

[
D−1(xB) 0s`1

0`1s D−1(vN)

]
, M̄ =

[
B> K̄>

B

N̄> K>
N

]
.

The unique solution of (53) coincides with the solution of the following normal system:

M̄2(x, v)G = F̄2(x, v). (54)

Here we introduced a symmetric positive de�nite n× n matrix

M̄2 = M̄>M̄ =

[
Q11 Q12

Q21 Q22

]
.

The matrices Qij and the vector F̄2 = M̄>F̄ , F̄>
2 = [(f1)

>, (f2)
>] are as follows:

Q11 = BB> + N̄N̄>, Q12 = BK̄>
B + N̄K>

N ,

Q21 = K̄BB> + KNN̄>, Q22 = K̄BK̄>
B + KNK>

N ,

f1 = B

[
(v‖)B + (c⊥)B + D

(
vB

xB

)
[(q‖)B − (x‖)B]

]
+

+ N̄

[
(x⊥)N + (q‖)N + D

(
xN

vN

)
[(c⊥)N − (v⊥)N ]

]
,

f2 = K̄B

[
(v‖)B + (c⊥)B + D

(
vB

xB

)
[(q‖)B − (x‖)B]

]
+

+ KN

[
(x⊥)N + (q‖)N + D

(
xN

vN

)
[(c⊥)N − (v⊥)N ]

]
.

Lemma 2. If x ∈ Rn
++, v ∈ Rn

++, then the solution of (42) is given by

G = M̄−1
2 F̄2 = M̄−1

2 M̄>F̄ = M̄−1F̄ ,

where the inverse of M̄2 can be de�ned in the following form:

M̄−1
2 =

[
Q−1

11 + Q−1
11 Q12H

−1Q21Q
−1
11 −Q−1

11 Q12H
−1

−H−1Q21Q
−1
11 H−1

]
, (55)
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where we introduced a square matrix H = Q22 −Q21Q
−1
11 Q12.

Proof. Matrices Q11 and Q22 can be represented as

Q11 = AS1A
>, Q22 = KS2K

>,

S1(x, v) =




Is 0s`1

0`1s D

(
xN

vN

)

 , S2(x, v) =


 D

(
vB

xB

)
0s`1

0`1s I`


 .

We conclude that the matrices Q11 and Q22 are nonsingular. Clearly,

Det[M̄2] = Det[Q11]Det[H].

Therefore, the matrix H is also nonsingular. Now we obtain that all matrices in the expression
(55) are well de�ned and the inverse matrix M̄−1

2 exists.
Similarly to (47), we have:

M̄−1
2 = M−1D̄−2(M−1)>, M−1 = M̄−1

2 M>D̄2. (56)

Consider the equation (42) in the vicinity of the optimal solutions x∗, v∗ of the problems
(P) and (D). We use the previous partition (3) and the representation (4), but here we assume
that B is the optimal basis. In this case

x∗ =

[
xB
∗

xN
∗

]
, xB

∗ > 0m, xN
∗ = 0`,

v∗ =

[
vB
∗

vN
∗

]
, vB

∗ = 0m, vN
∗ > 0`,

x⊥∗ =

[
(x⊥∗ )B

(x⊥∗ )N

]
, v‖∗ =

[
(v
‖
∗)B

(v
‖
∗)N

]
, q =

[
qB

qN

]
, c =

[
cB

cN

]
.

It is easy to see that the following result holds.
Lemma 3. Let [x∗, v∗] be a non-degenerate solution pair of the primal and dual problems

(P), (D). Then the matrix M(x∗, v∗) is nonsingular and

F (x∗, v∗) = 0n,

M−1(x∗, v∗) =

[
(B>)−1D−1(xB

∗ ) 0m`

0`m (K>
N)−1D−1(vN

∗ )

]
, (57)

M−1
2 (x∗, v∗) =

[
(B>)−1D−2(xB

∗ )B−1 0m`

0`m (K>
N)−1D−2(vN

∗ )K−1
N

]
. (58)

The solutions of (P) and (D) can be represented as

xB
∗ = B−1b, u∗ = (B>)−1cB, vN

∗ = cN −N>u∗,

or, in equivalent form,

xB
∗ = qB −K>

B ũ∗, ũ∗ = (K>
N)−1qN , vN

∗ = (KN)−1d.

In view of (1), (2), (10) and (11) we obtain: w(v∗) = w̃(x∗) = 0n,

x‖∗ = A‖x∗ = A>(AA>)−1Ax∗ = A>(AA>)−1Aq = q‖,

11



v⊥∗ = K‖v∗ = K>(KK>)−1Kv∗ = K>(KK>)−1d = c⊥,

v‖∗ = v∗ − c⊥, x⊥∗ = x∗ − q‖, (x⊥∗ )N = −(q‖)N , (v‖∗)
B = −(c⊥)B.

De�ne two scalars

ε∗ = min
1≤i≤m

xi
∗ > 0, κ∗ = min

m+1≤j≤n
vj
∗ > 0.

Substitute x∗ and v∗ in (29). If strict complementarity holds, then using the third partition
rule, we form the matrix B which coincides with the primal optimal basis. The �rst and second
rules also provide correct results if

ε∗ ≥ ε > 0, κ∗ ≥ ε > 0,

respectively. Now we obtain the exact inverse matrices (57) and (58) from (55) and (56). The
system (42) has a unique zero solution at the optimal solution point [x∗, v∗], and there exists
a neighborhood about this point, where the system is well-de�ned and can be solved using
Gaussian elimination, Gauss�Jordan algorithm, and numerous other methods of linear algebra.
The use of formulas (47) and (48) is not convenient in a neighborhood of the solution pair.
Indeed, the formula (57) can not be obtained directly from (48) by working with the pair [x, v]
to [x∗, v∗]. Thus instead of solving the systems (44) or (45) we should solve either the linear
algebraic system (53) with a nonsymmetric matrix, or the system (54) with a symmetric matrix.
Both systems do not have any singular terms in the vicinity of the optimal, pair [x∗, v∗].

5. Convergence Properties
Newton's method has very attractive convergence properties near a solution. We study

convergence using methods of stability analysis proposed by Lyapunov in 1892 and re�ned by
many contributors in this �eld. We introduce the discrete version of Newton's method:

zk+1 = zk −W−1(xk, vk)D(γk)R(xk, vk), (59)

where z>k = [x>k , v>k ].
Consider the local convergence properties of the system (16) in a neighborhood of the

solution of (13). We start from the simplest case of �xed coe�cients λ, α, τ . Let γ∗ = max[α, τ ].
Theorem 1. Suppose that the system of equations (13) has a solution pair [x̄, v̄], such that

the m columns of the matrix A corresponding to nonzero components of the vector x̄ and the `
columns of K corresponding to nonzero components of v̄ form two square nonsingular matrices.
Then for anyα > 0, τ > 0, the pair [x̄, v̄] is an asymptotically stable equilibrium point of the
system (16). If the starting points x(0), v(0) are su�ciently close to x̄ and v̄, respectively, then
the following estimates hold:

lim
t→∞ sup

t

ln ‖x(t)− x̄‖
t

= −τ, lim
t→∞ sup

t

ln ‖v(t)− v̄‖
t

= −α, (60)

lim
t→∞ yi(t) =

{
1, if x̄i 6= 0,
0, if x̄i = 0,

1 ≤ i ≤ n. (61)

If 0 < γ∗ < 2, then the discrete version (59) converges locally to the pair [x̄, v̄] at least
linearly. If α = τ = 1, then the sequence [xk, vk] converges quadratically to [x̄, v̄].

12



Proof. The pair [x̄, v̄] solves the system (13), therefore it is an equilibrium point of the
system (16). We linearize formulas obtained in the previous sections. De�ne the deviations
from the pair [x̄, v̄]:

δx(t) = x(t)− x̄, δv(t) = v(t)− v̄.

The equations of the �rst approximation about the equilibrium are

δẋ(t) = −τδx(t), δv̇(t) = −αδv(t). (62)

Integrating these equations, we obtain

δx(t) = δx(0)e−τt, δv(t) = δv(0)e−αt. (63)

Formulas (19), (28) and (63) enable us to obtain the following approximate representations:

K>g̃(t) = δx⊥(t), A>g(t) = δv‖(t). (64)

From (10) and (64) we have

A>g(t)− w(v(t)) = δv(t), K>g̃(t)− w̃(x(t)) = δx(t).

Substituting these expressions in (30) and (31), we obtain

y(t) = D−1(v̄ + δv(t))δv(t) = en −D−1(x̄ + δx(t))δx(t).

Taking into account (63), we obtain from the last two expressions that the statement (61) holds.
Due to Lyapunov linearization principle, we conclude from (62) that the state [x̄, v̄] is

asymptotically stable in the sense of Lyapunov, and property (60) holds, the trajectories of
(16) converge locally exponentially to the pair [x̄, v̄].

The statement about linear convergence of the discrete version (59) follows from [6, Theo-
rem 2.3.7]. The proof of quadratic convergence is nearly identical to the proof of convergence
of Newton's method.

In the theorem above we did not impose any conditions on the signs of x and v. Therefore, if
a pair [x̄, v̄] satis�es all conditions of the theorem 1 and x̄ ≥ 0n, v̄ ≥ 0n, then the solutions of (16)
locally converge to the optimal solutions of (P) and (D). The pairs [x̄, v̄] that satisfy (13), but
not (14), are referred to as a �spurious solutions�. In [11] we read: �Spurious solutions abound,
and none of them gives any useful information about solutions of (P) or (D), so it is best to
exclude them altogether from the region of search�. In order to justify these pairs we mention
that if x̄ ≥ 0n, v̄ ≤ 0n, then the trajectories x(t) locally converge to a point that maximizes c>x,
subject to the constraint x ∈ X; the trajectories v(t) converge to the corresponding optimal
dual slack vector that is nonpositive in this case. In problem (P), instead of condition x ≥ 0n,
we can have the condition x ≤ 0n. Such a problem will not be worse than (P) and the pair x,
v will give us the solutions of the maximization or minimization problems if v ≤ 0n or v ≥ 0n,
respectively.

De�ne the nonnegative Lyapunov function

L(x, v) = Dλ(x)v + ‖Ax− b‖+ ‖Kv − d‖
and introduce two level sets:

Ω0 =
{
[x, v] : L(x, v) ≤ L(x0, v0), x ∈ Rn

+, v ∈ Rn
+

}
,

Ω̃0 =
{
[x, v] ∈ Ω0 : x ∈ Rn

++, v ∈ Rn
++

}
,
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where x0, v0 are �xed arbitrary vectors from Rn
++.

Theorem 2. Suppose that the problems (P) and (D) have a unique optimal pair [x∗, v∗].
Assume that the vectors x0, v0 are such that the set Ω̃0 is nonempty and bounded. Then all
trajectories of (16), starting from Ω̃0, converge to the attractor pair [x∗, v∗].

Proof. The Lyapunov function L(x, v) > 0 for all [x, v] from Ω0, except the pair [x∗, v∗],
where L(x∗, v∗) = 0. The �rst integrals of the system (16) are (25), (26) and (38). The
solution of (16) belong to Ω0 and are, therefore, bounded. The right-hand side of (38) is
strictly positive and tends to zero only as t →∞. By moving along the trajectories of (16) we
do not violate nonnegativity of x and v as the Lyapunov function L(x(t), v(t)) monotonically
decreases. Therefore, the trajectories do not cross the boundary of the set Ω0. All trajectories
that emanate from Ω̃0 remain in the interior of Ω0. According to La Salle's Invariance Principle
[2], the solutions x(t), v(t) can be extended as t → ∞, their positive limit set is a compact
connected attractor contained in Ω0 and it coincides with the equilibrium pair [x∗, v∗], which is
unique on Ω0.

Consider the global convergence properties of the discrete variant of the method. For this
case, we de�ne the deviation from the optimal solution of problems (P) and (D) as

∆xk = xk − x∗, ∆vk = vk − v∗, ∆z>k = [∆x>k , ∆v>k ].

We use the partition (3), where B is an optimal basis. Therefore, we have ∆xN
k = xN

k , ∆vB
k =

= vB
k . We rewrite (59) as follows:

W (xk, vk)∆zk+1 = W (xk, vk)∆zk −D(γk)R(xk, vk).

In detail, we have

λkD(vk)∆xk+1 + D(xk)∆vk+1 = (1 + λkαk)D(∆xk)∆vk+
+ (1− αk)D(x∗)vk + (λk − αk)D(v∗)xk,

K∆vk+1 = (1− αk)K∆vk,
A∆xk+1 = (1− τk)A∆xk.

(65)

From (30), (31) and (33), we obtain

xk+1 = D(xk)[en + τk(yk − en)], vk+1 = D(vk)[en − αkyk], (66)

where
yk = D−1(vk)

(
A>gk − w(vk)

)
= en + D−1(xk)

(
w̃(xk)−K>g̃k

)
.

Let xk > 0, vk > 0. In order to guarantee the nonnegativity of the vectors xk+1, vk+1, the steps
αk, τk must satisfy the conditions:

en ≥ αkyk, en ≥ τk(en − yk).

It is easy to see that these conditions hold, if

αk ≤ α∗k =
1

[y∗k]+
, 0 < τk ≤ τ ∗k =

1

[1− yk∗ ]+
, (67)

where [α]+ = max[0, α]; y∗k and yk
∗ are, respectively, the maximum and minimum components

of the vector yk.
The numbers α∗k and τ ∗k determine the largest possible steps with respect to the primal and

dual variables along the Newton's directions for which all the components of the vectors x and
v remain nonnegative at the k-th iteration.
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If in Theorem 1, we substitute the optimal pair [x∗, v∗] for [x̄, v̄], then in addition to the
discrete analog of (61), we obtain that

lim
k→∞

α∗k = lim
k→∞

τ ∗k = 1.

Therefore, if k is su�ciently large, the behavior of Newton's method is similar to the �pure
Newton's� variant, where αk = τk = λk = 1. From (65), we obtain for this case

D(xk)∆vk+1 + D(vk)∆xk+1 = D(∆xk)∆vk,

K∆vk = 0`, (68)
A∆xk = 0m.

We conclude that, if k ≥ 1, then all vectors ∆xk belong to the null space of A and all vectors
∆vk belong to the range space of A>. Therefore, we can represented these vectors as

∆vk = −A>gk, ∆xk = −K>g̃k, (69)

where gk is an m-dimensional vector and g̃k is an `-dimensional vector. Substituting these
expressions in (68), we obtain a system of linear equations for determining the vector G>

k+1 =
= [g>k+1, g̃

>
k+1]:

M(xk, vk)Gk+1 + D(∆xk)∆vk = 0n,

where M is de�ned in (43).
The inverse of M computed for various cases is given by the formulas (48), (56), (57).

If xk > 0n, vk > 0n, we can use (48). Taking into account (69), we have

∆vk+1 = A>
(
AD

(
xk

vk

)
A>

)−1

AD−1(vk)D(∆xk)∆vk,

∆xk+1 = K>
(
KD

(
vk

xk

)
K>

)−1

KD−1(xk)D(∆xk)∆vk.

If the pair [xk, vk] is su�ciently close to [x∗, v∗], we can use the formulas (57), which yield

vB
k+1 ' D

(
xB

k

xB∗
− em

)
vB

k ,

∆vN
k+1 ' N>(B>)−1vB

k+1,

xN
k+1 ' D

(
vN

k

vN∗
− e`

)
xN

k ,

∆xB
k+1 ' K>

B (K>
N)−1xN

k+1.

These results establish the second order of convergence if the current pair [xk, vk] is su�ciently
close to the optimal pair.

6. Steepest Descent Approach
From the formulas (66), we obtain

Kvk+1 − d = (1− αk)(Kvk − d),

A(xk+1 − q) = (1− τk)A(xk − q),

Φk+1 = D ([en + τk(yk − en)][en − αkyk]) Φk,

ϕk+1 = (1− τk)ϕk + (τk − αk)y
>
k Φk + αkτky

>
k [In −D(yk)]Φk,
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where
Φk = D(xk)vk, ϕk = x>k vk.

Lemma 4. If −∞ < yk
∗ ≤ y∗k < ∞, then 0 < α∗k, 0 < τ ∗k .

Proof. From (67), we have the equality

1

α∗k
+

1

τ ∗k
=





1 + y∗k − yk
∗ , if y∗k ≥ 0, 0 ≤ yk

∗ ≤ 1;
y∗k, if yk

∗ > 1;
1− yk

∗ , if y∗k < 0.
(70)

It follows from (70) that, if the maximal and the minimal components of the vector yk are
bounded, then α∗k and τ ∗k are bounded away from zero.

It is possible to obtain more precise lower estimates for α∗k and τ ∗k directly from (67). Let σ
be a positive number satisfying the following inequality:

‖yk‖∞ ≤ σ, (71)
where ‖y‖∞ = max

1≤i≤n
|yi|. In this case we have

α∗k ≥
1

σ
, τ ∗k ≥

1

1 + σ
.

Lemma 5. Let xk ∈ X+ and vk ∈ V+. Then α∗k < ∞, τ ∗k < ∞.
Proof. It su�ces to show that y∗k > 0, yk

∗ < 1. Suppose the contrary, i.e., let y∗k < 0, then
yk ≤ 0n. From (32), (38), we have

n∑

i=1

xi
kv

iyi
k(y

i
k − 1) = 0.

Since xk > 0 and vk > 0, this equality is possible only if yk = 0n. But, according to (34), this
implies that b = 0m, which contradicts (12). Hence y∗k > 0.

If yk
∗ > 1, yk ≥ en. By the same process as above, we have yk = en and from (35), we obtain

that d = 0`. We arrive at a contradiction with (12), therefore, yk
∗ < 1.

In order for xk+1 and vk+1 to be interior points, we must have
0 ≤ αk ≤ ωα∗k = ᾱk, 0 ≤ τk ≤ ωτ ∗k = τ̄k, (72)

where 0 < ω < 1.
The steps αk, τk are best chosen so as to minimize the absolute values of all components of

the three vectors Φk+1, Kvk+1− d, and A(xk+1− q) under the conditions (72). Thus, we have a
multicriteria minimization problem. The simplest way to solve it is to use the following linear
convolution function:

ϑk(α, τ) = ϕk+1 + |1− τ | ‖A(xk − q)‖+ |1− α| ‖Kvk − d‖. (73)
The auxiliary problem thus obtained is: to �nd

ϑk(α̃k, τ̃k) = min
0 ≤ α ≤ ᾱk

0 ≤ τ ≤ τ̄k

ϑk(α, τ). (74)

The solution of this problem is trivial. It is enough to compare the values of the goal function
ϑ(α, τ) in nine points [αi, τj], where

αi = 0, ᾱk and 1, if ᾱk > 1,

τj = 0, τ̄k and 1, if τ̄k > 1,

and to choose the smallest value.
Finally we outline the algorithm.
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DATA: Initial pair x0 > 0n, v0 > 0n, the safety factor 0 < ω < 1, and the stopping
tolerance ε > 0.
For k = 0, 1, . . . , do:
Step 1. Compute ϑk(0, 0) and, if this number is less than ε, then stop.
Step 2. De�ne the maximal step lengths α∗k, τ ∗k . Solve the auxiliary minimization problem
(74) and de�ne α̃k, τ̃k.
Step 3. Update the current pair [xk, vk] by setting

xk+1 = D(xk)[en + τ̃k(yk − en)], vk+1 = D(vk)[en − α̃kyk].

A special case of this algorithm, where v0 ∈ V+, was investigated in [2].
Theorem 3. Let x0 ∈ X+, v0 ∈ V+. Assume that the sequences xk, vk generated by the

method of steepest descent (66), (74) are such that the inequality (71) holds for all k. Then for
any ε > 0 the function ϑk(α̃k, τ̃k) will become less than ε after not more than

k∗ =

⌈
1 + σ

ω
ln

[
ϑ0

ε

]⌉
,

iterations, where dae is the least integer approaching the number a from above.
The proof of this theorem is similar to the one given in [15].
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